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Abstract

Algorithm portfolios are one approach designed to harness
algorithm bias to increase robustness across a range of prob-
lems. We conjecture that learning based on the previous per-
formance of a suite of planning systems can direct a portfolio
strategy at each of three stages: selecting which planners to
run; ranking the order to run the selected planners; and allo-
cating computational time to them. Our specific focus in this
paper is to examine ways to inform portfolio strategy by ex-
ploiting learned performance models. We cull the planners to
the non-dominated subset and rank them based on the mod-
els. Allocation is especially challenging for hard problems
because the run-time distributions typically exhibit heavy-
tails and high variance, both of which lower confidence for
run-time prediction. We examine a round robin allocation
strategy based on the run-time distributions of the planners.
Our results show that the portfolio can solve more problems
than any single planner and that it is faster than the average
successful planner. ¡

Introduction
Understanding previous performance is often a key to gain-
ing insight into algorithm design for hard problems such as
MAX-3SAT or classical planning. Algorithms typically ex-
ploit problem-specific structure for such problems through
a well-founded or ad-hoc intuition about what will or won’t
work. For example, Tabu search is (in part) designed to over-
come plateaus in a search space. Meta-search techniques
that perform localized or elitist restarts implicitly leverage
the proximity of local and global minima (’big valleys’).
But, it is well known that a problem-specific approach can
lead to an algorithm that does well on one problem but fails
on other problems with a markedly different structure. No
free lunch proofs help us understand this observation, at
least for the discrete case (Wolpert & Macready 1997).

Portfolios are one way to transcend algorithm bias and
maintain robustness across a range of problems (Huberman,
Lukose, & Hogg 1997; Gomes & Selman 1997). A sequen-
tial portfolio controls the run time of a suite of algorithms
with a strategy that selects which algorithms to run, ranks
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them, and allocates computational time to them. An ideal
strategy maximizes success and minimizes total computa-
tion, so the strategy must be accurate and fast.

Our general outline for constructing a portfolio strategy
based on learning from previous performance is: 1) Con-
struct models to predict success using features extracted
from the domain, problem instance, and state space topol-
ogy. 2) Use these models to rank them. 3) Allocate time
based on the run-time performance of the algorithms on a
training set.

We followed this strategy to construct a portfolio of plan-
ning systems. The International Planning Competitions
(IPCs) encourage a variety of planners that are mostly made
publicly available. Although some planners excel in the
competition, no single planner can solve all benchmark
problems. This argues for a portfolio approach. In this pa-
per, we examine each stage of the portfolio strategy by ad-
dressing two key questions:

1. The 57 features we included for modeling have computa-
tional costs varying by at least four orders of magnitude.
Can we select features that minimize total computational
cost but still maintain overall model accuracy?

2. We note that the run-time distributions (RTDs) for classi-
cal planners are heavy tailed. In spite of this, can we use
the RTDs to relate portfolio quitting time with confidence
of success?

These questions focus on ways to improve the learning ac-
curacy and to better leverage the learned models; we empir-
ically assess them in the sections that follow. A long-term
goal of this work is to use these analyses to drive deeper
insight into the behavior of planning systems. So we also
present some results that aren’t directly used in the portfolio
but provide a foundation for this goal.

Related Work
Portfolio learning was originally called the algorithm se-
lection problem (Rice 1976). Most portfolio strategies use
models of run-time that are statically constructed (off-line)
prior to use in the portfolio, but some models are dynam-
ically constructed (on-line) as the portfolio learns a good
strategy. These models are constructed with one or more
features that highlight domain knowledge, problem instance
characteristics, or structural properties of the search space.



Some features are more costly to compute than others be-
cause they construct specialized data structures or they di-
rectly probe the search space. Finally, there is a difference
among allocation strategies. Some portfolios select the best
algorithm in a winner-take-all approach, while others dy-
namically reallocate computational resources based on solu-
tion quality measurements. Early portfolio-like approaches
such as (Gratch & Chien 1996) and (Minton 1996) learned
more effective application of existing search control heuris-
tics.

Two portfolios in the literature incorporate an on-line
strategy. An early formulation used a measure of the ex-
pected gain to select among three commitment strategies in
search for partial plans (Fink 1998). More recently, Beck
and Freuder examined a “low-knowledge” approach to al-
gorithm selection that uses three simple first-order features
of solution quality to reallocate the remaining time of the
portfolio (2004).

