
An Empirical Evaluation of Automated Knowledge Discovery in a Complex
Domain

Jay H. Powell
Indiana University

Dept. of Computer Science
Bloomington IN 47405, U.S.A.

jhpowell@cs.indiana.edu

John D. Hastings
University of Nebraska at Kearney

Dept. of Computer Science & Information Systems
Kearney NE 68849, U.S.A.

hastingsjd@unk.edu

Abstract

Automatically acquiring knowledge in complex and possi-
bly dynamic domains is an interesting, non-trivial problem.
Case-based reasoning (CBR) systems are particularly well
suited to the tasks of knowledge discovery and exploitation,
and a rich set of methodologies and techniques exist to ex-
ploit the existing knowledge in a CBR system. However, the
process of automatic knowledge discovery appears to be an
area in which little research has been conducted within the
CBR community. An approach to automatically acquiring
knowledge in complex domains is automatic case elicitation
(ACE), a learning technique whereby a CBR system automat-
ically acquires knowledge in its domain through real-time ex-
ploration and interaction with its environment. The results of
empirical testing in the domain of chess suggest that it is pos-
sible for a CBR system using ACE to successfully discover
and exploit knowledge in an unsupervised manner. Results
also indicate that the ability to explore is crucial for the suc-
cess of an unsupervised CBR learner, and that exploration
can lead to superior performance by discovering solutions to
problems which would not otherwise be suggested or found
by static or imperfect search mechanisms.

Introduction
For problem domains that are either small, well understood,
or static, it is usually possible in a relatively timely man-
ner to manually encode the knowledge (e.g. in the form of
search-based algorithms, neural nets, or static case bases)
necessary for an artificially intelligent system to reason suc-
cessfully. For the most interesting domains though (i.e.
those which are exceptionally complex or dynamic, such as
robot navigation in the real world), manually encoding such
knowledge is impractical because either significant portions
of the domain may change at unknown intervals (which
would require timely knowledge updates), the rules of inter-
action within the given domain are poorly understood, or the
knowledge required to succeed within the domain is mostly
or entirely unknown. For an intelligent system to succeed
within such domains, it is only natural to assume that it
must be able to discover and exploit new knowledge, and to
adapt to its changing environment as autonomously as pos-
sible. Furthermore, for such a system to make the leap into
a general purpose, domain-independent reasoner, and closer
to a more idealized form of artificial intelligence, when pre-
sented with a problem, such a system should be able to prop-

erly identify the domain and apply a capable reasoning tech-
nique for that domain. As nice as that sounds, just the more
targeted goal of automatically discovering knowledge within
a specific, but complex or dynamic domain remains a very
challenging, non-trivial problem.

One methodology currently under development which
aims to address the issues of automatically acquiring knowl-
edge in complex domains is called automatic case elicita-
tion (ACE) (Powell, Hauff, & Hastings 2005). ACE is a
learning technique in which a case-based reasoning (CBR)
system acquires knowledge automatically and without su-
pervision through repeated real-time exploration and inter-
action with its environment. Test results in Powell et al.
(Powell, Hauff, & Hastings 2005) suggest that in the domain
of checkers, experience gained through ACE can substitute
for the inclusion of pre-coded model-based knowledge, and
that exploration of a problem domain is crucial to the per-
formance of ACE. Further testing in the domain of chess
(Kommuri, Powell, & Hastings 2005) revealed that experi-
ence alone, without the ability to adapt for differences be-
tween new and previous cases, is insufficient in more com-
plex domains. To help decrease the complexity of the state
space of chess, the research described in this paper intro-
duces an alpha-beta search algorithm (Slagle & Dixon 1969;
Knuth & Moore 1975) into the ACE framework. To avoid
an over-reliance on alpha-beta search, while still encour-
aging exploration, the alpha-beta search was implemented
to search only to a shallow depth of 3. To further en-
courage exploration, alpha-beta search was relaxed so that
it would return a set of recommended chess moves, from
which one move could be selected at random. In testing
the combination of ACE and alpha-beta search in the do-
main of chess, our results suggest that experience gained by
ACE through the process of exploration, with a case mem-
ory refined through reinforcement learning, can lead to an
improvement over alpha-beta search alone. The results fur-
ther suggest that relaxations to the case matching component
in order to encourage exploration can lead to additional im-
provements.

