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Abstract

Characters in real-time computer games need to move
smoothly and thus need to search in real time. In this
paper, we describe a simple but powerful way of speed-
ing up repeated A* searches with the same goal states,
namely by updating the heuristics between A* searches.
We then use this technique to develop a novel real-time
heuristic search method, called Real-Time Adaptive A*,
which is able to choose its local search spaces in a fine-
grained way. It updates the values of all states in its
local search spaces and can do so very quickly. Our
experimental results for characters in real-time com-
puter games that need to move to given goal coordi-
nates in unknown terrain demonstrate that this prop-
erty allows Real-Time Adaptive A* to follow trajec-
tories of smaller cost for given time limits per search
episode than a recently proposed real-time heuristic
search method (Koenig 2004) that is more difficult to
implement.

Introduction
Agents need to use different search methods than the off-line
search methods often studied in artificial intelligence. Char-
acters in real-time computer games, for example, need to
move smoothly and thus need to search in real time. Real-
time heuristic search methods find only the beginning of a
trajectory from the current state of an agent to a goal state
(Korf 1990; Ishida 1997). They restrict the search to a small
part of the state space that can be reached from the cur-
rent state with a small number of action executions (local
search space). The agent determines the local search space,
searches it, decides how to move within it, and executes one
or more actions along the resulting trajectory. The agent
then repeats this process until it reaches a goal state. Real-
time heuristic search methods thus do not plan all the way
to a goal state which often results in smaller total search
times but larger trajectory costs. Most importantly, real-
time heuristic search methods can satisfy hard real-time re-
quirements in large state spaces since the sizes of their local
search spaces (= their lookaheads) are independent of the
sizes of the state spaces and can thus remain small. To fo-
cus the search and prevent cycling, they associate heuristics
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with the states and update them between searches, which
accounts for a large chunk of the search time per search
episode. In this paper, we describe Real-Time Adaptive A*,
a novel real-time heuristic search method. It is a contract
anytime method (Zilberstein 1993) that is able to choose its
local search spaces in a very fine-grained way, updates the
heuristics of all states in the local search space and is able
to do so very quickly. Our experimental results for goal-
directed navigation tasks in unknown terrain demonstrate
that Real-Time Adaptive A* follows trajectories of smaller
cost for given time limits per search episode than a recently
proposed real-time heuristic search method (Koenig 2004)
because it updates the heuristics more quickly, which allows
it to use larger local search spaces and overcompensate for
its slightly less informed heuristics. At the same time, Real-
Time Adaptive A* is easier to implement.

Main Idea
Our main idea is simple but powerful. Assume that one has
to perform several A* searches with consistent heuristics in
the same state space and with the same goal states but pos-
sibly different start states. Adaptive A* makes the heuristics
more informed after each A* search in order to speed up
future A* searches. We now explain the main idea behind
Adaptive A*.

A* (Hart, Nilsson, & Raphael 1968) is an algorithm for
finding cost-minimal paths in state spaces (graphs). For ev-
ery state s, the user supplies a heuristic h[s] that estimates
the goal distance gd[s] of the state (= the cost of a cost-
minimal path from the state to a goal state). The heuristics
need to be consistent (Pearl 1985). For every state s en-
countered during the search, A* maintains two values: the
smallest cost g[s] of any discovered path from the start state
scurr to state s (which is initially infinity), and an estimate
f [s] := g[s] + h[s] of the distance from the start state scurr

via state s to a goal state. A* then operates as follows: It
maintains a priority queue, called open list, which initially
contains only the start state scurr. A* removes a state s with
a smallest f-value from the priority queue. If state s is a goal
state, it terminates. Otherwise, it expands the state, mean-
ing that it updates the g-value of each successor state of the
state and then inserts those successor states into the open list
whose g-value decreased. It then repeats the process. After
termination, the g-value of every expanded state s is equal



to the distance from the start state scurr to state s.
We now explain how one can make the heuristics more

informed after each A* search in order to speed up future A*
searches. Assume that s is a state that was expanded during
such an A* search. We can obtain an admissible (= non-
overestimating) estimate of its goal distance as follows: The
distance from the start state scurr to any goal state via state
s is equal to the distance from the start state scurr to state s
plus the goal distance gd[s] of state s. It clearly can not be
smaller than the goal distance gd[scurr] of the start state scurr.
Thus, the goal distance gd[s] of state s is no smaller than
the goal distance gd[scurr] of the start state scurr (= the f-value
f [s̄] of the goal state s̄ that was about to be expanded when
the A* search terminates) minus the distance from the start
state scurr to state s (= the g-value g[s] of state s when the A*
search terminates).

g[s] + gd[s] ≥ gd[scurr]

gd[s] ≥ gd[scurr] − g[s]

gd[s] ≥ f [s̄] − g[s]

Consequently, f [s̄]−g[s] provides an admissible estimate
of the goal distance gd[s] of state s and can be calculated
quickly. More informed heuristics can be obtained by calcu-
lating and assigning this difference to every state that was
expanded during the A* search and thus is in the closed
list when the A* search terminates. (The states in the open
list are not updated since the distance from the start state to
these states can be smaller than their g-values when the A*
search terminates.) We evaluated this idea experimentally
in (Koenig & Likhachev 2005). We now use it to develop
a novel real-time heuristic search method, called Real-Time
Adaptive A* (RTAA*), which reduces to the case discussed
above if its lookahead is infinity.