Most portfolios use off-line analysis to relate features to
runtime. One of the first formulations used the run-time
distribution of a Las Vegas algorithm to calculate the best
ratio for allocating time two two independent instances of
that algorithm (Huberman, Lukose, & Hogg 1997). Gomes
and Selman (1997) explicitly computed the value of mul-
tiple restarts of a stochastic algorithm for the Quasigroup
Completion Problem. Baptista and Silva (2000) followed
observations from (Gomes & Selman 1997), but studied se-
lection among different randomized algorithms to solve un-
satisfiable instances of SAT. The Bus meta-planner (Howe et
al. 1999) used linear regression models of computation time
and success to rank a set of classical planners; it allocated
run-time using a round robin scheme.

Lagoudakis, Littman and Parr examined a recursive MDP
formulation to select among three algorithms for the canon-
ical sorting problem (2000) . Lagoudakis and Littman ex-
panded this work to select an optimal policy of branch-
ing rules in search for SAT (Lagoudakis & Littman 2001).
Horvitz et al. (2001) as well as Guo and Hsu (2004) both
used inductive learning over a Bayesian network of the fea-
ture space to guide algorithm selection.

Leyton-Brown et al. examine algorithm selection for
Combinatorial Auctions (2003a,2003b) and find that linear
regression of the log time variable predicted runtime quite
well; they also capped runs that took longer than a maximum
time. Nudelman et al. extend this work by creating models
that predict runtime for uniform random 3-SAT problems
and assembling a SAT solver, SATzilla, for the 2003 and
2004 SAT competitions (2004).

Guerri and Milano (2004) extend work of (Leyton-Brown,
Nudelman, & Shoham 2002) to select between Integer Pro-
gramming or Constraint Programming for the Bid Evalua-
tion Problem. Gebruers et al. (2004) extend this work to use
model free learning but it is unclear how the results compare
to their earlier work. Gebruers et al. also examine case based
learning as applied to the Social Golfer Problem (2005) .

Choosing appropriate features is a key issue for algo-
rithm selection; it is preferable to identify linear or, at
worst, polynomial features for a problem. Most of the
above strategies model simple features of the specific prob-

Planner Authors [Date]
AltAlt-1.0 Nguyen,Kambhampati, Nigenda [2002]
BlkBox-4.2 Kautz, Selman [1999]
CPT-1.0 Vidal, Geffner [2004]
FF-2.3 Hoffmann [2001]
HSP-2.0 Bonet, Geffner [2001]
IPP-4.1 Koehler, Nebel [1997]
LPG-1.1 Gerevini, Serina [2002]
LPG-1.2 Gerevini, Saetti, Serina [2003]
LPG-TD-1.0 Gerevini, Saetti, Serina [2005]
Metric-FF-02 Hoffman, [2003]
MIPS-3 Edelkamp [2003]
Optop-1.6.19 McDermott, [2005]
Prodigy Veloso et al. [1995]
SystemR Lin [2001]
SAPA-2 Do, Kambhampati [2003]
Satplan04 Kautz, Selman [1999]
SGP-1.0h Weld, Anderson, Smith [1998]
SGPlan-04 Chen, Hsu, Wah [2004]
SimPlan-2.0 Sapena, Onaindia [2002]
SNLP-1.0 McAllester, Rosenblitt [1991]
STAN-4 Long, Fox [1999]
UCPOP-4.1 Penberthy, Weld [1992]
VHPOP-2.2 Younes, Simmons [2003]

Table 1: The planners used, their authors and dates of their
publications.

lem instance or the general problem family; these features
are often selected for their known (or suspected) correla-
tion with search cost. Some, such as (Gebruers et al. 2005;
?), use wrapper functions to select subsets of relevant fea-
tures. One dynamic strategy incorporated first and second
order runtime features to measure solution progress (Beck
& Freuder 2004). (Nudelman et al. 2004) used search prob-
ing to generate search space features. This work, along with
(Leyton-Brown, Nudelman, & Shoham 2002) also exam-
ines using more sophisticated combinations of features for
regression.

