
Discrepancy Search with Reactive Policies for Planning

Sungwook Yoon
Electrical & Computer Engineering

Purdue University
West Lafayette, IN 47907

sy@purdue.edu

Abstract

We consider a novel use of mostly-correct reactive policies.
In classical planning, reactive policy learning approaches
could find good policies from solved trajectories of small
problems and such policies have been successfully applied
to larger problems of the target domains. Often, due to the
inductive nature, the learned reactive policies are mostly cor-
rect but commit errors on some portion of the states. Discrep-
ancy search has been developed to explore the structure of the
heuristic function when it is mostly-correct. In this paper, to
improve the performance of machine learned reactive poli-
cies, we propose to use such policies in discrepancy search.
In our experiments on benchmark planning domains, our pro-
posed approach is effective in improving the performance of
the machine learned reactive policies. The proposed approach
outperformed the policy rollout with the learned policies as
well as the machine learned policies themselves. As an exten-
sion, we consider using reactive policies in heuristic search.
During a node expansion in a heuristic search, we added to
the search queue all the states that occur along the trajectory
of the given policy from the node. Experiments show that
this approach greatly improves the performance of heuristic
search on benchmark planning domains.

Introduction
Discrepancy search has been proposed and developed in
search community (Harvey & Ginsberg 1995; Korf 1996;
Walsh 1997). For some search domains, good heuristic func-
tions can be defined and one can bound the search space
with number of violations on the defined heuristic function,
or discrepancies. When the heuristic function is good and
mostly correct, discrepancy search (DS) with small number
of discrepancies can be highly efficient, as shown in (Harvey
& Ginsberg 1995; Korf 1996; Walsh 1997). In planning, best
first search or (enforced) hill-climbing search (Hoffmann &
Nebel 2001) have been applied successfully with the auto-
matically calculated heuristics. But as reported by (Bonet &
Geffner 1999), some other searches like discrepancy search
did not produce good results partly because the heuristic, au-
tomatically calculated from problem and domain definition,
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is not accurate enough. 1 Although automatically calculated
heuristic may not guide the search well for all the planning
domains, it seems that fast enumeration of state space and
fast calculation of such heuristics is more important than
time-consuming and potentially more accurate heuristics, as
can be seen in the results of recent planning competitions.

In planning, policy learning approach has been success-
ful. From sampled solutions of small problems of the tar-
get planning domain, machine learning can find good poli-
cies that can work well on larger and unseen problems of
the target domain (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002). Due to the inductive nature
of machine learning, machine generated policies tend to be
faulty (Yoon, Fern, & Givan 2002; Fern, Yoon, & Givan
2003). Such a policy is mostly-correct, suggesting good ac-
tions most of the time, but fails to do that on some portion
of the states.

To use such mostly-correct machine learned polices effi-
ciently, we propose to use discrepancy search with the ma-
chine learned policies. Discrepancy search is effective when
the input heuristic function or the policy is mostly-correct
and machine learned policies are good fit for discrepancy
search technique. Typically Policy rollout (Bertsekas &
Tsitsiklis 1996) is used to improve such mostly-correct poli-
cies. One-step look ahead policy can sometimes drastically
improve the performance of the given policy. But, when the
reward is only at a goal state like a planning problem, and
the given policy commits multiple errors along the rollout
trajectories, policy rollout may not be able to improve on
the given policy. Multi-level policy rollout (Xiang Yan &
Van Roy 2004) alleviates such weakness by looking ahead
multiple states, but when the error distribution of the given
policy is even across the whole rollout trajectories, rather
than dense on the initial part of the trajectories, then multi-
level policy rollout still may not be able to improve the per-
formance of the given policy.