Notation
We use the following notation to describe search tasks: S de-
notes the finite set of states. scurr ∈ S denotes the start state
of the search, and GOAL ⊂ S denotes the set of goal states.
A(s) denotes the finite set of actions that can be executed in
state s ∈ S. c[s, a] > ε (for a given constant ε > 0) denotes
the cost of executing action a ∈ A(s) in state s ∈ S, whereas
succ(s, a) ∈ S denotes the resulting successor state. The ac-
tion costs c can increase during the search but we require the
goal distances of all states to remain bounded from above by
some constant.

Real-Time Adaptive A*
Figure 1 shows the pseudo code of RTAA*. The legend ex-
plains the constants, variables, and functions that we will re-
fer to in the following. The variables annotated with [USER]
have to be initialized before RTAA* is called. scurr needs to
be set to the start state of the agent, c to the initial action
costs, and h to the initial heuristics, which need to be consis-
tent for the initial action costs, that is, need to satisfy h[s] =
0 for all goal states s and h[s] ≤ h[succ(s, a)] + c[s, a] for
all non-goal states s and actions a that can be executed in
them (Pearl 1985). Variables annotated with [A*] are up-
dated during the call to astar() {03} (= line 3 in the pseudo

constants and functions
S set of states of the search task, a set of states

GOAL set of goal states, a set of states

A( ) sets of actions, a set of actions for every state

succ( ) successor function, a state for every state-action pair

variables
lookahead number of states to expand at most, an integer larger than zero

movements number of actions to execute at most, an integer larger than zero

scurr current state of the agent, a state [USER]

c current action costs, a float for every state-action pair [USER]

h current (consistent) heuristics, a float for every state [USER]

g g-values, a float for every state [A*]

CLOSED closed list of A* (= all expanded states), a set of states [A*]

s̄ state that A* was about to expand when it terminated, a state [A*]

procedure realtime adaptive astar():

{01} while (scurr �∈ GOAL) do

{02} lookahead := any desired integer greater than zero;

{03} astar();

{04} if s̄ = FAILURE then

{05} return FAILURE;

{06} for all s ∈ CLOSED do

{07} h[s] := g[s̄] + h[s̄] − g[s];

{08} movements := any desired integer greater than zero;

{09} while (scurr �= s̄ AND movements > 0) do

{10} a := the action in A(scurr) on the cost-minimal trajectory from scurr to s̄;

{11} scurr := succ(scurr, a);

{12} movements := movements − 1;

{13} for any desired number of times (including zero) do

{14} increase any desired c[s, a] where s ∈ S and a ∈ A(s);

{15} if any increased c[s, a] is on the cost-minimal trajectory from scurr to s̄ then

{16} break;

{17} return SUCCESS;

Figure 1: Real-Time Adaptive A*

code), which performs a (forward) A* search guided by the
current heuristics from the current state of the agent toward
the goal states until a goal state is about to be expanded or
lookahead > 0 states have been expanded. After the A*
search, we require s̄ to be the state that was about to be
expanded when the A* search terminated. We denote this
state with s̄ consistently throughout this paper. We require
that s̄ = FAILURE if the A* search terminated due to an
empty open list, in which case there is no finite-cost tra-
jectory from the current state to any goal state and RTAA*
thus returns failure {05}. We require CLOSED to contain
the states expanded during the A* search and the g-value
g[s] to be defined for all generated states s, including all ex-
panded states. We define the f-values f [s] := g[s] + h[s]
for these states s. The expanded states s form the local
search space, and RTAA* updates their heuristics by setting
h[s] := f [s̄] − g[s] = g[s̄] + h[s̄] − g[s] {06-07}. (The
heuristics of the other states are not changed.) RTAA* then
executes actions along the trajectory found by the A* search
until state s̄ is reached (or, equivalently, a state is reached
that was not expanded or, also equivalently, the local search
space is left), movements > 0 actions have been executed, or
the cost of an action on the trajectory increases {09-16}. It
then repeats the process until it reaches a goal state, in which
case it returns success {17}.



The values of lookahead and movements determine the
behavior of RTAA*. For example, RTAA* performs a sin-
gle A* search from the start state to a goal state and then
moves the agent along the trajectory found by the A* search
to the goal state if it always chooses infinity for lookahead
and movements and no action costs increase.

We now prove several important properties of RTAA* that
hold no matter how it chooses its values of lookahead and
movements. We make use of the following known proper-
ties of A* searches with consistent heuristics: First, they
expand every state at most once. Second, the g-values of ev-
ery expanded state and state s̄ are equal to the distance from
the start state to state s and state s̄, respectively. Thus, one
knows cost-minimal trajectory from the start state to all ex-
panded states and state s̄. Third, the f-values of the series of
expanded states over time are monotonically nondecreasing.
Thus, f [s] ≤ f [s̄] for all expanded states s and f [s̄] ≤ f [s]
for all generated states s that remained unexpanded.