Section 2 makes an argument for automated knowledge
discovery utilizing case-based reasoning. Section 3 gives a
brief description of the ACE algorithm. Section 4 sets forth
an experimental evaluation in which several versions of ACE
were evaluated against alpha-beta search. Section 5 details

the results of our experimentation, in which we show that
ACE combined with alpha-beta search consistently outper-
forms non-learning alpha-beta search. Section 6 closes with
a discussion of related work.

A Case for Automated Knowledge Discovery
Realistically, a full-blown autonomous reasoner (at least
one based on a human) would be able to automatically
acquire and exploit knowledge using a variety of reason-
ing techniques at its disposal. We believe that the key to
this idea begins with the automatic acquisition of knowl-
edge in a simple and generically processable form. Case-
based reasoning systems are particularly well suited to the
tasks of both knowledge discovery and knowledge exploita-
tion, due to the ease with which they can identify a novel
situation (i.e. one that is not in the case base) and store
that scenario for further reuse. A particularly rich set
of highly successful methodologies exist for properly ex-
ploiting the knowledge within a case base (Kolodner 1993;
Aamodt & Plaza 1994). However, within the CBR commu-
nity, there appears to have been little research into method-
ologies that would facilitate the development of a system
that could automatically acquire knowledge in an unsuper-
vised manner (Patterson et al. 1999; Althoff & Weiss 1991).

One method for automatically discovering knowledge
within a CBR framework is automatic case elicitation
(ACE). Due to ACE’s core philosophy of not requiring pre-
coded domain knowledge for its primary reasoning and dis-
covery processes, the ultimate goal is to have ACE be a
general methodology for automatic knowledge discovery in
complex or unknown domains for which an ACE system can
explore its domain and receive feedback on actions that it
has taken. Ideally, a system utilizing ACE would make use
of generic, domain-independent matching and adaptation al-
gorithms. However, at the writing of this paper, the issues
of implementing domain-independent matching and adapta-
tion algorithms in ACE have yet to be fully explored. De-
spite the lack of attention to date to case matching or adapta-
tion within ACE, we do believe that the capabilities of CBR
can be directly extended through the techniques described in
this paper to acquire vast amounts of useful knowledge in an
autonomous, unsupervised manner. Eventually, we hope to
demonstrate the applicability of automated knowledge dis-
covery through ACE to domains for which a comprehensive
set of rules or knowledge governing optimal behavior have
yet to be discovered.

The research described in this paper does not attempt to
solve the matching or adaptation issues. Instead, it aims to
determine the value of experience, specifically in the form
of cases which might be acquired through ACE’s process of
exploration, within the domain of chess. Given that ACE
worked well in checkers, but not chess, one could infer that
ACE would be equally applicable to chess if the complexity
could be reduced. Previously, ACE has retrieved only those
cases from its library which exactly match the current sit-
uation, and has otherwise turned to random actions. Given
the complexity of chess (i.e., the massive state space), ACE
was seldom able to exactly match new board situations to
its stored experience and thus routinely turned to random

moves, resulting in less than optimal performance. In order
to reduce the complexity (i.e., to reduce the number of possi-
ble actions that the system must explore for any given state
using trial and error), this research replaces random move
selection with a shallow alpha-beta search. Although this
change conflicts with the ACE philosophy of not relying on
pre-coded domain knowledge, we feel that it is necessary in
the short-term simply to gain a better feel for the contribu-
tion of experience within the domain of chess.