Experiment Design
We study 23 classical planners, denoted in Table 1, which
are composed of IPC competitors plus non-IPC planners
to diversify the set of approaches represented. None of
these planners was intended for use in a portfolio, though
Prodigy and BLACKBOX-4.2 are portfolio-like in their ap-
proach.

Classical planners work in a variety of search paradigms
that obscure straightforward measurement of solution
progress. Many of the planners, though not all, sacrifice
completeness. Also, some planners can run for an exceed-
ingly long time without producing a solution or proving one
doesn’t exist. Based on these observations, we construct two
classification models: success and time. Success predicts a
binary variable while time predicts computation time needed
for a given planner to complete a given problem. Together,
these off-line models will form part of the portfolio strategy.



Statistics Characteristics Description
num operators
num predicates
min,mu,max params-pred arity for predicates
min,mu,max prec-oper predicates in precond.
min,mu,max post-oper predicates in effects
min,mu,max neg-post-oper negations in effects
num,ratio neg-post-oper actions over negative effects
req adl req. ADL
req cond-effects req. conditional effects
req derived-pred req. derived predicates
req disjunctive-prec req. disjunctive precond.
req domain-axioms req. domain axioms
req equality req. equality
req exist-prec req. existential precond.
req fluents req. fluents
req quant-pred req. quantified precond.
req safety-const req. safety constraints
req strips req. strips
req typing req. typing
req univ-prec req. universal precond.
num goals # of goals
num objects # of objects
num inits # of inits
min,mu,max tail-actions operators unifying to goals
num toggles pairs of clobbering actions
num invariant-pred disunified predicates
num,mu-p minima #,mean %
num,mu-
p,mu-
dia,mu-sz

benches #, mean %, diameter, size

num,mu-
p,mu-
dia,mu-sz

contours #, mean %, diameter, size

num,mu-
p,mu-
dia,mu-sz

solutions #, mean %, diameter, size

num plains-to-min plateaus leading to minima
num plains-to-ben plateaus leading to benches
mu-
dia,mu-sz

lm mean diameter/size of local
min

mu-p bench-exits % of bench exits
mu-med benches maximal edit distance

Table 2: The feature set: first two columns form the names
we use in the paper; last column briefly describes the feature.

The models are trained using observed planner perfor-
mance on benchmark problems. We run all planners on
3959 STRIPS PDDL problems from 77 domains. The prob-
lems are taken from Hoffmann’s dataset (Hoffmann 2004),
the UCPOP Strict benchmark, IPC sets (IPC1, IPC2, IPC3
Easy Typed and IPC4 Strict Typed) and 37 other problems
from two domains (Sodor and Stek) that have been made
publicly available. Following typical time and memory con-
straints from the community, each planner is allowed 30
minutes and 768 Meg on 22 identically configured Pentium
4 3.4Ghz computers. A planner is considered to have failed
if it reaches 30 minutes. No planner solves all the problems
in the set; the planner that solves the most problems achieves
73.9% success.

Type Min μ Median Max
Domain & Instance 0 0.00028 0 .035
Interaction 0 5.203 0 5052
Hoffmann (1839) 0 2.187 0 1650

Table 3: Computation costs (in seconds) for features by type.

We use 57 features (Table 2) that are automatically ex-
tracted from problem and domain definitions. The set starts
with features from (Howe et al. 1999) and (Hoffmann 2001)
and adds others. As shown in Table 2, we divide the fea-
tures into four categories of increasing knowledge and com-
putational cost: domain specific, instance specific, action in-
teraction and Hoffmann’s state space topology1 (Hoffmann
2001). In the table, ’mu’ refers to the mean value; the re-
quired (’req’) features are taken from PDDL requirements
annotations from the domain files. We use the requirements
as defined in the original PDDL specification (Ghallab et al.
1998). In practice, not all domains correctly specify their re-
quirements (Howe et al. 1999). However, enough do that it
may provide useful information since some planners cannot
solve problems with certain requirements (such as ADL).

