
Example 1: Explicit confirmation
1 S: Starting at what time do you need the room?
2 U: [STARTING AT TEN A_M / 0.45]

Starting at ten a.m.
3 S: Did you say you wanted the room starting at ten a.m.?
4 U: [GUEST UNTIL ONE / 0.89]

Yes until noon

Example 2: Implicit confirmation
1 S: How may I help you?
2 U: [THREE TO RESERVE A ROOM / 0.65]

I’d like to reserve a room
3 S: starting at three p.m. … For which day do you need the confer-
ence room?
4 U: [CAN YOU DETAILS TIME] - NONU/0.00

I need a different time

Figure 1. Sample explicit and implicit confirmations.
System turns are prefixed by (S); user turns are prefixed by (U);
the speech recognition results and associated confidence scores

are represented [in between brackets]

A “K Hypotheses + Other” Belief Updating Model

Dan Bohus, Alex Rudnicky

Computer Science Department,
Carnegie Mellon University,

Pittsburgh, PA, 15217
dbohus@cs.cmu.edu, air@cs.cmu.edu

Abstract
Spoken dialog systems typically rely on recognition confi-
dence scores to guard against potential misunderstandings.
While confidence scores can provide an initial assessment
for the reliability of the information obtained from the user,
ideally systems should leverage information that is available
in subsequent user responses to update and improve the ac-
curacy of their beliefs. We present a machine-learning
based solution for this problem. We use a compressed repre-
sentation of beliefs that tracks up to k hypotheses for each
concept at any given time. We train a generalized linear
model to perform the updates. Experimental results show
that the proposed approach significantly outperforms heuris-
tic rules used for this task in current systems. Furthermore, a
user study with a mixed-initiative spoken dialog system
shows that the approach leads to significant gains in task
success and in the efficiency of the interaction, across a
wide range of recognition error-rates.

Introduction

Today’s spoken language interfaces are still very brittle
when faced with understanding-errors. The problem is pre-
sent in all domains and interaction types and stems mostly
from the speech recognition process. The recognition diffi-
culties are further exacerbated by the conditions under
which spoken dialog systems typically operate: spontane-
ous speech, large vocabularies and user populations, and
large variability in input line quality. Under these circum-
stances, average word-error-rates of 20-30% (and up to
50% for non-native speakers) are quite common.
 To guard against potential misunderstandings, spoken
dialog systems rely on recognition confidence scores.
Typically, the confidence score of the current hypothesis is
compared to a set of predetermined thresholds. Based on
the result of this comparison, the system will decide
whether to accept the input, reject it, or engage in a con-
firmation action, such as explicit or implicit confirmation
(see Figure 1). After the user provides a response to the
confirmation action, the system has to update its belief
about the concept that was confirmed. Very simple heuris-
tic update rules are generally used for this task. For in-
stance most systems consider a hypothesis grounded if they
hear a yes response (e.g. yes, that’s right, etc) to an explicit
confirmation; alternatively, if the response contains a nega-
tive marker (e.g. no, incorrect, etc), the hypothesis will be
deleted. For implicit confirmations, most systems rely on

the user to overwrite the concept if the confirmed value is
incorrect.

We believe these heuristic approaches are suboptimal
for a number of reasons. As example 2 in Figure 1 illus-
trates, users do not always overwrite slots. Previous studies
(Krahmer et al, 2001; Bohus and Rudnicky, 2005a) have
shown that user responses following implicit confirmations
cover a wide language spectrum, and simple heuristic rules
fall short on that account. Recognition errors can further
complicate the problem (see example 2 in Figure 1). Last
but not least, heuristic rules generally construct polarized
beliefs (e.g. trust the value / don’t trust the value) that do
not capture the degree of uncertainty the system should
have, and therefore do not provide a robust basis for intel-
ligent decision making.
 While confidence scores can provide an initial assess-
ment of reliability, we believe that spoken dialog systems
should better leverage information from subsequent user
turns and continuously update and improve the accuracy of
their beliefs. Because corrections can appear at any point in
the conversation, spoken dialog systems should update
their beliefs not only after confirmation actions, but after
each user turn, throughout the whole interaction.
 In previous work (Bohus and Rudnicky, 2005a) we in-
troduced and addressed a restricted version of this belief
updating problem. We developed learning-based models
for updating the confidence of the current top hypothesis

for a concept, in light of the user responses to system con-
firmation actions. The models significantly outperformed
the heuristic rules used in current spoken dialog systems.
 In this paper we generalize the previous models in sev-
eral ways. First, we extend the models to use a more com-
prehensive, but still compact representation of beliefs: k
hypotheses + other, where k is a small integer. Second, we
extend the models to perform updates after all system ac-
tions (as opposed to only after confirmation actions). Fi-
nally, we include information in the models about the prior
likelihood, as well as the confusability of various concept
values.
 Experimental results show that extended belief updating
models significantly outperform heuristic update rules.
Furthermore, the proposed models induce significant gains
on several dialog performance metrics. Experiments with a
mixed-initiative spoken dialog system show that the pro-
posed models lead to significant gains in task success and
to a significant reduction in the number of turns-to-
completion for successful tasks.
 We start by formalizing the problem.