Automatic Case Elicitation
This paper does not intend to provide in-depth details of the
ACE algorithm, for that, the reader is referred to Powell et
al. (Powell, Hauff, & Hastings 2005). However, briefly
ACE can be described as a learning technique in which a
CBR system, coupled with reinforcement learning (Kael-
bling, Littman, & Moore 1996; Sutton & Barto 1998), au-
tomatically acquires knowledge in the form of cases from
scratch during real-time trial and error interaction with its
environment without reliance on pre-coded domain knowl-
edge (e.g. rules or cases). ACE does not utilize separate
training and testing phases, but instead continually improves
its performance through repeated exposure to its environ-
ment. For implementation purposes, a case contains an ob-
servation or snapshot of the environment, the action taken
in response to the observation, and a rating of the success
of the applied action in meeting a goal. ACE operates on
the sequence of observations (O1 through On) made during
interaction with the environment and completes at the point
at which the effectiveness of the interaction can be deter-
mined (e.g. in chess, the effectiveness of an interaction will
be determined at the completion of a game). For each obser-
vation of the environment (Oi), the system selects and ap-
plies actions suggested by the case library until a change in
the environment is observed. In referring to the case library,
ACE loops through the set of cases which match the current
situation (in decreasing order by rating) and selects the ac-
tion recommended by the first case whose rating is above a
randomly chosen value between 0.0 and 1.0. If the set of
matching cases is exhausted (meaning that no cases were
selected or that the current situation is sufficiently distinct
from previous experience), ACE applies a sequence of new
actions at random (ones which might be entirely ineffective)
until a change in the environment is observed.

At the end of each interaction, a probabilistic reinforce-
ment learning approach rates the effectiveness of each case
(acquired or stored) based on the final success of the inter-
action, providing a means for an ACE system to learn and
improve from experience. New cases begin with a rating
of 0.5 and tend either toward 1.0 (highly successful) or 0.0
(completely ineffectual) as the system gains experience.

Experimental Methodology
In complex domains there is a certain inherent tradeoff be-
tween knowledge and search (Simon & Schaeffer 1992). Ef-
fective search algorithms require a rigorous understanding
of the rules of interaction of a domain. The amount of search
that can be performed in many domains is often limited by

the current state of hardware technology (Simon & Schaeffer
1992). For domains that have complex rules of interaction
or sufficiently large state spaces, search algorithms can ei-
ther be difficult to program or may take a significant amount
of time to run. For other domains, the rules of the environ-
ment may be entirely unknown, rendering the use of search
impossible.

Automated reasoning systems that rely on knowledge
have one important drawback as well. The process of com-
piling and encoding knowledge can be difficult and labor in-
tensive. Without a properly developed knowledge base, the
effectiveness of a system can be greatly diminished. Often,
it may not be known a priori what knowledge is needed for a
system to succeed within its environment, suggesting that a
system must be able to automatically acquire its own knowl-
edge during its lifetime. To demonstrate the need for auto-
mated knowledge acquisition, and the ways in which ACE
acquires knowledge automatically, we tested three modified
implementations of ACE, or MACE (Modified ACE) for
convenience, each initialized with empty knowledge bases,
in the domain of chess. The experiments were designed to
determine the value of experience in the domain of chess
through a combination of ACE and alpha-beta search, the
effects of relaxing the strictness of the case matching mech-
anism, the effects of adding randomness/unpredictability to
alpha-beta search, and the effect of learning from an oppo-
nent in a complex game environment such as chess.

Two variations of alpha-beta search were used in the ex-
periments. The first form of alpha-beta search (AB) employs
the traditional alpha-beta search algorithm with a depth of 3.
The second version of alpha-beta search (ABR) also uses a
search depth of 3, but instead of statically picking the first
top-ranked move like the traditional implementation does, it
creates a set of all the top-ranked moves (in the event of a
tie), and randomly selects a move from the set. Note that for
shallow search depths, it is common for several moves to tie
for the top ranking. The reasons for including both versions
of alpha-beta search in our testing relate to what the authors
perceive to be the deficiencies inherent in search-based algo-
rithms. Search-based algorithms that are entirely rule based
have their effectiveness limited by the quality of their rules,
heuristics, and evaluation functions. Unless the rules used
by such a search based algorithm are optimal, the solutions
computed by such algorithms in their domains will be sub-
optimal. To emphasize the limitations of rule-based search
algorithms, we decided to relax the constraints of our imple-
mentation of alpha-beta search to randomly select from a list
of highly rated moves. The idea behind this approach is that
truly optimal moves might be discovered when an algorithm
such as alpha-beta search is used to narrow down the state
space of a complex domain and suggest a list of possible
successful moves. When combined with ACE, alpha-beta
search with random move selection helps to guide the pro-
cess of knowledge acquisition, instead of using knowledge
to guide rule-based search algorithms.