We use the WEKA data mining package (Witten & Frank
2005) to build the models. We tried several different mod-
els from WEKA; to begin with, we focused our work on
two simple models that worked well: OneR and J48. OneR
selects the single feature that yields the highest prediction
value on the training set. It provides two important de-
tails for us: first, it provides a very simple evaluation of
the most important feature for the data. This will be useful
in later analysis of which features distinguish planner per-
formance. Second, it gives us a baseline against which to
judge more sophisticated machine learning techniques. J48
is a simple decision tree based on Quinlan’s C4.5; decision
trees were used for prediction in (Gebruers et al. 2005;
Guo & Hsu 2004; Guerri & Milano 2004; Horvitz et al.
2001). By default, we use 10-fold cross validation to train
and test the models.

Feature Selection
Our first question relates to identifying a subset of features
that is cheap to compute. As shown in Table 3, the four
types of features vary considerably in their cost to compute
over all problems. We computed times for Domain/Instance
and Interaction features over all problems, which meant that
some of the Interaction times were longer than 30 minutes.
Calculating the topological features involves analyzing the
full planning graph induced by the h+ heuristic, so we in-
clude only the subset of 1839 problems for which this anal-
ysis is possible. We call the domain and instance features
the ’fast’ features.

Restricting the models to only fast features significantly
extends the number of problems that can be modeled, but
also reduces the accuracy. To assess the impact on accuracy,
we computed two sets of J48 models: one for the full fea-
ture set using the subset of 1839 problems accessible to all

1We thank Jörg Hoffmann for supplying the code.



Feature Set
Problems/ Full Fast Fast-req
Metric μ Sd μ Sd μ Sd
Subset

succ 96.63 3.42 96.03 4.08 95.85 4.08
time 96.16 5.80 95.97 6.17 95.98 6.14

All
succ – – 95.56 1.85 95.47 1.85
time – – 94.30 3.07 94.30 3.12

Table 4: Comparing average accuracy (% correct) for mod-
els with all features (Full), all fast features (Fast), and fast
without the language requirements (Fast-req).

req-typing = t
| req-adl = t: nil (1169.0/6.0)
| req-adl = nil
| | num-objects <= 29
| | num-objects > 29: nil (614.0/7.0)
req-typing = nil
| mu-prec-oper <= 6
| | num-inits <= 185
| | num-inits > 185: nil (25.0)
| mu-prec-oper > 6
| | min-params-pred <= 0: nil (202.0)
| | min-params-pred > 0

Figure 1: The first three levels of the decision tree for CPT-
1.0. This tree had 103 nodes with 52 leaves.

features and another for the fast features only using all prob-
lems. Table 4 compares the accuracy results for the models
generated for the two metrics given the computable subset
for training when using either the full feature set or only the
fast features. The last two lines in the table also show accu-
racy of the fast on the full problem set.

Table 4 shows only minor degradation in performance
when only the fast features are used: slightly lower mean
and higher standard deviation. A paired sample T-test com-
paring classification accuracies for Full and Fast on the Sub-
set is insignificant (p = 0.16) for time, but highly significant
for success (p < .001) with an average difference of 0.6%.
Thus, it does not appear that the expensive features are nec-
essary to model time and marginally informative for success.
A paired sample T-test between Fast and Fast-req for all
planner models was insignificant for both metrics (p = 0.09
for success and p = 0.40 for time). Thus, the evidence sug-
gests that adding the language requirements also lacks sig-
nificant impact on prediction accuracy.

The decision trees using the ’req’ features are qualitatively
different even though accuracy did not significantly increase.
Nine of the planner models use a requirement as the root
feature (5 were req-typing, 2 were req-strips and
2 were req-adl). In general, it seemed to be that lan-
guage features distinguished problems that were further re-
fined by the other features. Figure 1 shows an example of
this trend for the first three levels for CPT-1.0. The features
req-typing and req-adl distinguish problems in the

first and second layer, but then other fast features show up
lower in the tree. The lack of statistically significant change
in accuracy with the strong use of these features suggest that
the they may be strongly correlated with other features. The
resulting decision trees appear to have stronger explanatory
power for our next stage of analyzing the trees to better un-
derstand what features distinguish planner performance.

Quitting Time
Our second key question is whether the amount of time allo-
cated to each planner can be predicted with sufficient accu-
racy to support the portfolio. We propose using the RTDs
to arrive at a more informed allocation strategy that will
make good use of extra time when justified. Table 5 (left)
shows the log distributions of time-to-success for the non-
dominated planners. It is clear that we do indeed see heavy
tails in most of the planner RTDs. 84.5% of the runs finish
in less than one second while only 0.24% finish in greater
than 1000 seconds. Failures take much longer; 73.9% take
less than a second and 10.7% take longer than 1000 seconds.
Over all runs, 77.8% finish in under a second and 6.9% fin-
ish in over 1000 seconds.