The Belief Updating Problem

The belief updating problem introduced in the previous
section can be formalized as follows.
• Let C denote a concept (or slot) that the system acquires
from the user (e.g. date, start_time, end_time. etc);
• Let Bt(C) denote the system’s belief over the concept C at
time t, i.e. a representation of the system’s uncertainty in
the value of the concept C (e.g. start_time = {10 p.m. / 0.8 ; 2
p.m. / 0.2});
• Let SA(C) denote the system action at time t, with respect
to concept C. Note that in a single turn the system might
take different actions with respect to different concepts
(e.g. in example 2 from Figure 1 the system engages in an
implicit confirmation w.r.t. the date concept and a request
w.r.t. the time concept);
• Finally, let R denote the user response to the system ac-
tion, as this response is perceived by the system.
 Then, the belief updating problem is stated as follows:

given an initial belief over a concept Bt(C), a system
action SA(C), and a user response R, construct an up-
dated belief Bt+1(C)

Bt+1(C) ← f (Bt(C), SA(C), R)

Approach

We propose a data-driven approach for addressing this
problem. We treat each concept independently, we use a
compressed belief representation (described in detail be-
low), and we induce the function f from training data using
simple machine learning techniques.
 In previous work (Bohus and Rudnicky, 2005a) we have
addressed a simplified version of the belief updating prob-
lem. A first simplification concerned the belief representa-

tion. Ideally, the system’s belief over a concept would be
represented by a probability distribution over the full set of
possible values for that concept. However, from a practical
perspective, it is very improbable that a spoken dialog sys-
tem would “hear” more than 3 or 4 conflicting values for a
concept throughout a conversation (this observation is sup-
ported by empirical evidence – see Bohus and Rudnicky,
2005a). Under these circumstances, a compressed belief
representation has the potential of greatly simplifying the
problem without causing a significant degradation in per-
formance. We therefore developed a belief updating ap-
proach where the system’s belief over a concept was repre-
sented simply by the confidence score of the current top
hypothesis for that concept (all other hypotheses were ig-
nored; the remaining probability mass was accumulated in
an other category). Secondly, we only focused our atten-
tion on updating beliefs after system confirmation actions.
The restricted version of the belief updating problem was
therefore stated as follows:

given an initial confidence score for the top hypothe-
sis h for a concept C, construct an updated confidence
score for h, in light of the system confirmation action
SA(C), and the follow-up user response R.

 We addressed this problem using a simple machine
learning approach. As training data, we used a manually-
labeled corpus of 449 dialogs. We identified a large num-
ber of potentially relevant features from different knowl-
edge sources in the system. For each system confirmation
action we trained a model tree with stepwise logistic re-
gression models at the leaves. The models were evaluated
using a 10-fold cross-validation process. The results, de-
scribed in more detail in (Bohus and Rudnicky, 2005a)
show that the learned models significantly outperform the
heuristic update rules previous used in our system.
 Encouraged by the positive results on the simpler ver-
sion of the problem, we decided to remove the restrictions
and generalize the models in several important ways.

1st extension: “k hypotheses + other” belief representa-
tion. First, we use a more comprehensive, but still com-
pressed representation of beliefs – k hypotheses + other. In
this representation, the system tracks up to k potential val-
ues for each concept (k is a small fixed integer). During
each update, the system retains only the m highest scoring
hypotheses from the initial set of k hypotheses, and ac-
quires up to n new hypotheses from the user response (m,
n are small fixed integers, with m+n=k). At each update,
the system therefore constructs a new belief over the space
of m initial hypotheses, n new ones and other. The ap-
proach allows for new hypotheses to be dynamically inte-
grated into the compressed belief as they appear in subse-
quent user responses.

 We illustrate this process in Figure 2. Two consecutive
updates of the start_time concept are shown. Assume k=3,
m=2, n=1. Also assume that at time t the system already
has 3 conflicting hypotheses for the start_time concept: 10
a.m., 2 p.m. and 2 a.m. The bars in the figure reflect the sys-
tem’s confidence in each of these values. The remaining

probability mass is assigned to the other category. The
system engages in an explicit confirmation of the top hy-
pothesis (2 p.m.) and updates the concept in light of the
user response. During the update the system retains the top
two (m=2) initial hypotheses (in this case 10 a.m. and 2
p.m.), and acquires one (n=1) new hypothesis from the user
input – 10 p.m. The system therefore constructs a new be-
lief over the space of m=2 initial hypotheses, n=1 new hy-
pothesis, and other: {10 a.m., 2 p.m, 10 p.m., other}.