Theorem 1 The heuristics of the same state are monotoni-
cally nondecreasing over time and thus indeed become more
informed over time.

Proof: Assume that the heuristic of state s is updated on line
{07}. Then, state s was expanded and it thus holds that f [s] ≤
f [s̄]. Consequently, h[s] = f [s] − g[s] ≤ f [s̄] − g[s] = g[s̄] +
h[s̄] − g[s] and the update cannot decrease the heuristic of state s

since it changes the heuristic from h[s] to g[s̄] + h[s̄] − g[s].

Theorem 2 The heuristics remain consistent.
Proof: We prove this property by induction on the number of A*

searches. The initial heuristics are provided by the user and con-
sistent. It thus holds that h[s] = 0 for all goal states s. This con-
tinues to hold since goal states are not expanded and their heuris-
tics thus not updated. (Even if RTAA* updated the heuristic of
state s̄, it would leave the heuristic of that state unchanged since
f [s̄] − g[s̄] = g[s̄] + h[s̄] − g[s̄] = h[s̄]. Thus, the heuristics of
goal states would remain zero even in that case.) It also holds that
h[s] ≤ h[succ(s, a)] + c[s, a] for all non-goal states s and actions
a that can be executed in them. Assume that some action costs in-
crease on lines {13-14}. Let c denote the action costs before all
increases and c′ denote the action costs after all increases. Then,
h[s] ≤ h[succ(s, a)] + c[s, a] ≤ h[succ(s, a)] + c′[s, a] and the
heuristics thus remain consistent. Now assume that the heuristics
are updated on lines {06-07}. Let h denote the heuristics before
all updates and h′ denote the heuristics after all updates. We dis-
tinguish three cases:

• First, both s and succ(s, a) were expanded, which implies that
h′[s] = g[s̄] + h[s̄] − g[s] and h′[succ(s, a)] = g[s̄] + h[s̄] −
g[succ(s, a)]. Also, g[succ(s, a)] ≤ g[s] + c[s, a] since the A*
search discovers a trajectory from the current state via state s
to state succ(s, a) of cost g[s] + c[s, a] during the expansion
of state s. Thus, h′[s] = g[s̄] + h[s̄] − g[s] ≤ g[s̄] + h[s̄] −
g[succ(s, a)] + c[s, a] = h′[succ(s, a)] + c[s, a].

• Second, s was expanded but succ(s, a) was not, which im-
plies that h′[s] = g[s̄] + h[s̄] − g[s] and h′[succ(s, a)] =
h[succ(s, a)]. Also, g[succ(s, a)] ≤ g[s] + c[s, a] for the
same reason as in the first case, and f [s̄] ≤ f [succ(s, a)]
since state succ(s, a) was generated but not expanded. Thus,
h′[s] = g[s̄] + h[s̄] − g[s] = f [s̄] − g[s] ≤ f [succ(s, a)] −
g[s] = g[succ(s, a)] + h[succ(s, a)] − g[s] = g[succ(s, a)] +
h′[succ(s, a)] − g[s] ≤ g[succ(s, a)] + h′[succ(s, a)] −
g[succ(s, a)] + c[s, a] = h′[succ(s, a)] + c[s, a].

• Third, s was not expanded, which implies that h′[s] = h[s].
Also, h[succ(s, a)] ≤ h′[succ(s, a)] since the heuristics of the
same state are monotonically nondecreasing over time. Thus,
h′[s] = h[s] ≤ h[succ(s, a)]+c[s, a] ≤ h′[succ(s, a)]+c[s, a].

Thus, h′[s] ≤ h′[succ(s, a)] + c[s, a] in all three cases and the
heuristics thus remain consistent.

Theorem 3 The agent reaches a goal state.

Proof: Assume that the heuristics are updated on lines {06-07}.
Let h denote the heuristics of RTAA* before all updates and h′

denote the heuristics after all updates. The heuristics of the same
state are monotonically nondecreasing over time, according to The-
orem 1. Assume that the agent moves from its current state s to
some state s′ (with s �= s′) along a cost-minimal trajectory from
state s to state s̄. It holds that h′[s] = f [s̄] − g[s] = f [s̄] since
state s is the start of the search and its g-value is thus zero and
since it was expanded and its heuristic was thus updated. Further-
more, it holds that h′[s′] = f [s̄] − g[s′] since either state s′ was
expanded and its heuristic was thus updated or s′ = s̄ and then
h′[s′] = h′[s̄] = h[s̄] = f [s̄] − g[s̄] = f [s̄] − g[s′]. Thus, after
the agent moved from state s to state s′ and its current state thus
changed from state s to state s′, the heuristic of the current state
decreased by h′[s]−h′[s′] = f [s̄]− (f [s̄]− g[s′]) = g[s′] and the
sum of the heuristics of all states but its current state thus increased
by

∑
s′′∈S\{s′}

h′[s′′] −
∑

s′′∈S\{s}
h′[s′′] = g[s′], which is

bounded from below by a positive constant since s �= s′ and we
assumed that all action costs are bounded from below by a positive
constant. Thus, the sum of the heuristics of all states but the current
state of the agent increases over time beyond any bound if the agent
does not reach a goal state. At the same time, the heuristics remain
consistent, according to Theorem 2 (since consistent heuristics are
admissible), and are thus no larger than the goal distances which
we assumed to be bounded from above, which is a contradiction.
Thus, the agent is guaranteed to reach a goal state.