A simple and intuitive approach to using these data for
allocation is to predict time with decision trees similar the
success models. Using log-sized bins, J48 classifies all prob-
lems (regardless of success) across all planners with an av-
erage accuracy of 94.3% (sd of 3.07). Though these predic-
tions have high accuracy, the larger bins are not informative
enough to predict exact run-time in the portfolio.

The predictions may also be useless for reasons related
to using classification. Recent work from Leyton-Brown
et al. points out that regression techniques are preferable
to classifiers because they penalize large misclassification
more than small ones (according to the strength of the dis-
tance metric used for regression) and because they don’t rely
on arbitrary binning boundaries (2002). But previous re-
search showed simple regression models were not particu-
larly well suited to predicting run-time for automated plan-
ners (Howe et al. 1999). They used weighted regression
over five standard domain and problem features. Those re-
gression models failed to adequately explain variance for
runtime; the average R2 value for the six planners was 0.42
and values ranged from 0.19 to 0.76. We also looked at the
extent to which the classifier was off by one bin or more than
one bin. 3% of the classifications were off by one bin, 1%
by two bins, 0.6 % by three bins, and 0.7effect of large mis-
classification has less of an impact than the artificial binning
boundaries.

Other issues appear to make regression less appropriate
for our application. It isn’t readily clear which features (or
weighting of feature combinations) correlate well with run-
time; a scatter-plot of the data did not reveal discernible re-
lationships. Regression over single features does not appear
justified because of strong deviations from the normality and
variance assumptions. (Nudelman et al. 2004) propose two
potentially valuable approaches of using a feature space that
is the pairwise product of the original features and using
logistic models (we were already considering exponential



Time-to-success Time Percentiles
1 10 10

2
10

3
10

4 TOTAL 0.8 0.85 0.9 0.95 0.96 0.97 0.98 0.99
SGPlan-04 2839 52 9 24 2 2926 0.0 0.1 0.2 0.4 0.5 1.0 3.0 15.3
IPP-4.1 2211 42 41 38 1 2333 0.0 0.0 0.1 1.3 4.2 18.6 50.2 173.7
LPG-TD-1.0 1858 144 111 46 4 2163 0.3 0.8 4.3 32.3 46.7 73.8 142.6 442.9
Satplan04 1064 129 66 62 7 1328 1.0 2.8 10.7 113.5 179.5 283.9 358.9 556.0
FF-2.3 2709 100 46 27 4 2886 0.0 0.1 0.3 1.9 3.9 6.6 27.0 104.7
Prodigy 876 68 28 13 1 986 0.7 0.7 1.2 7.0 11.3 24.7 48.4 203.8
UCPOP-4.1 730 156 109 99 15 1109 10.2 31.8 106.3 328.2 426.1 581.4 822.5 1187.3
BlkBox-4.2 1187 27 104 11 2 1331 0.0 0.1 12.0 13.9 15.8 23.8 41.9 90.1
Metric-FF-02 2598 145 53 18 2 2816 0.0 0.1 0.4 2.5 3.8 6.4 18.9 61.7
ALL 27878 2139 2176 711 80 32984 0.5 1.2 6.6 22.4 35.6 65.5 143.4 378.4

Table 5: Time-to-success (left side) across the non-dominated planners; the planners are ordered according to selection by the
Greedy-Set-Cover. The right side shows the percentiles for the planners.

modeling). We plan to examine this approach for a better
prediction of run time.

A simple observation leads to a remarkably successful al-
location strategy that does not use either of the above anal-
yses or models. As shown in Table 5 (right), all but one
achieve the 80th percentile at 10 seconds. At 100 seconds,
one planner each achieves the 89th, 94th, and 97th per-
centiles, five reach the 98th percentile, and three achieve the
99th percentile. At 200 seconds, six have reached the 99th
percentile; each increase of 100 seconds raises the percentile
for all planners run. It follows that we can use a stepped ap-
proach for allocating time and avoid any cost of calculating
an optimal run time for each planner. Each planner starts at
a point of higher confidence than the median, and gradually
reaches higher confidence for each additional round.