In our experiments, on benchmark planning domains, we
empirically show that discrepancy search is a better fit in us-
ing machine learned policies than policy rollout technique
as well as machine learned polices themselves. We also ex-

1(McDermott 1996) reported that in some cases DS produced
good results, but the result is not generalized to recent planning
domains yet.



tend the use of reactive policy in search to heuristic search.
In expanding a node or a state in the heuristic search, we add
to the search queue the states that occur along the machine
learned reactive policy trajectory from the state. Our exper-
iments show that the performance of the heuristic search is
much improved with the use of machine learned policies in
expanding a node. Note that the heuristic search itself was
the provider of the training data for the input policies.

Discrepancy Search
Discrepancy search (DS) (Harvey & Ginsberg 1995) gives
depth or cost to the choices (discrepancies) that are against
the defined heuristic function. In a search, heuristic function
can be used in selecting a child node among the children of a
node or ordering the children nodes. In limited discrepancy
search (LDS), the focus is on discrepancies where a node is
“not” favored by the heuristic function. The search process
investigates all the nodes that can be searched with less than
some predefined number of discrepancies, starting from the
root node. So, if the heuristic function is wrong on n times
along the successful traversal of the search tree, limit n dis-
crepancy search will find a solution.
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Figure 1: An Example of Discrepancy Search: Thin edges
in the figure represent discrepancies. The goal is at depth
3 and is in discrepancy 1 from the root node with the cur-
rent heuristic function. Greedy heuristic search needs many
backtracks from the leaf nodes. Plain DFS or BFS search
needs 14 nodes and Discrepancy limit 1 search only needs 9
nodes before they reach the goal node.

Figure 1 shows an example of discrepancy search (DS).
The thick lines (paths) are choices favored by the heuristic
function for the search tree and the thin lines are discrep-
ancies. Each node is described as a rectangle box and the
numbers inside the boxes are the number of discrepancies
needed to reach those nodes. Consider the depth of the goal
in the search tree and the number of discrepancies needed to
reach the goal node from the root node. As can be seen in
the figure 1, the goal node is in depth 3 and discrepancy 1
from the root node. Plain DFS or BFS search will need more
time than limit 1 discrepancy search here. DFS and BFS
need to visit 14 nodes before reaching the goal, while dis-
crepancy search with limit 1 will find the goal after 9 nodes
search. Greedy heuristic search on this tree needs to back-
track many times before it reaches the goal node. Note that
these definitions of the discrepancies depend on the heuristic
function.

In planning, DS has been attempted in (Bonet & Geffner
1999; McDermott 1996). (Bonet & Geffner 1999) re-
ported that the result was not successful compared to best
first search. While in search community, human provided
mostly-correct heuristic can be used, in planning, search re-
sorts to the automatically calculated heuristics. Although
the recent development in automated heuristic calculation is
good in many planning domains and led the performance
improvement over past planning approaches, the automated
heuristic is not suitable for DS, because it is not mostly-
correct in many domains. As reported in (Hoffmann 2005),
in most planning domains, and in many of the states, heuris-
tics calculated from relaxed plans does not guide the search
well, means that there are many faulty choices or no choice.

Learning to Improve Search in Planning

To improve the search performance in planning, researchers
in classical planning have long studied techniques for ap-
plying machine learning to planning. For a collection and
survey of works on “learning for planning domains” see
(Minton 1993; Zimmerman & Kambhampati 2003). Two
primary approaches are to learn domain-specific control
rules for guiding search-based planners e.g., (Minton et al.
1989; Veloso et al. 1995; Estlin & Mooney 1996; Huang,
Selman, & Kautz 2000; Ambite, Knoblock, & Minton 2000;
Aler, Borrajo, & Isasi 2002), and, more closely related,
to learn domain-specific reactive control policies (Khardon
1999; Martin & Geffner 2000; Yoon, Fern, & Givan 2002).
The former ones try to prune out bad action choices restrict-
ing preconditions of actions beyond the specified definitions,
while the latter ones map a state to a action choice directly.
The latter ones, learning reactive control rules, have been
successful, but they did not focus on improving the search
but on improving the performance of the planning. As far as
we know, the reactive control rules have rarely been used in
search context and there was little effort to improve search
using reactive control policy.

