
nLRTS: Improving Distance Vector Routing
in Sensor Networks

Greg Lee and Vadim Bulitko and Ioanis Nikolaidis
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada, T6G 2E8
{greglee|bulitko|yannis}@cs.ualberta.ca

Abstract

Routing in ad hoc sensor networks is an important problem
with a broad spectrum of applications. Borrowing from the
literature on real-time heuristic search, we introduce back-
tracking and controlled suboptimality to sensor routing, with
the intention to improve flexibility by accounting for the re-
stricted capabilities of sensor nodes and the need for prompt
delivery of data. The resulting novel algorithm, nLRTS, is
compared against a well-known routing method, Distance-
Vector Routing (DVR), with respect to several metrics. nL-
RTS demonstrates improvement in asychronous networks
with limited energy reserves.

Introduction
Sensor networks are an important sector in ad hoc network
research. Sensor nodes generally have limited computa-
tional power and energy, thus simple, energy efficient rout-
ing algorithms are typically used. Various applications are
important, including military (Y.Shang et al. 2003), environ-
mental monitoring (Braginsky & Estrin 2002) and reconnai-
sance missions (Yan, He, & Stankovic 2003). As such, rout-
ing in sensor networks is of interest to a large number of
people, in many different facets of industry.

Routing in ad hoc networks has spawned many differ-
ent algorithms, each with their own advantages and disad-
vantages (Royer & Toh April 1999). Two families of rout-
ing algorithms have been identified, table-driven (proactive)
routing and source-initiated on-demand (reactive) routing.
Table-driven methods store routing information before it is
required, so that when a need arises, a route has already been
computed. Source-initiated methods only generate routes
when they are actually demanded in the network. Table-
driven methods generally consume much memory, and thus
source-initiated methods are preferred in many scenarios.

It is important to note that in sensor networks, it is expen-
sive to maintain routing information proactively (i.e., before
it is needed) within an individual sensor’s memory, since
sensors generally have limited storage and computing abili-
ties. Moroever, even learned routes may need to be “forgot-
ten” to save space since sensor devices usually include tens
or a few hundreds of kilobytes of R/W memory in which

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

they accomodate not only routing information but also all
pertinent data related to the specific application. Hence,
the problem becomes that of quickly determining routes in
an as–needed fashion that allows them to be easily forgot-
ten/erased yet subsequently quickly recomputed.

Along another line of research, real-time search algo-
rithms have been used extensively in Artificial Intelligence
(AI) in situations where there exists a given source and des-
tination, and decisions must be made based on limited infor-
mation and in limited time (Korf 1990; Bulitko & Lee 2006).
As such, these methods are applicable to routing problems
in ad hoc networks, and we investigate such applicability in
this paper.

The contribution of this paper is not in establishing any
significant increase in routing performance but in showing
that the tools of real–time search algorithms developed by
the AI community are equally well–suited for routing in sen-
sor networks, and, in fact, result in quite competitive per-
formance. Moreover, their generalized approach to dealing
with path constraints provides a natural setting to explore
routing with a variety of resource constraints, not just energy
constraints. The focus of this paper is mainly on determin-
ing if real-time heuristic search is competitive with respect
to energy, and hence network lifetime.

The rest of the paper is organized as follows. In the next
section, we outline the problem addressed. This if followed
by sections describing related work in real-time heuristic
search and extensions to previous algorithms. Next, we de-
scribe the simulation used in the paper and then demonstrate
how the novel methods improve routing in sensor networks.

Problem Formulation and Challenges
Research in this paper is based upon previous work con-
ducted with real-time heuristic search methods in sensor net-
works. In (Y.Shang et al. 2003), the authors adapt a classic
real-time heuristic search algorithm (LRTA*, (Korf 1990))
for routing in ad hoc sensor networks. The resulting al-
gorithm, called Constraint-Based Learning Real-Time A*
(CB-LRTA*), takes routing and destination constraints into
account, and the user controls the main objectives of the net-
work, such as minimizing energy consumption, maintaining
confidentiality, and minimizing hops taken to reach the goal.
Several other routing algorithms, such as DSR (Johnson &
Maltz 1996) and GPSR (Karp & Kung 2000), are mentioned,