Three configurations of MACE were tested in repeated
competitions against the two variations of alpha-beta search
(AB and ABR). The first configuration of MACE, called
MACE1, employs exact matching (i.e., only cases which ex-

actly match the current situation are considered). MACE2
relaxes matching and considers stored cases which differ
from the current situation by no more than two distinct board
positions. In addition to recording the consequences of their
own actions, both MACE1 and MACE2 also capture and
contribute intermediate observations about the environment
(i.e., intermediate board states and chess moves made by an
opponent) to the case base. MACE3 uses exact matching,
but does not contribute opponent moves to its case base.

Approach Description
AB Alpha-beta search (depth = 3)
ABR Alpha-beta search (depth = 3) with random top

move selection
MACE1 Modified ACE with exact matching, learned

opponent moves, and ABR
MACE2 Modified ACE with relaxed matching, learned

opponent moves, and ABR
MACE3 Modified ACE with exact matching, no learned

opponent moves, and ABR

Table 1: Brief description of the various reasoning ap-
proaches evaluated in the experiments.

Each of the variations of MACE is backed by ABR and
began play with empty knowledge bases. The addition of
ABR to ACE requires the following slight change to the ac-
tion selection algorithm described in section 3: when the set
of matching cases is empty (i.e., the system has encountered
a novel situation), the action selection algorithm invokes the
ABR algorithm, which returns a list of top-ranked moves,
and then an action is randomly selected from this set. This
step differs from previous implementations of ACE which
generated a new random action at this point.

The reasoning systems played each other through XBoard
(a graphical user interface for chess) using a modified ver-
sion of code distributed with TIELT (Aha & Molineaux
2004). The first set of experiments involved running a series
of 10 chess matches with 50 games per match. The matches
paired { {MACE1,MACE2,MACE3} x {AB,ABR} }. The
averaged results of the first set of experiments appear in Fig-
ure 1. The second set of experiments with the same pair-
ings involved running a series of 10 chess matches with 500
games per match. The second set of experiments also in-
cluded a pairing of ABR against AB in order to provide
a point of comparison for the performance of the MACE
agents. The results for the second set of experiments appear
in Figures 2 and 3. For the results illustrated in Figure 2,
draws were counted as 0.5 win and 0.5 loss.

Results
As illustrated in Figures 1 and 2, MACE was most effective
in its play against the static AB player. For short matches of
50 games, MACE1 produced the most success against AB.
However, for longer matches MACE2 and MACE3 were su-
perior to MACE1. It appears that learning from the opponent
and retrieving and applying exactly matching cases performs
well when the learning time is limited, but is not the best ap-
proach when the period of interaction is extended. In analyz-
ing a trace of MACE2 in its matches against AB, it appeared

that MACE2 was less effective in short matches because
the relaxed matching mechanism often retrieved dissimilar
cases which were then applied out of context. Obviously,
this suggests that cases which were close lexical matches
were not always good matches. However, given a longer pe-
riod of exploration and experience, MACE2 was able to suc-
cessfully learn how to retrieve and apply non-exactly match-
ing cases. The fact that MACE2 demonstrated the top per-
formance in longer matches is a key result and suggests that
the matching component can be relaxed or weakened to a
certain extent, and that a period of exploration and refined
experience can overcome early misapplications of actions
and ultimately lead to successful actions and solutions not
originally provided by alpha-beta search. This finding fur-
ther validates the claim that an exploratory agent can suc-
cessfully find and exploit actions which would not be sug-
gested by pre-compiled search mechanisms.

Figure 1: Averaged results of a series of 10 chess matches
with 50 games per match.

For long matches, it is possible that MACE3 is more suc-
cessful than MACE1 either because MACE3 is not attempt-
ing to learn from an inferior opponent or because the tech-
nique used to record and reuse opponent moves in MACE1
needs additional thought.

Notice in Figure 2 that the MACE players held a large ad-
vantage over the ABR player in the matches against AB. In
addition, ABR was only slightly better than AB on average,
indicating that the MACE players were not receiving a dis-
tinct advantage against AB simply by making use of ABR
algorithm.