In this paper, we will try to improve search using reactive
policies and at the same time, we attempt to enhance the
performances of reactive policies using search.

Reactive Policy

Several research has shown that (Khardon 1999; Martin &
Geffner 2000; Yoon, Fern, & Givan 2002; 2005), good re-
active policies can be represented and learned for some
AI planning domains. These approaches used decision
list in representing policies and we will use Taxonomic
(McAllester & Givan 1993) decision list in representing our
policies.

Taxonomic Decision List Policy

In this paper we will use taxonomic decision list policy
learning system. We represent reactive policy as a list of
rules and each rule is a set of constraints on the arguments
of the target action. The syntax for the decision list is the



following.
DL = {rule1, . . . , rulen}
rulei = Ai : Li1, . . . , Lim

Lij = xj ∈ Cj

A policy DL consists of ordered rules. The earliest rule
that can be fired in the current state will be fired. Each rule
rulei consists of an action type Ai and a set of constraints
on each argument of the action type. Each constraint Lij is
specified by the concept expression Cj which constrains the
jth argument of the action type. So, the rule can be fired if
there is an applicable action, arguments of which are in the
corresponding sets of the classes or concepts defined as Cj .
The syntax for the concepts is the following.

C = C0 | a-thing | C ∩C | ¬C | xi

(R C1 . . . Ci−1 ∗ Ci+1 . . . Cn(R))

Please refer (Yoon, Fern, & Givan 2002; 2006) for the de-
tailed specification of the syntax and semantics. Note that
this syntax automatically derives from predicate and action
symbols of the target planning domain. No human effort is
needed in deriving the concept expressions.

Learning Reactive Policies
In this paper, we learn reactive policies from solved plans.
The algorithm is the similar to the one we used in (Yoon,
Fern, & Givan 2002). During the learning, we enumer-
ate basic concepts and constraints, and greedily increase
the constraints using the beam-search. The learning heuris-
tic is designed to favor constraints that only cover se-
lected actions in the solved plans and that do not cover
other actions. As shown in (Yoon, Fern, & Givan 2005;
2002), it is good to have all the good actions labeled along
the solved plans, to get good policies or good classifiers.
Still, without all good actions labeled in a state, the learn-
ing algorithm found useful policies as we reported in (Yoon,
Fern, & Givan 2005). In the experiments section of this pa-
per, we have used the learned policies reported in (Yoon,
Fern, & Givan 2005).

Using Reactive Policies
Suppose the learning system of (Yoon, Fern, & Givan 2005)
found a reactive policy π for some planning domain D and
the policy is mostly-good but commits some errors on some
states. If we apply the policy π on the problems of D as it
is, we might get some failure due to the error of π on some
states.

One step look ahead policy rollout (Bertsekas & Tsitsiklis
1996) technique may improve the performance of the pol-
icy. Policy rollout sequentially selects actions that are the
best according to the one-step lookahead policy evaluations
of the given policy. When the domain is goal-directed and
the given policy commits multiple errors during rollouts, the
one-step lookahead will return all failures and will not help
improving the performance of the policy. Multi-level pol-
icy rollout can be an alternative solution if the errors of the
policy occurs only at the initial few steps of the rollouts but
typically the error distribution is sporadic across rollout tra-
jectories. To fix such a problem, we would like to search

around the states along the trajectory produced by the pol-
icy.

Discrepancy Search with Reactive Policies
In this paper, we would like to use reactive policies in dis-
crepancy search in place of heuristic function. Discrepancy
search can efficiently exploit the structure of the heuristic
function by assuming some faults of the heuristic function
along the search tree and search the paths that are not fa-
vored by the heuristic function. Here we propose to do dis-
crepancy search with mostly-correct reactive policies.

Consider a stochastic policy π. Define p(π, s, n) to be the
probability that the policy π moves from state s to n in a
step. If the policy π is deterministic, p(π, s, n) = 1, if π
selects the move or the action in s to n and p(π, s, n′) = 0
for all the other neighbor states from s.