but none of them is compared to CB-LRTA* in the paper.
In our work, we build on a much more recent real-

time heuristic search algorithm called LRTS (Bulitko & Lee
2006) – a product of 15 years of research that had taken place
in the AI community since the original LRTA*. We extend
LRTS for routing in ad hoc sensor networks and call the
new version nLRTS. We focus primarily on the case where
sensor nodes are dropped from the sky to monitor territory,
landing in a random dispersion, thus necessitating ad hoc
routing in order to facilitate data transmissions. We are in-
terested in sensor networks of several thousand nodes where
the sensing is performed by triggering events that result in a
sensor needing to communicate with a far away sensor. For
example, a motion detector sensor could send commands to
another sensor to turn on the lights in a building. We con-
sider the case of a fixed destination for each transmission,
simulating each source node providing information to a cen-
tral information hub. We experiment with different network
topologies in an attempt to learn which algorithms are best
for which situations. Also, different numbers of messages
and message repetitions are used in an attempt to determine
which algorithms are better when more messages are sent,
and which are best when the same message is continually
repeated. Messages are repeated in the sense that a source
may not be able to send everything needed in one transmis-
sion to a destination, and may need to send multiple mes-
sages to deliver the full information. An example of this
would be a message that is three times the size of the maxi-
mum packet that can be sent by a node, thus requiring three
separate messages to be sent from the source to the destina-
tion. A by-product of this is a study of how well our algo-
rithm converges (by merit of being iterative in nature) when
multiple messages are sent from a given source to a given
destination.

Related Work
Learning Real-Time A* (LRTA*) is a heuristic1 search
method that updates its heuristics while it acts in the envi-
ronment during a search (Korf 1990). It interleaves learn-
ing, planning, and execution and, given enough search trials,
converges to an optimal solution.

Search proceeds in cycles, each consisting of planning,
learning, and execution (Figure 1). On each cycle a par-
ticular node is called current and serves as a centre of the
local search. Such a current node s examines its (imme-
diate) neighboring nodes and for each neighbor s′ computes
f(s′) = g(s, s′)+h(s, s′), where g is the distance from state
s to s′ (known precisely), and h is a heuristic estimate of the
distance from s′ to the closest goal state. The node then
plans to move the neighbor s′′ with the smallest f value. If

1We use the term heuristic with the meaning used by the AI
community. That is, a heuristic is a function guiding the search
process by which the optimal solution can be derived, regardless of
the (possibly non-polynomial) time complexity of the search. This
is to distinguish it from heuristics in the systems/networking com-
munity, where a heuristic search, by design, does not necessarily
reach the optimum solution when it terminates, but typically runs
in polynomial time complexity and produces a “reasonably good”
solution.

the node s’s current h is smaller than f(s′′), the node up-
dates its to f(s′′), since the distance to the goal must be at
least as large as the distance of going through the neighbor
with the minimum f value. This step is called learning. Fi-
nally, the planned neighbor s′′ becomes the next current state
(this is called execution).

LRTA*’s analogue used in networks, is Distance Vector
Routing (DVR) (Royer & Toh April 1999). In DVR, nodes
maintain a routing table with (estimated) distances to all
other nodes, which they periodically advertise to their neigh-
bours. Thus, for our purposes, LRTA* and DVR are con-
ceptually equivalent. One small difference in classic DVR
is that the initial cost to any destination is set to infinity,
whereas in classic LRTA* these values are set to zero. In
our work, we set the initial distance to any destination to be
the minimum distance to the nearest neighbour.

LRTA*
1 initialize the heuristic: h← h0

2 reset the current state: s← sstart
3 while s �∈ Sg do
4 generate children one move away from state s
5 find the state s′ with the lowest f(s′) = g + h
6 update h(s) to f(s′) if f(s′) is greater
7 execute the action to get to s′
8 end while

Figure 1: LRTA* algorithm with a lookahead of one.