The Portfolio
Our portfolio strategy uses offline analyses to model suc-
cess with decision tree classifiers and to select a reasonable
cut-off for run-time. In contrast to recent research that uses
more sophisticated regression or Bayesian techniques, we
find that this approach guides the portfolio to solve more
problems than any single planner while at the same time be-
ing significantly faster than the average planner time.

As mentioned, we pruned the planners to a non-
dominated subset based on successful performance so as to
eliminate the portfolio wasting time on a subsumed planner.
It is easy to see this is a set covering problem. We imple-
mented Greedy-Set-Cover from (Cormen et al. 2003) and
found that at least 14 planners could be removed.

The portfolio begins with the set of planners under con-
sideration and ranks them according to the success models.
Ideally, we would obtain from the success model an estimate
of P (solution found|problem, planner). Since the decision
trees do not provide this directly, we estimate it using counts
from the predicted leaf node of the tree. For example, if the
planner success model returns a leaf node indicating success,
we take the ratio of successes to the number of instances at
that leaf. In effect, we are measuring the confidence of the
leaf node over its training examples. An obvious drawback
to this approach is that the leaves are actually poor estima-
tors due to pruning. Though it works well in this application,

it is admittedly a rather ad hoc way to estimate the probabil-
ity; we do plan to incorporate more sophisticated probability
estimation techniques in future work. We rank the planners
in decreasing probability of success then increasing proba-
bility of failure. This ensures that the portfolio tries the plan-
ner most likely to succeed first and the planner most likely
to fail last.

As in (Howe et al. 1999), the portfolio allocates time in a
series of round robin stages. The first stage tries the first five
planners for ten seconds each; we chose the first five because
it is half of the planners. The second stage starts at the top of
the ranking and runs all planners up to 100 seconds. Every
stage thereafter adds 100 seconds. The portfolio stops when
1) a planner succeeds, 2) no planners are alive to run, or
3) max-time is exceeded, where max-time is the same max
run-time (30 minutes) of any individual planner.

Portfolio Performance
Our long-term goal in examining the portfolio performance
is to understand why the portfolio selected one algorithm
over another for a particular problem; that is, what features
and performance indicators distinguish planner performance
for particular problems. In this paper, however, we start by
examining the raw number of problems solves by the port-
folio and its robustness on unseen problems as compared to
the best and average planner performance. We randomly se-
lected 90% (3565) of the problems for training the portfolio
models; the remaining 10% (394) of the problems are used
for testing the portfolio. Of this 394 problems, 371 (94.2%)
were solved by at least one planner. The best single planner,
SGPlan-04 solved 291 (73.9%) of these problems.

To examine the impact of using the culled set, we compare
the performance of the portfolio using all planners (Aport)
against the portfolio using the non-dominated (unique) plan-
ners (Uport). In terms of robustness, Aport solved 307
(77.9%) problems while Uport solved 325 (82.5%). Accord-
ing to a paired sample t-test, both portfolios perform signif-
icantly faster than the average planner run time (by about 6
seconds); the average planner run-time is the mean time-to-
success for all planners that solved that problem. A com-
parison of the RTDs for Uport and the average planner for
problems that the portfolio solved is shown Figure 2. The
average run time of Aport was higher by about half a second



than Uport, but this difference was not significant (p = .41)
according to a paired t-test of the 300 problems that both
portfolios solved. The mean ratio of successful planners in-
cluded in Uport was 0.70 (sd of 0.18). Though it is difficult
to say with certainty without more testing, there is a trend
for Uport to be much more robust.

Portfolio (1 run) Avg. Planner
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Figure 2: Comparison of the portfolio (left) to the average
planner performance (right) for the 325 problems that the
portfolio solved.

Closing

We posed two questions at the outset with the aim of im-
proving portfolio robustness. We found that:

1. We can use the subset of ’fast’ features only without sig-
nificantly impacting classification accuracy for time and
significantly, but only marginally (by 0.6% on average),
impacting accuracy for success. Using ’req’ features did
not significantly change the prediction accuracy, though
it did qualitatively change the models in a way that may
prove useful for other explanations.