Then we assign weight on moving from state s to n with
the policy π, as 1 - p(π, s, n) + ε, where ε > 0. See fig-
ure 2. When it is likely that π move from state s to n
then (p(π, s, n) close to 1), the assign-weight will assign low
weight for that move, and if it is unlikely that π move from
state s to n then (p(π, s, n) close to 0), the assign-weight
will assign high weight for that move. In any case the func-
tion will assign positive weight due to the parameter ε.

Let us then, define node expansion of the search as adding
nodes that are within weight (or discrepancy) 1 from the
node being expanded. Note that due to the weight consider-
ation, this node expansion will consider states that are multi-
ple steps or actions away from the the node being expanded,
especially those favored by the given policy. See the figure
2 for the Neighbors function.

As a result of these definitions, when a search node is
expanded, we not only add the neighbors of the node, but
also many states that occur along the trajectory caused by the
reactive policy. These states are multiple steps away from
the node and this will make the search consider states that
are deeper location in the search tree.

Suppose the reactive policy has n faulty choices compared
to a good trajectory. Then with this search scheme and with
limit n DS, the search will find a goal, even with such a
faulty policy. Note that without such a policy, the general
search depth needed to find a goal is the length of the suc-
cessful trajectory l, which will be much costlier than DS
with n limit, since usually l >> n. Also, note that using
the policy as it is may not find a goal.

Our algorithm for Discrepancy Search with Reactive Poli-
cies is in figure 2. The algorithm searches all the states that
are within the given discrepancy (or weight) limit and fin-
ishes when a goal is found or the state space is exhausted.
The ordering of the states in the queue can follow the typical
search approaches like BFS, DFS or heuristic search. The
top level search is no different than usual search. The dif-
ference lies in the Neighbor function, which typically enu-
merates neighboring states but, in our algorithm, the neigh-
bors are extended by the weighted path connection of the
given policy. Note also that usually reactive policy is faster
in calculation than heuristic function based calculation for
the action choices. To accommodate stochastic policies, the



Discrepancy-Search (S, π, D)
// problem S, reactive policy π, discrepancy limit D.

Q← {(S, 0)} : Search Queue
s← first(Q)
repeat until solved(first(s))

Neighbors(s, π, 0)
if Q == NULL

Return Fail
s← first(Q)

Return Plan(s)

Neighbors (s, π, d)
if second(s) > D return
if d > 1 return
N ← Next-States(first(s))
for-each n in N

w ← assign-weight(s, n, π)
Q← add(Q, (n, w + second(s))
Neighbors((n, w + second(n)), π, d + w)

assign-weight (s′, n, π) //example assign weight
function
return 1− p(π, s′, n) + ε

Figure 2: Discrepancy Search with Reactive Policies: The
algorithm searches with the given policy π on the problem
S. It uses a predefined cost ε to limit the search depth of the
paths following the given policy.

assign-weight function is introduced and we just show an ex-
ample function that can work as an assign-weight function.
Investigating the use of logarithmic cost of the stochastic
policy, instead of assign-weight function is in our agenda
for future research.

Experiments
Discrepancy Search with Reactive Policies
To test the performance of discrepancy search with reactive
policies, we conducted experiments on 2 benchmark plan-
ning domains, Blocksworld and Driverlog. We randomly
selected a policy learned in the (Yoon, Fern, & Givan 2005)
then we compared the performance of the policy in 3 tech-
niques, policy as it is, rollout policy and discrepancy search
with the policy. The figure 3 contains the performance
of each technique on the corresponding planning domains.
Column labeled P shows the success ratio (SR) of the policy
as it is. The success ratio here is measured as the number of
solved problems in 100 randomly generated problems. Col-
umn labeled PR shows the SR of rollout policy. Column
labeled DS(n) shows the SR of discrepancy search with the
policy, where we limit the size of the discrepancy to n. We
used 0.01 for ε and we aligned the search queue Q of dis-
crepancy search in a DFS style.