A more recent algorithm, called Learning Real-Time
Search (LRTS), extended the LRTA* in Figure 1 with three
enhancements: deeper lookahead, optimality weighting and
backtracking control (Bulitko & Lee 2006). LRTS has
demonstrated an impressive performance in combinatorial
puzzles and two-dimensional path-finding. In the latter, for
instance, LRTS’ extensions improved the convergence speed
by two orders of magnitude while converging to paths within
3% of optimal.

In this paper, we adapt two of LRTS’ extensions to the
specifics of routing in ad hoc wireless networks. These ex-
tensions are described below. First, the distance from the
current state to the state on the frontier (i.e., the furthest
visible state) is weighted by γ ∈ (0, 1]. This allows one
to trade-off the quality of the final solution and the conver-
gence travel. This extension of LRTA* is equivalent to scal-
ing the initial heuristic by the constant factor of 1+ε = 1/γ
(Shimbo & Ishida 2003). Bulitko (Bulitko & Lee 2006)
proved that γ-weighted LRTA* will converge to a solution
no worse than 1/γ of optimal. In practice, much better paths
are found (Bulitko & Lee 2006). A similar effect is observed
in weighted A*: increasing the weight of h dramatically re-
duces the number of states generated, at the cost of longer
solutions (Korf 1993).

Second, backtracking within LRTA* was first proposed
in (Shue & Zamani 1993). Their SLA* algorithm used the
lookahead of one and the same update rule as LRTA*. How-
ever, upon updating (i.e., increasing) the heuristic value in
a state, the agent moved (i.e., backtracked) to its previous
state. Backtracking increases travel on the first trial but re-

duces the convergence travel (Bulitko & Lee 2006). Note
that backtracking does not need to happen after every update
to the heuristic function. SLA*T, introduced in (Shue, Li, &
Zamani 2001), backtracks only after the cumulative amount
of updates to the heuristic function made on a trial exceeds
the learning quota (T). We will use an adjusted implemen-
tation of this idea as presented in (Bulitko & Lee 2006).

Description of Novel Methods Proposed

DVR with two extensions adopted from LRTS is presented
in Figure 2 and henceforth referred to as nLRTS (network
Learning Real-Time Search). A sensor node s running nL-
RTS operates as follows. When sent a data message m from
another sensor node sf , the node s first checks whether it
is the destination (d) node for this message (line 1, Fig-
ure 2). If s is not the destination, it finds the most promis-
ing neighbour (line 4). If the node’s previously estimated
shortest distance to the goal (hd) is less than the distance
through its most promising neighbour(fs′

d
), lines 5 and 6

update hd to fs′
d
, assuming the heuristic is admissible (non-

overestimating). Node s then broadcasts its updated hd to
all its neighbours so they can update their own heuristic esti-
mates for destination d (line 7). This constitutes the sending
of a control message. Node s then checks if the cumulative
learning amount u will exceed the learning threshold T (the
maximum amount of learning allowed before backtracking
occurs) if the learning amount at this juncture |Δfd| is added
to it. If so, the learning threshold will have been exceeded,
and s bounces the message back to the sender sf in line 10.
Otherwise it updates u and sends the message m to the most
promising neighbour (i.e., s′) in lines 12, 13. Whenever a
message is transmitted in lines 10 and 13, the cumulative
learning amount u is sent along.

For all nodes n, the estimated distance hd to all other
nodes nd is initialized to one hop, since this is the distance
from n to its closest neighbour nc. This ensures the hd

heuristic values are admissible. A neighbour discovery pro-
cess is run prior to any data messages being sent in order for
each node to know its one-hop neighbours and for each node
to be able to initialize its heuristics.

nLRTS(γ, T, u, m, sd)
1 if s = sd then
2 stop
3 else
4 find the neighbour s′ with the lowest fs′

d
= γ · gs′

d
+ hs′

d

5 if hd < fs′
d

then
6 update hd ← fs′

d

7 send updated hd to all neighbours
8 end if
9 if u + |Δhd| ≥ T then
10 return m and u to sf

11 else
12 increase amount of learning u by |Δhd|
13 send m and u to s′

14 end if

Figure 2: The novel nLRTS algorithm proposed in this paper.