MACE was less effective against the randomization em-
ployed by ABR. This result is not surprising given that a
more unpredictable opponent would require a player to find
not one, but possibly several winning strategies. In short
matches, MACE1 performed the best against ABR, although
the average margin of victory was narrow. MACE1 was fol-
lowed in performance by MACE2 and MACE3. The perfor-
mance of the three configurations of MACE versus ABR in
longer games were very similar to each other (and therefore
not included in Figure 2), with MACE2 performing best fol-
lowed by MACE3, and MACE1. Note that the ranking of the
MACE configurations in long matches versus ABR mirrors
that seen in the long matches against AB.

Figure 2: Averaged winning ratios of MACE1, MACE2, and
MACE3 against Alpha-Beta Search in a series of 10 chess
matches with 500 games per match.

Closer inspection of the 500 game matches reveals some
interesting tidbits not illustrated in the summarized figures.
Configurations that had the greatest success were most adept
at finding move sequences that would guarantee wins for the
remainder of the games in a match. Given that XBoard alter-
nates the colors/sides of its opposing players, the most suc-
cessful players had to find two different winning sequences
per match. In the matches between MACE and AB, MACE2
and MACE3 were each able to find winning sequences for
both colors in five of the ten matches, while MACE1 found
both winning sequences in only three matches. Furthermore,
MACE3 was able to find winning sequences for at least one
color in all ten matches, while MACE2 found a sequence
in nine matches, and MACE1 in eight. Overall, the lengths
of the winning sequences ranged from four moves up to 33
moves. MACE2 found twelve different sequences, followed
by MACE3 with ten, and MACE1 with eight. Interestingly,
in just one match, MACE3 found and continually reapplied
two alternate winning sequences when playing as black, and
one sequence when playing as white. In terms of the speed
with which the approaches were able to find at least one
winning sequence, MACE3 was the fastest, finding a se-
quence in one match in the 10th game, followed by MACE2
in the 21st game, and MACE1 in the 41st game. None of
the MACE players were able to find a guaranteed winning
technique when matched against the ABR players.

Figure 3 illustrates the case-use ratios for each version
of MACE against both ABR and AB. The case-use ratio
is calculated as the total number of times that a CBR sys-
tem utilizes actions suggested by its case base divided by
the total number of actions attempted. The total number
of actions attempted is the sum of the total number of ap-
plied CBR actions and the total number of actions applied to
novel situations (e.g., random actions or actions suggested
by an alternate reasoner such as alpha-beta search). The
case-use ratio is a simple means for illustrating the degree
with which a CBR system utilizes its experiences. In addi-
tion, our experience has shown case-use ratio to be a good
indicator of the performance of an ACE system. As demon-

strated in Figure 3, the utilization of the case base increased
dramatically for each configuration of MACE throughout
the matches with the regular AB players, increasing most
dramatically during the first seventy-five games, suggesting
that ACE agents are able to quickly adapt to the strategies
of new opponents. Of the three MACE configurations, the
case-use ratio of MACE2 was by far the best. Notice that
the rankings of the case-use ratios for the MACE players
versus AB mirrors the rankings of their winning ratios. The
higher case-use ratio for MACE2 can be attributed in part to
the relaxed matching mechanism which makes it more likely
that a “matching” case will be found, but is also a product
of MACE2’s superior performance. MACE3 ranked higher
than MACE1 in matches against AB, although their rankings
were reversed in the matches against ABR. All three config-
urations of MACE struggled to effectively reuse their case
base when playing against ABR. This is not surprising when
one considers that ABR is more of an unpredictable oppo-
nent, one that introduces more novel board states than AB,
which in turn requires more effort to learn effective counter
strategies.

Figure 3: Averaged case-use ratios of MACE1, MACE2, and
MACE3 against Alpha-Beta Search in a series of 10 chess
matches with 500 games per match.

In summary, the results suggest several things. First, the
primary result is that experience through the use of ACE
backed by alpha-beta search for novel situations can lead to
an improvement in performance in the domain of chess over
the use of alpha-beta search alone. Second, it appears that a
relaxation in the strictness of case matching allows MACE
more freedom to explore and ultimately improves its effec-
tiveness given sufficient interaction with its environment, by
finding and exploiting actions which would not otherwise be
suggested by an imperfect search mechanism. It is possible
that a more intelligent matching technique could lead to fur-
ther improvements. Third, the results show that ACE can
routinely overcome a static opponent, and that adding a de-
gree of unpredictability to the opponent presents ACE with
a greater challenge in the exploration for winning strategies.
Fourth, it seems that learning from an opponent may not be
entirely necessary when the opponent is inferior.