2. The run-time distributions show heavy-tails, as expected.
Using log-sized bins provides the highest accuracy; deci-
sion trees achieve 94.3% average prediction accuracy. In-
stead of relying on prediction for allocation, the portfolio
allocates time in a stepped round robin strategy.

Incorporating learning from prior experience into a portfolio
yielded some promising results. The portfolio solved 82.5%
problems solved out of a possible best of 94.2%; this was
also more than the best single planner, which solved 73.9%.
The time to solution was lower by 6 seconds over the av-
erage planner; this gap may widen as we incorporate larger
problems into the research. We present some follow-up di-
rections for this research.

Planner Selection: The set covering algorithm returned
one possible minimum set of planners for the portfolio.
But the algorithm disregards the quality of individual plan-
ners beyond raw counts of the number of problems solved.
One might expect that the planners of a particular strategy
(POCL, SAT, etc.) subsume other planners of a similar strat-
egy or that newer planners subsume older variants, but we
found counter-examples of both of these expectations. We
hope to further explore which planners subsume one another
to arrive at clues for explaining planner behavior.

Problem Set: Some of our results suggest a floor effect
in the problem set; a single planner solved almost 80% of
the problems. One way to overcome the floor effect is to
generate more challenging problems; the two previous In-
ternational Planning Competitions provided such tools. The
planning competition at ICAPS this year will likely produce
newer problems that we can use to distinguish planner per-
formance. We also hope to extend the problem set to include
the recent temporal and probabilistic extensions to PDDL.

Solution Variety: An added benefit of using a suite of
algorithms is that the planners may produce different solu-
tions. Currently, we stop processing once the first solution
is achieved. A recent focus in the planning community is to
produce plans that optimize metrics other than plan length.
The special case of multi-objective optimization suggests
a returning a set of Pareto-optimal solutions. Some of the
planners in the set (such as SAPA-2) are able to return mul-
tiple solutions and can work with multi-objective metrics.

Confidence Bounds on Quitting: The staged round
robin strategy incrementally increases the confidence that
the planner will not solve the problem; if a planner achieves
the 99th percentile, then we can be 99% sure that the plan-
ner would not have solved the problem in the time it was
run. The portfolio could state the percentiles of each algo-
rithm as an empirical confidence bound over its training ex-
amples. Alternatively this method provides a hard limit for
quitting in the absence of a time limit. For example, the
portfolio could be instructed to run each algorithm up to a
specific percentile. In advance, the portfolio can estimate
the run time for the percentile.

Predicting Runtime: As mentioned in the body, we plan
to examine the use of more sophisticated learning for pre-
dicting run-time.

Ranking: We intend to explore other options for rank-
ing. One method would be to incorporate the ranking strat-
egy from (Howe et al. 1999) where the planners are ranked
according to P (success|problem,Aj)

T (Aj |problem) , where T (Aj|problem)

is the expected time (at a specific percentile) of algorithm j
given the problem. This ratio minimizes the expected cost of
trying n algorithms until one works (Simon & Kadan 1975).
Using this ratio also solves the issue of which value to use
from time predictions in the log scale since the denominator
simply moves the decimal by the size of the bin.

We have informed each stage of the portfolio strategy us-
ing learning prior performance of the algorithms on a large
collection of problems. The trends in our results indicate
that we have identified some key interactions within each
stage of portfolio construction. But the larger task now lies



in explaining the results that we see. There are two direc-
tions along which we intend to pursue such explanations.
First, we hope to examine more closely the interactions be-
tween the portfolio stages to determine which stages are
critical to a successful portfolio. Understanding the criti-
cal components of a portfolio help us refine the distinctions
between the algorithms. Second, we hope to link depen-
dencies between the models learned and the systems they
model to highlight specific search behaviors. One simple
way to do this is to test specific hypotheses about planner
behavior with respect to the learned models using specially
generated problems. Ultimately, we hope to provide better
explanations of the algorithm behavior with an eye toward
better algorithm design.

Acknowledgments
We thank the anonymous reviewers for their comments.

References
Baptista, L., and Silva, J. P. M. 2000. Using randomization and
learning to solve hard real-world instances of satisfiability. In
Principles and Practice of Constraint Programming, 489–494.