Experimental Setup
In order to parallel the experimental setup of previous work
(Y.Shang et al. 2003), we have developed a simulator in
C++.2 In our experiments, N sensor nodes are randomly
distributed in an X × Y space, with N,X, Y determined by
the user. Nodes are ensured not to occupy the same location.
Each node is given a transmission radius range of 5 or 10
units (as listed below). Energy consumption is modeled by
counting 1.2 energy units for every message reception, and
1.7 units for every message transmission at a node, accord-
ing to the values provided by (Xu et al. 2003). Similarly
to (Y.Shang et al. 2003), all nodes are always awake (i.e.,
never go into a sleep mode), until they deplete their energy
reserves.

The number of messages sent in the routing process is
counted, as a measure of network activity. Any time a trans-
mission of a data or control packet is sent, this counter is
incremented. The second measure is the data and control
message traffic. Traffic is measured in the same manner
as messages, except that data packets are counted as three
times a control message. Since we are working with sen-
sor nodes, we assume data transmissions are small, perhaps
sending a simple temperature value to another node. Control
messages are sent prior to data messages in order to help
discover routes for the actual data to be transmitted. Each
packet is considered an individual message, with repetitions
often necessary to send larger pieces of data. Each message
(or repetitions thereof) are sent from a fixed source to a fixed
destination.

In order to simulate the concurrent behavior of the real
network, we implemented the simulator as a multi-threaded
application wherein the threads share the memory where the
simulation objects reside. Interference is not modeled in this
simulation. We assume scheduling is performed indepen-
dently of the routing strategy, and that different schedules
will not severely affect the performance of any of the rout-
ing algorithms used in experiments. Also, since delays and
timing are not explicitly modeled, it would be difficult to
model interference accurately.

We experiment with both unlimited and fixed battery life
for sensors. We considered unlimited energy for nodes in
some of our experiments because battery life is application-
dependent. We measure the cumulative energy used (as well
as the energy at each node), as a method of determining
which algorithms will deplete the entire system of energy
before others. The source for each transmission is deter-
mined randomly, and there is a guaranteed path to the desti-
nation.

Empirical Results
Our previous research (Bulitko & Lee 2006) applied LRTS
to a special case of sensor networks with synchronous mes-
sage transmission and unlimited battery life. The messages
were sent between a given source and destination pair until
convergence. In order to make this paper as self-contained

2The original simulator was not available due to export restric-
tions.

Table 1: Details of the experiments

Network Specifications

Topologies: {50,20,20}, {100,30,30},
(Number of nodes, {200,50,50}, {400,50,50},
X and Y dimensions) {400,80,80}, {600,80,80},

{800,80,80}
Range of messages sent: 5 – 1000
Message repetitions: 1 – 1500,
Type of Destination: Randomly chosen fixed

location for all messages
Minimizing Objective: Hops

nLRTS Parameters

γ 0.0001, 0.001, 0.05, 0.1, 0.3.
0.5. 0.7, 1

T 0, 10, 100, 1000,∞

as possible, section replicates these experiments (includ-
ing figures and tables), and follows up with novel results
involving asynchronous messages and pre-convergence ex-
periments. In section , we show results with sensors of lim-
ited battery life (again with asynchronous messages and no
convergence). Extensive experiments were performed, with
the parameter settings listed in Table 1. Throughout this sec-
tion, we will use the notation {X, Y, Z} to denote a network
of X nodes of Y × Z dimensions.

Sensor nodes with unlimited battery life

In order to compare the performance of nLRTS in sen-
sor networks to LRTS performance in traditional real-time
search domains, we limited the network to sending one
message at a time, and sent the message continuously un-
til there were no heuristic updates made during its deliv-
ery. In these experiments, four batches of networks of 50,
200, 400, and 800 nodes each were considered. The nodes
were randomly positioned on a square grid of the dimen-
sions 20 × 20, 30 × 30, 50 × 50, and 80 × 80 respectively.
Each batch consisted of 100 randomly generated networks.
For each network, 25 convergence runs were performed
with the parameter values running γ = {0.1, 0.3, 0.5, 0.7, 1}
and T = {0, 10, 100, 1000, 100000}. In the following, we
present the results from the batch of 800-node networks. The
same trends were observed in smaller networks.