Theorem 4 If the agent is reset into the start state whenever
it reaches a goal state then the number of times that it does
not follow a cost-minimal trajectory from the start state to
a goal state is bounded from above by a constant if the cost
increases are bounded from below by a positive constant.

Proof: Assume for now that the cost increases leave the goal
distances of all states unchanged. Under this assumption, it is easy
to see that the agent follows a cost-minimal trajectory from the
start state to a goal state if it follows a trajectory from the start
state to a goal state where the heuristic of every state is equal to
its goal distance. If the agent does not follow such a trajectory,
then it transitions at least once from a state s whose heuristic is
not equal to its goal distance to a state s′ whose heuristic is equal
to its goal distance since it reaches a goal state according to The-
orem 3 and the heuristic of the goal state is zero since the heuris-
tics remain consistent according to Theorem 2. We now prove that
the heuristic of state s is then set to its goal distance. When the
agent executes some action a ∈ A(s) in state s and transitions
to state s′, then state s is a parent of state s′ in the A* search
tree produced during the last call of astar() and it thus holds that
(1) state s was expanded during the last call of astar(), (2) ei-
ther state s′ was also expanded during the last call of astar() or



s′ = s̄, (3) g[s′] = g[s] + c[s, a]. Let h denote the heuristics be-
fore all updates and h′ denote the heuristics after all updates. Then,
h′[s] = f [s̄] − g[s] and h′[s′] = f [s̄] − g[s′] = gd[s′]. The last
equality holds because we assumed that the heuristic of state s′

was equal to its goal distance and thus can no longer change since
it could only increase according to Theorem 1 but would then make
the heuristics inadmissible and thus inconsistent, which is impossi-
ble according to Theorem 2. Consequently, h′[s] = f [s̄] − g[s] =
gd[s′] + g[s′] − g[s] = gd[s′] + c[s, a] ≥ gd[s], proving that
h′[s] = gd[s] since a larger heuristic would make the heuristics
inadmissible and thus inconsistent, which is impossible according
to Theorem 2. Thus, the heuristic of state s is indeed set to its
goal distance. After the heuristic of state s is set to its goal dis-
tance, the heuristic can no longer change since it could only in-
crease according to Theorem 1 but would then make the heuristics
inadmissible and thus inconsistent, which is impossible according
to Theorem 2. Since the number of states is finite, it can happen
only a bounded number of times that the heuristic of a state is set to
its goal distance. Thus, the number of times that the agent does not
follow a cost-minimal trajectory from the start state to a goal state
is bounded. The theorem then follows since the number of times
that a cost increase does not leave the goal distances of all states
unchanged is bounded since we assumed that the cost increases are
bounded from below by a positive constant but the goal distances
are bounded from above. After each such change, the number of
times that the agent does not follow a cost-minimal trajectory from
the start state to a goal state is bounded.

Relationship to LRTA*
RTAA* is similar to a version of Learning Real-Time A* re-
cently proposed in (Koenig 2004), an extension of the origi-
nal Learning Real-Time A* algorithm (Korf 1990) to larger
lookaheads. For simplicity, we refer to this particular ver-
sion of Learning Real-Time A* as LRTA*. Both RTAA* and
LRTA* update the heuristics after each A* search but they
differ in how they do it. LRTA* replaces the heuristic of each
expanded state with the sum of the distance from the state
to a generated but unexpanded state s and the heuristic of
state s, minimized over all generated but unexpanded states
s. (The heuristics of the other states are not changed.) Let h̄′

denote the heuristics after all updates. Then, the heuristics
of LRTA* after the updates satisfy the following system of
equations for all expanded states s:

h̄
′[s] = min

a∈A(s)
(c[s, a] + h̄

′[succ(s, a)])

The properties of LRTA* are similar to the ones of
RTAA*. For example, its heuristics for the same state are
monotonically nondecreasing over time and remain consis-
tent, and the agent reaches a goal state. We now prove that
LRTA* and RTAA* behave exactly the same if their looka-
head is one and they break ties in the same way. They can
behave differently for larger lookaheads, and we give an in-
formal argument for why the heuristics of LRTA* tend to be
more informed than the ones of RTAA* with the same looka-
heads. On the other hand, it takes LRTA* more time to up-
date the heuristics and it is more difficult to implement, for
the following reason: LRTA* performs one search to deter-
mine the local search space and a second search to determine

how to update the heuristics of the states in the local search
space since it is unable to use the results of the first search
for this purpose, as explained in (Koenig 2004). Thus, there
is a trade-off between the total search time and the cost of
the resulting trajectory, and we need to compare both search
methods experimentally to understand this trade-off better.

Theorem 5 RTAA* with lookahead one behaves exactly like
LRTA* with the same lookahead if they break ties in the same
way.