Related Work

Several papers have described the application of CBR to
chess including Flinter and Keane (Flinter & Keane 1995)
and Sinclair (Sinclair 1998) who each use CBR for chess
play by automatically generating case libraries from sets of
pre-existing grandmaster games. Cases in ACE differ from
these approaches in that cases are not derived from a set of
grandmaster games, but instead originate from actual inter-
action with the environment.

The automatic generation of cases from predefined ex-
pert knowledge has received some attention. For example,
SHOP/CCBR (Mukkamalla & Muñoz-Avila 2002) automat-
ically acquires cases from manually entered project plans.
Shih (Shih 2001) integrates CBR and sequential dependency
to learn bridge play from existing games. In contrast, ACE
does not compile cases from manually entered or existing
data, but instead acquires knowledge automatically through
the experiences of the agents who learn completely from
scratch.

In the context of CBR, learning, and games, von Hessling
and Goel (von Hessling & Goel 2005) describe a technique
in which a game playing agent uses Q-learning (Watkins
1989), a form of reinforcement learning, to learn the appro-
priate action for a given state, and then abstracts and encap-
sulates action selection within a reusable case for application
to other similar states. Our approach differs at this point in
that our cases contain concrete observations of the environ-
ment, not abstractions.

Gabel and Riedmiller (Gabel & Riedmiller 2005) de-
scribe how cases can be used for approximating the state
value function in reinforcement learning (specifically tem-
poral difference methods) in complex domains or contin-
uous domains with a state space of infinite size. Demon-
strated in the domain of robot soccer, cases include com-
piled attributes (e.g., the ball’s and player’s velocities). Our
approach is distinguished in that our cases include a snap-
shot of the environment with no compiled features.

In an approach similar to that described in this paper,
DeJong and Schultz (DeJong & Shultz 1988) describe a
technique for designing and implementing architectures for
extending the capabilities of non-learning problem solvers
through integration with a knowledge base. Demonstrated
by the system GINA, actions in novel situations (those not
stored in the system’s knowledge base) are suggested by an
underlying problem solver and afterward stored in the sys-
tem’s knowledge base. Unlike the implementation discussed
in this paper, GINA does not rely upon exploration in the
form of randomly selected top-rated moves from the under-
lying problem solver.

Goodman (Goodman 1994) describes the use of off-line
built decision-tree induction projectors to predict the out-
come of various actions during game play in Bilestoad. ACE
differs in that agents learn in real time and projection is not
coded as a separate step but is instead encapsulated within
individual case ratings.

Conclusion
To successfully reason in a domain, a system must have a
well defined set of rules describing how to interact with its
environment, or a system must have a knowledge base with
a sufficient amount of knowledge to facilitate successful rea-
soning. Unfortunately, many domains are complex enough
that the rules of interaction for that domain are not well un-
derstood, or it is unknown what knowledge is required to
successfully reason within the domain. In such domains
a reasoning system would ideally be able to automatically
acquire its own knowledge, which it can exploit at a later
time. CBR is an excellent methodology for exploiting do-
main knowledge. CBR can also be used to successfully
automate the process of knowledge discovery. One gen-
eral method for automatically acquiring knowledge within
a CBR framework is automatic case elicitation (ACE). ACE
relies on real-time trial and error interaction with its environ-
ment to acquire a knowledge base diverse enough to succeed
in a given domain. In complex domains, the process of auto-
matically discovering knowledge can be very time consum-
ing. To facilitate this process, ACE was combined with an
alpha-beta search algorithm to help narrow down the state-
space through which a system would need to search. Experi-
mental results indicate that the process of exploration is cru-
cial for an ACE system’s performance, and that exploration
can lead to superior performance by discovering solutions to
problems which would not otherwise be suggested or found
by a static or imperfect search mechanism.