For Blocksworld, we used 20 blocks problems and for
Driverlog, we used 3 links, 4 drivers, 4 trucks and 8 pack-

age problems. As indicated in the figure 3, the rollout pol-
icy does not improve the performance of the faulty reactive
policy. The faulty selection of actions happens sporadically
across the trajectory, and the rollout policy does not cure
these faults. Rather the discrepancy search cures the faulty
choices of the policy and improve the performance. In se-
lecting actions from rollout results, we select actions ran-
domly when there is a tie in rollout results. The results of
PR can be similar to DS(1) if we let the rollout policy choose
the action selected by the policy, when there is a tie in roll-
out results. When there is multiple faults in the trajectory
incurred by the given policy, policy rollout may not be able
to fix those faults. Comparing results of multilevel rollout
PR(n) with DS(n) is in our future research agenda.

Domains P PR DS(1) DS(2) DS(4)

Blocksworld 0.7 0.7 0.8 0.9 1

Driverlog 0.4 0.4 0.7 0.8 1

Figure 3: Using Reactive Policies: Compared to the perfor-
mance of the reactive policy as it is (P) or policy rollout of
the policy (PR), discrepancy search with the policy (DS(n))
performs better.

Reactive Policies in Heuristic Search
For the Driverlog domain in the previous experiments, the
size of the problems is not as large as the problems in the
third international planning competition. The randomly cho-
sen policy used in the figure 3 selects many poor actions in
solving larger problems in the competition and the DS with
it could not find any solution with small discrepancy limit.
Since the heuristic based forward search is used in the state
of the art planners, in this second experiment, we used the
policy in the heuristic search. In this experiment, we used
the FF system (Hoffmann & Nebel 2001) and added the pol-
icy in its node expansion part. We defined node expansion
as adding nodes in discrepancy (or weight) limit 1 from the
node being expanded with respect to the given reactive pol-
icy, and we can directly use the Neighbor function in the
figure 2. There can be two potential advantages in using a
reactive policy in heuristic based search. First, if the reactive
policy is consistent with the heuristic search then it will help
reducing the heuristic calculation time and the planning pro-
cess can finish faster. Note that typically a reactive policy
calculation is faster than heuristic calculation of each neigh-
bor of the state and selecting the best neighbor according
to the heuristic. Second, when the heuristic search is stuck
in a local minimum, and if the reactive policy is orthogonal
to the heuristic or is helpful in escaping the local minimum,
then the combination of the reactive policy with the heuristic
search can guide the bailout process, and will result in better
success ratio on testing problems.

Figure 4 shows the performance of reactive policy in
heuristic search. Here we attempted to solve 20 problems of
Driverlog domain in the third international planning compe-
tition and we also attempted to solve 20 randomly generated
problems of 20 blocks in the Blocksworld domain. The CPU
time limit was 30 minutes. We used a Linux box with a 2.8



Domains FF FF + P
Blocksworld 18 20

Driverlog 16 19

Figure 4: Using Reactive Policies in Heuristic Search: Com-
pared to the heuristic search, heuristic search with the reac-
tive policy performs better. The policy was learned from the
heuristic search.

Intel Xeon Processor and 2 Gig RAM. The column named
FF shows the number of problems solved by FF and the col-
umn named FF + P shows the number of problems solved
by the heuristic search of FF with the learned reactive pol-
icy. In both of the domains, the usage of the policy helps.
This result is interesting, considering the policy itself is not
perfect. Though it is preliminary to conclude with these sets
of experiments, it seems that using reactive policies in search
helps in at least two forms, discrepancy search with reactive
policies and reactive policies in heuristic search.

Conclusion and Future Works
We have shown empirically that at least for deterministic
planning domains, discrepancy search is a better fit in using
machine learned mostly-correct policies than policy rollout
technique. We also have shown that heuristic search can be
benefited by using machine learned policies in expanding
the nodes during the search. We will continue the research
on more various and recent planning domains and we are
seeking expansion of the current work on stochastic plan-
ning domains.
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