Proof: We show the property by induction on the number of A*
searches. The heuristics of both search methods are initialized with
the heuristics provided by the user and are thus identical before the
first A* search. Now consider any A* search. The A* searches
of both search methods are identical if they break ties in the same
way. Let s̄ be the state that was about to be expanded when their A*
searches terminated. Let h denote the heuristics of RTAA* before
all updates and h′ denote the heuristics after all updates. Simi-
larly, let h̄ denote the heuristics of LRTA* before all updates and
h̄′ denote the heuristics after all updates. Assume that h[s] = h̄[s]
for all states s. We show that h′[s] = h̄′[s] for all states s. Both
search methods expand only the current state s of the agent and
thus update only the heuristic of this one state. Since s �= s̄, it
holds that h′[s] = g[s̄] + h[s̄] − g[s] = g[s̄] + h[s̄] and h̄′[s] =
mina∈A(s)(c[s, a]+ h̄′[succ(s, a)]) = mina∈A(s)(g[succ(s, a)]+
h̄′[succ(s, a)]) = mina∈A(s)(g[succ(s, a)] + h̄[succ(s, a)]) =
g[s̄] + h̄[s̄] = g[s̄] + h[s̄]. Thus, both search methods set the
heuristic of the current state to the same value and then move to
state s̄. Notice that lookahead = 1 implies without loss of gener-
ality that movements = 1. Consequently, they behave exactly the
same.

We now give an informal argument why the heuristics of
LRTA* with lookaheads larger than one tend to be more in-
formed than the ones of RTAA* with the same lookahead
(if both real-time heuristic search methods use the same
value of movements). This is not a proof but gives some
insight into the behavior of the two search methods. As-
sume that both search methods are in the same state and
break ties in the same way. Let h denote the heuristics
of RTAA* before all updates and h′ denote the heuristics
after all updates. Similarly, let h̄ denote the heuristics of
LRTA* before all updates and h̄′ denote the heuristics af-
ter all updates. Assume that h[s] = h̄[s] for all states s.
We now prove that h′[s] ≤ h̄′[s] for all states s. The A*
searches of both search methods are identical if they break
ties in the same way. Thus, they expand the same states and
thus also update the heuristics of the same states. We now
show that the heuristics h′ cannot be consistent if h′[s] >
h̄′[s] for at least one state s. Assume that h′[s] > h̄′[s]
for at least one state s. Pick a state s with the smallest
h̄′[s] for which h′[s] > h̄′[s] and pick an action a with
a = arg mina∈A(s)(c[s, a] + h̄′[succ(s, a)]. State s must
have been expanded since h[s] = h̄[s] but h′[s] > h̄′[s].
Then, it holds that h̄′[s] = c[s, a] + h̄′[succ(s, a)]. Since
h̄′[s] = c[s, a] + h̄′[succ(s, a)] > h̄′[succ(s, a)] and state s
is a state with the smallest h̄′[s] for which h′[s] > h̄′[s], it
must be the case that h′[succ(s, a)] ≤ h̄′[succ(s, a)]. Put to-
gether, it holds that h′[s] > h̄′[s] = c[s, a]+h̄′[succ(s, a)] ≥
c[s, a] + h′[succ(s, a)]. This means that the heuristics h′ are



inconsistent but we have earlier proved already that they re-
main consistent, which is a contradiction. Consequently, it
holds that h′[s] ≤ h̄′[s] for all states s. Notice that this proof
does not imply that the heuristics of LRTA* always domi-
nate the ones of RTAA* since the search methods can move
the agent to different states and then update the heuristics of
different states, but it suggests that the heuristics of LRTA*
with lookaheads larger than one tend to be more informed
than the ones of RTAA* with the same lookaheads and thus
that the trajectories of LRTA* tend to be of smaller cost than
the trajectories of RTAA* with the same lookaheads (if both
real-time heuristic search methods use the same value of
movements). In the remainder of the paper, we assume that
the agents always choose the same constant for lookahead,
which is an external parameter, and always use infinity for
movements, both for LRTA* and RTAA*.

Application
Real-time heuristic search methods are often used as alterna-
tive to traditional search methods for solving offline search
tasks (Korf 1990). We, however, apply RTAA* to goal-
directed navigation in unknown terrain, a search task that
requires agents to execute actions in real time. Characters in
real-time computer games, for example, often do not know
the terrain in advance but automatically observe it within
a certain range around them and then remember it for fu-
ture use. To make these agents easy to control, the users
can click on some position in known or unknown terrain
and the agents then move autonomously to this position. If
the agents observe during execution that their current trajec-
tory is blocked, then they need to search for another plan.
The searches need to be fast since the agents need to move
smoothly even if the processor is slow, the other game com-
ponents use most of the available processor cycles and there
are a large number of agents that all have to search repeat-
edly. Thus, there is a time limit per A* search, which sug-
gests that real-time heuristic search methods are a good fit
for our navigation tasks. To apply them, we discretize the
terrain into cells that are either blocked or unblocked, a com-
mon practice in the context of real-time computer games
(Bjornsson et al. 2003). The agents initially do not know
which cells are blocked but use a navigation strategy from
robotics (Koenig, Tovey, & Smirnov 2003): They assume
that cells are unblocked unless they have the cells already
observed to be blocked (freespace assumption). They al-
ways know which (unblocked) cells they are in, observe the
blockage status of their four neighboring cells, raise the ac-
tion costs of actions that enter the newly observed blocked
cells, if any, from one to infinity, and then move to any one of
the unblocked neighboring cells with cost one. We therefore
use the Manhattan distances as consistent heuristic estimates
of the goal distances. The task of the agents is to move to
the given goal cell, which we assume to be possible.