Synchronous Messaging: We first experimented with
synchronous messages, wherein only one message is sent
at a time in the network. We start out by demonstrating
the influence of the two control parameters in isolation. Ta-
ble 2 shows the influence of the heuristic weight γ with no
backtracking. The execution convergence cost is the sum of
the path lengths for each message sent, until convergence.
Smaller values of γ accelerate the convergence, but increase
the suboptimality of the final solution. These results are also
reported in (Bulitko & Lee 2006).

Table 2: Effects of heuristic weighting in network routing
(from (Bulitko & Lee 2006)).

Heuristic weight γ Convergence cost Suboptimality
1.0 (DVR) 8188 0%
0.7 8188 0%
0.5 8106 0%
0.3 7972 0.29%
0.1 7957 0.33%

Table 3 demonstrates the influence of the learning quota
T when the heuristic weight γ is set to one. Smaller values
of T increase the amount of backtracking and speed up con-
vergence cost but lengthen the first trial. This also parallels
the results in path-finding in (Bulitko & Lee 2006).

Table 3: Effects of backtracking in network routing (from
(Bulitko & Lee 2006)).

Learning quota T First trial cost Convergence cost
105 (DVR) 549 8188
103 1188 8032
102 4958 6455
10 5956 6230
0 6117 6138

We will now consider the impact of parameter combina-
tion. Figure 3 shows the first trial and convergence execution
costs for all combinations of γ and T . Brighter areas indicate
higher costs. Figure 4 shows the suboptimality of the final
solution and the total traffic on a convergence run, averaged
over 100 networks of 800 nodes each. Again, brighter areas
indicate higher values.

In summary, by extending the DVR algorithm with the
heuristic weight and the backtracking mechanisms of LRTS,
reduction of the convergence execution cost and the total
network traffic can be achieved. As a result, near-optimal
routes are found faster, at a lower energy consumption.

Asynchronous Messaging: We next considered asyn-
chronous messaging (multiple messages sent simultane-
ously), since in a true sensor network, there are generally
many messages being relayed at the same time. The inter-
leaving of discovery messages (control messages) results in
an arbitrary sequence of refinements of the paths, and there
can be cases where an earlier control message has “helped”
a later one. We analyze the effect of γ on several network
metrics. In Table 4 we see how the total number of hops
taken during the transmission of multiple messages can be
reduced by decreasing γ.

Table 5 shows that with more repetitions of the same mes-
sage, decreasing γ reduces the total energy consumed by all
sensors in the network. Table 6 shows that with more repe-
titions of the same message, decreasing γ reduces the total
traffic present in the network. Note that in Tables 4, 5 and
6, the number of hops taken, amount of energy consumed
and amount of traffic in the network do not decrease propor-

Learning quota (T)

H
eu

ris
tic

 w
ei

gh
t (

γ)

First trial execution cost (hops)

0 10 100 1000 100000
0.1

0.3

0.5

0.7

1

1000

2000

3000

4000

5000

Learning quota (T)

H
eu

ris
tic

 w
ei

gh
t (

γ)

Convergence execution cost (hops)

0 10 100 1000 100000
0.1

0.3

0.5

0.7

1

6500

7000

7500

Figure 3: First-trial and convergence execution costs in network routing (from (Bulitko & Lee 2006)).

Learning quota (T)

H
eu

ris
tic

 w
ei

gh
t (

γ)

Suboptimality of the final solution (%)

0 10 100 1000 100000
0.1

0.3

0.5

0.7

1

0.05

0.1

0.15

0.2

0.25

Learning quota (T)
H

eu
ris

tic
 w

ei
gh

t (
γ)

Convergence traffic

0 10 100 1000 100000
0.1

0.3

0.5

0.7

1

3.5

4

4.5

5

x 104

Figure 4: Suboptimality of the final solution and the traffic in network routing (from (Bulitko & Lee 2006)).

Table 4: Total number of hops taken when using various
values for γ.