Beck, J. C., and Freuder, E. C. 2004. Simple rules for low-
knowledge algorithm selection. In Proc. of 1st CPAIOR.

Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2003. In-
troduction to Algorithms. MIT press, Cambridge, MA, second
edition.

Fink, E. 1998. How to solve it automatically: Selection among
problem solving methods. In Proc. of 4th AIPS, 128–136.

Gebruers, C.; Guerri, A.; Hnich, B.; and Milano, M. 2004. Mak-
ing choices using structure at the instance level within a case
based reasoning framework. In CPAIOR, 380–386.

Gebruers, C.; Hnich, B.; Bridge, D. G.; and Freuder, E. C. 2005.
Using CBR to select solution strategies in constraint program-
ming. In ICCBR, 222–236.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins., D. 1998. PDDL : the plan-
ning domain defnition language. Technical report, Yale Center
for Computational Vision and Control.

Gomes, C. P., and Selman, B. 1997. Algorithm portfolio design:
Theory vs. practice. In Proc. of 13th UAI. Linz, Austria.: Morgan
Kaufman.

Gratch, J., and Chien, S. 1996. Adaptive problem-solving for
large-scale scheduling problems: A case study. JAIR 4:365–396.

Guerri, A., and Milano, M. 2004. Learning techniques for auto-
matic algorithm portfolio selection. In Proc. of 16th ECAI, 475–
479.

Guo, H., and Hsu, W. H. 2004. A learning-based algorithm selec-
tion meta-reasoner for the real-time mpe problem. In Australian
Conference on Artificial Intelligence, 307–318.

Hoffmann, J. 2001. Local search topology in planning bench-
marks: An empirical analysis. In Proc. of 17th IJCAI, 453–458.

Hoffmann, J. 2004. Utilizing Problem Structure in Planning: A
local Search Approach. Berlin, New York: Springer-Verlag.

Horvitz, E.; Ruan, Y.; Gomes, C. P.; Kautz, H.; Selman, B.; and
Chickering, D. M. 2001. A bayesian approach to tackling hard
computational problems. In Proc. of 17th UAI, 235–244.

Howe, A. E.; Dahlman, E.; Hansen, C.; von Mayrhauser, A.; and
Scheetz, M. 1999. Exploiting competitive planner performance.
In Proc. of 5th ECP.

Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard combinatorial problems. Science
275:51–54.

Lagoudakis, M. G., and Littman, M. L. 2000. Algorithm selection
using reinforcement learning. In Proc. 17th ICML, 511–518.

Lagoudakis, M. G., and Littman, M. L. 2001. Learning to se-
lect branching rules in the dpll procedure for satisfiability. In
LICS 2001 Workshop on Theory and Applications of Satisfiability
Testing (SAT 2001). Boston, MA: Electronic Notes in Discrete
Mathematics (ENDM), Vol. 9,.

Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden, J.;
and Shoham, Y. 2003a. Boosting as a metaphore for algorithm
design. In Proc. of CP.

Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden, J.;
and Shoham, Y. 2003b. A portfolio approach to algorithm selec-
tion. In Proc. of 18th IJCAI.

Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2002. Learn-
ing the empirical hardness of optimization problems: the case of
combinatorial auctions. In Principles and Practices of Constraint
Programming (CP-2002).

Minton, S. 1996. Automatically configuring constraint satisfac-
tion programs: A case study. Constraints 1(1/2):7–43.

Nudelman, E.; Leyton-Brown, K.; Hoos, H.; Devkar, A.; and
Shoham, Y. 2004. Understanding random sat: Beyond the
clauses-to-variables ratio. In Priciples and Practices of Con-
straint Programing (CP-2004).

Rice, J. R. 1976. The algorithm selection problem. Advances in
Computers 15:65–118.

Simon, H., and Kadan, J. 1975. Optimal problem-solving search:
All-or-none solutions. Artificial Intelligence 6:236–247.

Witten, I. H., and Frank, E. 2005. Data Mining: Practical ma-
chine learning tools and techniques. Number ISBN 0-12-088407-
0. San Francisco: Morgan Kaufmann, 2nd edition.

Wolpert, D. H., and Macready, W. G. 1997. No free lunch theo-
rems for optimization. IEEE Transactions on Evolutionary Com-
putation 1(1):67–82.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 2
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