Illustration
Figure 2 shows a simple goal-directed navigation task in
unknown terrain that we use to illustrate the behavior of
RTAA*. Black squares are blocked. All cells have their
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Figure 2: Example
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Figure 3: Forward A* Searches

81012

76323

65434

7654

81246

88368

888810

10101010

1876

1365

2345

01234

12345

23456

34567

45678

7123

67312

54401

43212

5432

7199

79377

77857

77779

9999

1

1365

2476

3456

01876

12365

23456

34567

45678

Figure 4: RTAA* with lookahead = ∞
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Figure 5: LRTA* with lookahead = ∞

initial heuristic in the lower left corner. We first compare
RTAA* with lookahead infinity to LRTA* with the same
lookahead and forward A* searches. All search methods
start a new search episode (= run another search) when the
cost of an action on their current trajectory increases and
break ties between cells with the same f-values in favor of
cells with larger g-values and remaining ties in the following
order, from highest to lowest priority: right, down, left and
up. We do this since we believe that systematic rather than
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Figure 6: RTAA* with lookahead = 4

random tie-breaking helps the readers to understand the be-
havior of the different search methods better since all search
methods then follow the same trajectories. Figures 3, 4, and
5 show the agent as a small black circle. The arrows show
the planned trajectories from the current cell of the agent to
the goal cell, which is in the lower right corner. Cells that
the agent has already observed to be blocked are black. All
other cells have their heuristic in the lower left corner. Gen-
erated cells have their g-value in the upper left corner and
their f-value in the upper right corner. Expanded cells are
grey and, for RTAA* and LRTA*, have their updated heuris-
tics in the lower right corner, which makes it easy for the
readers to compare them to the heuristics before the update
in the lower left corner. Notice that forward A* searches,
RTAA* with lookahead infinity and LRTA* with the same
lookahead follow the same trajectories if they break ties in
the same way. They differ only in the number of cell ex-
pansions, which is larger for forward A* searches (23) than
for RTAA* (20) and larger for RTAA* (20) than for LRTA*
(19). The first property is due to RTAA* and LRTA* updat-
ing the heuristics while forward A* searches do not. Thus,
forward A* searches fall prey to the local minimum in the
heuristic value surface and thus expand the three leftmost
cells in the lowest row a second time, while RTAA* and
LRTA* avoid these cell expansions. The second property is
due to some updated heuristics of LRTA* being larger than
the ones of RTAA*. Notice, however, that most updated

Figure 7: Test Terrain: Mazes

heuristics are identical, although this is not guaranteed in
general. We also compare RTAA* with lookahead four to
RTAA* with lookahead infinity. Figures 4 and 6 show that
decreasing the lookahead of RTAA* increases the trajectory
cost (from 10 to 12) but decreases the number of cell expan-
sions (from 20 to 17) because smaller lookaheads imply that
less information is used during each search episode. (Notice
that the last search episode of RTAA* with lookahead four
expands only one cell since the goal cell is about to be ex-
panded next.) We now perform systematic experiments to
see whether they confirm the trends shown in our examples.

Experimental Results
We now run experiments to compare RTAA* to forward A*
searches and LRTA*, as in the previous section. All three
search methods search forward. We also compare RTAA*
to two search methods that search backward, namely back-
ward A* searches and D* Lite (Koenig & Likhachev 2002)
(an incremental version of backward A* searches that is sim-
ilar to but simpler than D* (Stentz 1995)), which is possible
because there is only one goal cell.1 All search methods use
binary heaps as priority queues and now break ties between
cells with the same f-values in favor of cells with larger g-
values (which is known to be a good tie-breaking strategy)
and remaining ties randomly.

We perform experiments on a SUN PC with a 2.4 GHz
AMD Opteron Processor 150 in randomly generated four-
connected mazes of size 151 × 151 that are solvable. Their

1Notice that the total number of cell expansions and total search
time of forward A* searches are significantly smaller than the ones
of backward A* searches. The big impact of the search direction
can be explained as follows: The agent observes blocked cells close
to itself. Thus, the blocked cells are close to the start of the search
in the early phases of forward A* searches, but close to the goal of
the search in the early phases of backward A* searches. The closer
the blocked cells are to the start of the search, the more cells there
are for which the Manhattan distances are perfectly informed and
thus the faster A* searches are that break ties between cells with
the same f-values in favor of cells with larger g-values since they
expand only states along a cost-minimal trajectory from cells for
which the Manhattan distances are perfectly informed to the goal
of the search.