Total Number of Hops
T γ 1000 messages ×1 1000 messages ×10
∞ 1 6205 11914
∞ 0.5 6143 11832
∞ 0.1 6209 11832

Table 5: Total energy consumed in the network when using
various values for γ

Total Energy Consumed
T γ 1000 messages ×1 1000 messages ×10
∞ 1 12367 64446
∞ 0.5 12600 63013
∞ 0.1 12618 62574

tionally with the number of repetitions of messages. This is
because better paths are learned as messages are repeated.

Table 7 shows how nLRTS can improve sensor network
performance with respect to the four different metrics, when
compared to DVR. The results show the improvement possi-
ble by tuning the parameters for a given topology and num-
ber of messages sent.

Finally, we observe that the backtracking parameter T ap-
pears to have no significant influence on the network metrics
considered. The early cost of backtracking was likely bal-
anced by the savings earned later with the previously learned
heuristic values.

Table 6: Total traffic when using various values for γ

Total Network Traffic
T γ 1000 messages ×1 1000 messages ×10
∞ 1 25479 46052
∞ 0.5 25483 45395
∞ 0.1 25014 45243

Sensor nodes with limited battery life

Since real sensor nodes have a limited amount of energy,
they can go out of commission during transmission of mes-
sages. The remaining nodes are then forced to find alter-
nate routes to the destination. Sometimes enough nodes can
be decommissioned so as to make it impossible to deliver a
message from source to destination. In the following we de-
scribe how nLRTS handles this scenario in an asynchronous
network.

Table 8 shows the number of messages lost, that is, not
delivered to the destination, for various parameters of nL-
RTS. It also shows the total number of hops taken in deliver-
ing successful messages. Here we supply the nodes with an
amount of energy relative to the total number of messages
sent (so we give the nodes more energy at the onset if more
messages will be sent in the simulation).

With the amount of learning before backtracking takes
place T set to 0, messages in the network reach the destina-
tion with the same frequency as with T = ∞ (DVR), while
at the same time successful deliveries take fewer hops. The
learning that takes place with the backtracking after every
learning step leads to eventual better performance, without
costing the network nodes any more energy. Thus, nLRTS
is capable of outperforming DVR in this application.

Table 7: nLRTS performance typically increases with more repetitions of messages. The improvement percentages shown are
based on the best choice of parameter values for nLRTS for the given network specifications (from among the parameter values
considered in Figure 1)

Distinct Improvement with nLRTS
Nodes,Area Messages Repetitions Total Hops Energy Transmissions Traffic
50, 20 × 20 5 1 0% 0% 1% 1%
50, 20 × 20 5 5 2% 4% 4% 4%
50, 20 × 20 5 10 5% 7% 7% 6%
50, 20 × 20 10 1 0% 0% 0% 0%
50, 20 × 20 10 5 3% 4% 5% 4%
50, 20 × 20 10 10 3% 5% 6% 5%
50, 20 × 20 50 1 0% 0% 1% 0%
50, 20 × 20 50 5 1% 2% 2% 1%
50, 20 × 20 50 10 2% 3% 4% 3%
50, 20 × 20 1000 1 0% 0% 0% 0%
50, 20 × 20 1000 5 0% 0% 0% 0%
50, 20 × 20 1000 10 0% 0% 0% 0%
100, 30 × 30 5 1 0% 0% 1% 1%
100, 30 × 30 5 5 6% 6% 7% 6%
100, 30 × 30 5 10 3% 3% 4% 3%
100, 30 × 30 10 1 0% 1% 1% 1%
100, 30 × 30 10 5 1% 1% 3% 2%
100, 30 × 30 10 10 4% 5% 5% 5%
100, 30 × 30 50 1 1% 0% 1% 0%
100, 30 × 30 50 5 3% 4% 6% 5%
100, 30 × 30 50 10 1% 2% 2% 1%
100, 30 × 30 1000 1 0% 0% 0% 0%
100, 30 × 30 1000 5 0% 0% 1% 0%
100, 30 × 30 1000 10 0% 0% 0% 0%

Table 8: Number of hops taken and messages not delivered
with three different values of T (γ is fixed at 1). With more
repetitions a smaller proportion of the messages are missed
by each strategy. Setting T = 0 (backtracking whenever
learning takes place) leads to paths with fewer hops than
DVR (T =∞).