References
Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and sys-
tem approaches. AI Communications 7(1):39–59.
Aha, D. W., and Molineaux, M. 2004. Integrating learning
in interactive gaming simulators. In Fu, D., and Orkin,
J., eds., Challenges in Game Artificial Intelligence: Pa-
pers from the AAAI Workshop (Technical Report WS-04-
04), 49–53. AAAI Press.
Althoff, K.-D., and Weiss, S. 1991. Case-based knowl-
edge acquisition, learning and problem solving for diag-
nostic real world tasks. In Proceedings of the European
Knowledge Acquisition Workshop, 48–67.
DeJong, K. A., and Shultz, A. C. 1988. Using experience-
based learning in game-playing. In Proceedings of the Fifth
International Conference on Machine Learning, 284–290.
San Mateo, California: Morgan Kaufmann.
Flinter, S., and Keane, M. T. 1995. On the automatic gen-
eration of case libraries by chunking chess games. In Case-
Based Reasoning Research and Development, LNAI 1010,
421–430. Springer Verlag.
Gabel, T., and Riedmiller, M. A. 2005. Cbr for state
value function approximation in reinforcement learning.
In Muñoz-Avila, H., and Ricci, F., eds., Case-Based Rea-
soning Research and Development, LNAI 3620, 206–221.
Springer.
Goodman, M. 1994. Results on controlling action with
projective visualization. In Proceedings of the Twelfth

National Conference on Artificial Intelligence (AAAI-94),
1245–1250. Menlo Park, Calif.: AAAI Press.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. P. 1996.
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research 4:237–285.
Knuth, D. E., and Moore, R. W. 1975. An analysis of
alpha-beta pruning. Artificial Intelligence 6(4):293–326.
Kolodner, J. 1993. Case-based reasoning. San Mateo,
Calif.: Morgan Kaufmann.
Kommuri, S. N.; Powell, J. H.; and Hastings, J. D.
2005. On the effectiveness of automatic case elicitation
in a more complex domain. In Aha, D. W., and Wil-
son, D., eds., Proceedings of the Sixth International Con-
ference on Case-Based Reasoning (ICCBR-05) Workshop
on Computer Gaming and Simulation Environments, 185–
192. Chicago, Illinois: Springer.
Mukkamalla, S., and Muñoz-Avila, H. 2002. Case acqui-
sition in a project planning environment. In Advances in
Case-Based Reasoning, LNAI 2416, 264–277. Springer-
Verlag.
Patterson, D. W.; Anand, S. S.; Dubitzky, W.; and Hughes,
J. G. 1999. Towards automated case knowledge discovery
in the m2 case-based reasoning system. Knowledge and
Information Systems 1(1):61–82.
Powell, J. H.; Hauff, B. M.; and Hastings, J. D. 2005. Eval-
uating the effectiveness of exploration and accumulated ex-
perience in automatic case elicitation. In Muñoz-Avila, H.,
and Ricci, F., eds., Case-Based Reasoning Research and
Development, LNAI 3620, 397–407. Springer.
Shih, J. 2001. Sequential instance-based learning for plan-
ning in the context of an imperfect information game. In
Case-Based Reasoning Research and Development, LNAI
2080, 483–501. Springer-Verlag.
Simon, H. A., and Schaeffer, J. 1992. The game of chess.
In Aumann, R., and Hart, S., eds., Handbook of Game The-
ory, volume 1. Elsevier Science Publishers. 1–16.
Sinclair, D. 1998. Using example-based reasoning for se-
lective move generation in two player adversarial games. In
Advances in Case-Based Reasoning, LNAI 1488, 126–135.
Springer-Verlag.
Slagle, J. R., and Dixon, J. K. 1969. Experiments with
some programs that search game trees. Journal of the ACM
16(2):189–207.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
von Hessling, A., and Goel, A. K. 2005. Abstracting
reusable cases from reinforcement learning. In Aha, D. W.,
and Wilson, D., eds., Proceedings of the Sixth International
Conference on Case-Based Reasoning (ICCBR-05) Work-
shop on Computer Gaming and Simulation Environments,
227–236. Chicago, Illinois: Springer.
Watkins, C. J. 1989. Learning from delayed rewards. Ph.D.
Dissertation, Cambridge university.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