Table 1: Experiments in Mazes
(a) = lookahead (= bound on the number of cell expansions per search episode), (b) = total number of cell expansions (until the agent reaches the goal cell) [in square brackets: standard deviation of the mean], (c)
= total number of search episodes (until the agent reaches the goal cell), (d) = trajectory cost (= total number of action executions until the agent reaches the goal cell) [in square brackets: standard deviation of the
mean], (e) = number of action executions per search episode, (f) = total search time (until the agent reaches the goal cell) in microseconds [in square brackets: standard deviation of the mean], (g) = search time
per search episode in microseconds, (h) = search time per action execution in microseconds, (i) = increase of heuristics per search episode and expanded cell (= per update) = h

′[s] − h[s] averaged over all
search episodes and expanded cells s

look- cell search action action executions per search search time per search time per increase of
ahead expansions episodes executions search episode time search episode action execution heuristics

Real-Time Adaptive A* (RTAA*)
1 248537.79 [5454.11] 248537.79 248537.79 [5454.11] 1.00 48692.17 [947.08] 0.20 0.20 1.00
9 104228.97 [2196.69] 11583.50 56707.84 [1248.70] 4.90 23290.36 [360.77] 2.01 0.41 2.40

17 85866.45 [1701.83] 5061.92 33852.77 [774.35] 6.69 22100.20 [301.99] 4.37 0.65 3.10
25 89257.66 [1593.02] 3594.51 26338.21 [590.00] 7.33 24662.64 [310.42] 6.86 0.94 3.30
33 96839.84 [1675.46] 2975.65 22021.81 [521.77] 7.40 27994.45 [350.79] 9.41 1.27 3.28
41 105702.99 [1699.20] 2639.59 18628.66 [435.06] 7.06 31647.50 [382.30] 11.99 1.70 3.08
49 117035.65 [1806.59] 2473.55 16638.27 [390.09] 6.73 35757.69 [428.17] 14.46 2.15 2.90
57 128560.04 [1939.38] 2365.94 15366.63 [361.95] 6.49 39809.02 [477.72] 16.83 2.59 2.79
65 138640.02 [2019.98] 2270.38 14003.74 [314.38] 6.17 43472.99 [517.36] 19.15 3.10 2.63
73 150254.51 [2176.68] 2224.29 13399.01 [309.72] 6.02 47410.44 [567.88] 21.31 3.54 2.57
81 160087.23 [2269.20] 2172.94 12283.65 [270.03] 5.65 50932.60 [608.94] 23.44 4.15 2.39
89 172166.56 [2436.73] 2162.75 12078.40 [261.16] 5.58 54874.88 [663.96] 25.37 4.54 2.37
∞ 642823.02 [20021.00] 1815.92 5731.20 [81.72] 3.16 226351.59 [7310.53] 124.65 39.49 4.22

Learning Real-Time A* (LRTA*)
1 248537.79 [5454.11] 248537.79 248537.79 [5454.11] 1.00 67252.19 [1354.67] 0.27 0.27 1.00
9 87613.37 [1865.31] 9737.38 47290.61 [1065.07] 4.86 27286.14 [437.09] 2.80 0.58 2.93

17 79312.59 [1540.44] 4676.76 30470.32 [698.08] 6.52 29230.15 [409.96] 6.25 0.96 3.61
25 82850.86 [1495.61] 3338.86 23270.38 [551.75] 6.97 34159.80 [450.49] 10.23 1.47 3.74
33 92907.75 [1548.37] 2858.19 20015.55 [472.86] 7.00 40900.68 [516.47] 14.31 2.04 3.71
41 102787.86 [1619.33] 2570.83 17274.12 [403.65] 6.72 47559.60 [587.96] 18.50 2.75 3.54
49 113139.63 [1716.88] 2396.66 15398.47 [360.45] 6.42 54324.06 [665.02] 22.67 3.53 3.38
57 125013.41 [1829.10] 2307.68 14285.14 [328.39] 6.19 61590.97 [744.33] 26.69 4.31 3.25
65 133863.67 [1956.49] 2201.60 13048.50 [300.69] 5.93 67482.95 [829.44] 30.65 5.17 3.12
73 146549.69 [2080.76] 2181.76 12457.92 [277.60] 5.71 74868.92 [909.31] 34.32 6.01 3.02
81 157475.45 [2209.65] 2150.04 11924.96 [262.61] 5.55 81469.32 [989.84] 37.89 6.83 2.95
89 166040.29 [2355.33] 2102.91 11324.72 [246.94] 5.39 86883.98 [1077.54] 41.32 7.67 2.88
∞ 348072.76 [7021.57] 1791.19 5611.09 [80.43] 3.13 203645.42 [3782.37] 113.69 36.29 8.20

D* Lite
– 47458.83 [581.03] 1776.24 5637.46 [77.03] 3.17 37291.83 [378.20] 20.99 6.62 –

Forward A* Search
– 1857468.48 [68324.90] 1732.07 5354.26 [76.91] 3.09 544065.45 [21565.61] 314.11 101.61 –

Backward A* Search
– 5245087.82 [93697.15] 1795.72 5535.05 [77.09] 3.08 1698163.04 [31051.10] 945.67 306.80 –

corridor structure is generated with depth-first search. The
start and goal cells are chosen randomly. Figure 7 shows an
example (of smaller size than used in the experiments). We
use the Manhattan distances as heuristics. The performance
measures in Table 1 are averaged over the same 2500 grids.
We show the standard deviation of the mean for three key
performance measures in square brackets to demonstrate the
statistical significance of our results, namely the total num-
ber of cell expansions and the total search time on one hand
and the resulting trajectory cost on the other hand. (The
standard deviation of the mean can be used to calculate con-
fidence intervals for different confidence levels.) We first
verify the properties suggested in the previous sections:

• RTAA* with lookahead infinity, LRTA* with the same
lookahead, D* Lite and forward and backward A*
searches follow the same trajectories if they break ties in
the same way and their trajectory costs are indeed approx-
imately equal. (The slight differences are due to remain-
ing ties being broken randomly.) The total number of cell
expansions and the total search time are indeed larger for
forward A* searches than RTAA*, and larger for RTAA*
than LRTA*, as suggested in “Illustration.”