50 messages × 160 50 messages × 320
T Hops Missed Hops Missed
∞ 5140 4.2% 8472 3.6%
100 5210 4.3% 8813 3.6%
0 4951 4.3% 8361 3.5%

Conclusions and Future Work
In this paper, we extend a well-known routing algorithm,
Distance Vector Routing, by adding further functionality to
this method, namely backtracking and convergence to sub-
optimal solutions. The resulting algorithm is called nLRTS.
These extensions have been previously unified with a learn-
ing real-time search algorithm called LRTS. An evaluation
of nLRTS in synchronous sensor networks with unlimited
energy demonstrated its advantages (Bulitko & Lee 2006).
In this paper, we follow up with an application of nLRTS
to the more realistic cases of asynchronous networks and
nodes with limited battery life. Allowing for more subop-

timality and backtracking gives the nodes using the nLRTS
algorithm the ability to find better paths from source to des-
tination.

Future work includes narrowing the parameter considera-
tion within nLRTS while gaining a better understanding of
which parameter values to use in which situations. Also we
would like to add the constraints present in (Y.Shang et al.
2003) and observe the performance of nLRTS. Finally we
would like to apply nLRTS to routing in mobile sensor net-
works.

Acknowledgement
We appreciate contributions by Kit Barton and David
O’Connell. We are also grateful for the support from the
University of Alberta, the Natural Sciences and Engineering
Research Council (NSERC), the Informatics Circle of Re-
search (iCORE), and the Alberta Ingenuity Centre for Ma-
chine Learning (AICML).

References
Braginsky, D., and Estrin, D. 2002. Rumor routing algo-
rithm for sensor networks. In International Conference on
Distributed Computing Systems (ICDCS-22).
Bulitko, V., and Lee, G. 2006. Learning in real time search:
A unifying framework. Journal of Artificial Intelligence
Research 25:119 – 157.

Johnson, D. B., and Maltz, D. A. 1996. Dynamic source
routing in ad hoc wireless networks. In Imielinski, and
Korth., eds., Mobile Computing, volume 353. Kluwer Aca-
demic Publishers.
Karp, B., and Kung, H. 2000. Greedy perimeter state-
less routing for wireless networks. In Proceedings of the
Sixth Annual ACM/IEEE International Conference on Mo-
bile Computing and Networking, 243–254.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189–211.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62:41–78.
Royer, E., and Toh, C. April 1999. A review of current
routing protocols for ad hoc mobile wireless networks. In
IEEE Personal Communications, volume 6, 46–55.
Shimbo, M., and Ishida, T. 2003. Controlling the learning
process of real-time heuristic search. AIJ 146(1):1–41.
Shue, L.-Y., and Zamani, R. 1993. An admissible heuristic
search algorithm. In Proceedings of the 7th Int. Symp. on
Methodologies for Intel. Systems (ISMIS-93), volume 689
of LNAI, 69–75.
Shue, L.-Y.; Li, S.-T.; and Zamani, R. 2001. An intel-
ligent heuristic algorithm for project scheduling problems.
In Proceedings of the 32nd Annual Meeting of the Decision
Sciences Institute.
Xu, Y.; Bien, S.; Mori, Y.; Heidemann, J.; and
Estrin, D. 2003. Topology control protocols to
conserve energy inwireless ad hoc networks. Tech-
nical Report 6, University of California, Los An-
geles, Center for Embedded Networked Computing.
www.isi.edu/˜johnh/PAPERS/Xu03a.html.
Yan, T.; He, T.; and Stankovic, J. A. 2003. Differentiated
surveillance for sensor networks. In Proceedings of the 1st
international conference on Embedded networked sensor
systems, 51–62.
Y.Shang; Fromherz, M.; Y.Zhang; and Crawford, L. 2003.
Constraint-based routing for ad-hoc networks. In IEEE In-
ternational Conference on Information Technology, 500–
505.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