• Decreasing the lookahead of RTAA* indeed increases the
trajectory cost but initially decreases the total number of
cell expansions and the total search time, as suggested
in “Illustration.” Increasing the trajectory cost increases
the total number of search episodes. If the lookahead is
already small and continues to decrease, then eventually
the speed with which the total number of search episodes
increases is larger than the speed with which the looka-
head and the time per search episode decreases, so that
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Figure 8: Performance of Real-Time Adaptive A*

the number of cell expansions and the total search time in-
crease again, as the graphs in Figure 8 show. (The graph
also shows that the total number of cell expansions and
the total search time are proportional, as expected.)

• RTAA* with lookaheads larger than one and smaller than
infinity indeed increases the heuristics less than LRTA*
with the same lookaheads per update, as suggested in “Re-
lationship to LRTA*.” Consequently, its trajectory costs
and total number of cell expansions are larger than the
ones of LRTA* with the same lookaheads. However, it
updates the heuristics much faster than LRTA* with the
same lookaheads, resulting in smaller total search times.



• RTAA* with lookahead one and LRTA* with the same
lookahead follow the same trajectories and update the
same states if they break ties in the same way and their
trajectory costs and total number of cell expansions are in-
deed approximately equal, as suggested in “Relationship
to LRTA*.”

One advantage of RTAA* is that its total planning time
with a carefully chosen lookahead is smaller than that of
all other search methods, although its trajectory costs then
are not the smallest ones. This is important for applications
where planning is slow but actions can be executed fast.
However, the advantage of RTAA* over the other search
methods for our particular application is a different one: Re-
member that there is a time limit per search episode so that
the characters move smoothly. If this time limit is larger
than 20.99 microseconds, then one should use D* Lite for
the search because the resulting trajectory costs are smaller
than the ones of all other search methods whose search time
per search episode is no larger than 20.99. (The table shows
that the trajectory costs of forward A* search are smaller but,
as argued before, this difference is due to noise.) However,
if the time limit is smaller than 20.99 microseconds, then
one has to use a real-time heuristics search method. In this
case, one should use RTAA* rather than LRTA*. Assume,
for example, that the time limit is 20.00 microseconds. Then
one can use either RTAA* with a lookahead of 67, resulting
in a trajectory cost of 13657.31, or LRTA* with a lookahead
of 43, resulting in a trajectory cost of 16814.49. Thus, the
trajectory cost of LRTA* is about 23 percent higher than the
one of RTAA*, which means that RTAA* improves the state
of the art in real-time heuristic search. A similar argument
holds if the search time is amortized over the number of ac-
tion executions, in which case there is a time limit per action
execution. If this time limit is larger than 6.62 microsec-
onds, then one should use D* Lite for the search because
the resulting trajectory costs are smaller than the ones of all
other search methods whose search time per action execu-
tion is no larger than 6.62. However, if the time limit is
smaller than 6.62 microseconds, then one has to use a real-
time heuristics search method. In this case, one should use
RTAA* rather than LRTA*. Assume, for example, that the
time limit is 4.00 microseconds. Then one can use either
RTAA* with a lookahead of 79, resulting in a trajectory cost
of 12699.99, or LRTA* with a lookahead of 53, resulting in
a trajectory cost of 14427.80. Thus, the trajectory cost of
LRTA* is about 13 percent higher than the one of RTAA*,
which again means that RTAA* improves the state of the art
in real-time heuristic search.

Conclusions
In this paper, we developed Real-Time Adaptive A*
(RTAA*). This real-time heuristic search method is able to
choose its local search spaces in a fine-grained way. It up-
dates the values of all states in its local search spaces and
can do so very quickly. Our experimental results for goal-
directed navigation tasks in unknown terrain demonstrated
that this property allows RTAA* to move to the goal with
smaller total search times than a variety of tested alternative

search methods. Furthermore, we showed that RTAA* fol-
lows trajectories of smaller cost for given time limits per
search episode than a recently proposed real-time heuris-
tic search method because it updates the heuristics more
quickly, which allows it to use larger local search spaces
and overcompensate for its slightly less informed heuristics.
It is future work to characterize more precisely in which sit-
uations RTAA* outperforms LRTA*. It is also future work
to extend RTAA* to inconsistent heuristics, compare it to
real-time heuristic search methods besides LRTA* and com-
bine the idea behind RTAA* with other ideas of enhancing
real-time heuristic search methods, for example, the ones
described in (Bulitko & Lee 2005) and (Ishida 1997). In
particular, it would be interesting to study a hierarchical ver-
sion of RTAA*.
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