 Next, the system engages in an implicit confirmation on
the new top scoring hypothesis (10 p.m.). During this sec-
ond update the system again retains the top 2 scoring hy-
potheses (this time 10 a.m. and 10 p.m.). Since no new hy-
pothesis is present in the user response, we introduce a
fictitious Ø hypothesis. The system will therefore construct
an updated belief over the {10 a.m., 10 p.m., Ø, other}
space. The probability mass assigned to the Ø hypothesis
by the belief updating process will be automatically moved
to the other category, as a post-processing step.

 The system’s belief in a concept is therefore modeled as
a multinomial variable of degree k+1: B=<pi1, …, pim, pn1,
…, pnn, pother>, where pia is the probability for the initial
hypothesis a, pnb is the probability for the new hypothesis
b, and pi1 + … + pim + pn1 + …+ pnn + pother = 1. The
representation abstracts over the actual values (e.g. 10 a.m.,
10 p.m., etc), and allows for hypotheses to be dynamically
added and dropped from the compressed belief representa-
tion. The actual values are stored separately, and they do
not directly enter the belief (confidence) updating process.
Using this representation, the belief updating problem can
be cast a multinomial regression problem:

Bt+1 ← Bt + SA(C) + R

 Note that the top hypothesis + other representation used

in our previous work is equivalent to setting k to 1. In that
case the target variable was binomial, and a logistic regres-
sion model sufficed.

2nd extension: updates after all system actions. In our
previous work, we focused on updates after system con-
firmation actions. However, user corrections (either actual
or false ones introduced by noisy recognition) can appear
at any point in the dialog. We therefore extended the mod-
els to perform updates after all system actions.

 We identified five types of actions that can be performed
on any given concept C (note that multiple such actions
can be coupled in a single system turn):

• explicit confirmation: the system asks a question to
explicitly confirm a hypothesis for the concept C;

• implicit confirmation: the system implicitly confirms a
hypothesis for C and moves on to the next question;

• unplanned implicit confirmation: the system prompt
includes the value for the concept C. For instance, the
system might respond “I found 10 rooms this Friday be-
tween 2 and 4 p.m. Would you like a small room or a large
one?” While the main purpose of this turn is to provide
information to the user, the turn also includes the values
for the date, start_time and end_time concepts, and there-
fore constitutes an implicit confirmation. However, this
is not a planned error handling action; rather, it occurs as
a side-effect of the prompt design;

• request: the system requests the concept C;

• other: the system does not perform any action with re-
spect to concept C, but nevertheless a value is heard for
this concept and an update is needed.

3rd extension: new features. Finally, we expanded the
feature set to include information about the prior likelihood
as well as the confusability of various concept values.

Experiments

Training Data
The data used for training the belief updating models was
collected via a user study with the RoomLine system
(RoomLine, 2003). RoomLine is a telephone-based,
mixed-initiative, task-oriented spoken dialog system that
can assist users in making conference room reservations.
The system has information about the schedules and char-
acteristics of 13 conference rooms in two buildings on
campus and can engage in a negotiation dialog to identify
the room that best matches the user’s needs. During the
data collection experiment 46 participants engaged in a
maximum of 10 scenario-based conversations with the
system. Sample interactions, as well as the 10 scenarios are
available in (Bohus, 2006).
 The collected corpus contains 449 dialogs, 8278 user
turns and 11332 concept updates. The user utterances were
orthographically transcribed and checked by a second an-
notator. Based on the transcriptions, we labeled the correct
(user specified) concept values at each turn in the dialog.

S: Did you say you wanted a room at 2 p.m.?
U: [NO TEN P_M]

S: starting at ten p.m. … until what time?
U: [NO NO I DIDN’T WANT THAT]

k=3, m=2, n=1
 10 a.m. 2 p.m. 2 a.m. other

 m = 2

 10 a.m. 2 p.m. 10 p.m. other

 10 a.m. Ø 10 p.m. other

Figure 2. Two consecutive belief updates of start_time

 k = 3 + other

Features
We identified a large number of potentially relevant fea-
tures from different knowledge sources in the system.
Given space constraints, we briefly summarize the feature
set below. A more detailed description is available in (Bo-
hus, 2006).

• Initial belief features: confidence scores for the m ini-
tial hypotheses, the identity of the updated concept;

• Acoustic and prosodic features of the user response:
duration, pitch, speech rate, initial pause, etc.;

• Lexical features of the user response: number of
words, the presence/absence of lexical terms highly cor-
related with user corrections;

• Grammatical features of the user response: number
of grammar slots contained in the parse, the number of
new and repeated slots, goodness-of-parse scores, etc.;

• Dialog level features of the user response: how well
the response matches the current system expectation, the
turn number, the current dialog state, etc.;

• Priors: features capturing the prior likelihood of various
concept hypotheses. The RoomLine system operates
with a set of 29 concepts. A domain expert (who did not
have access to the corpus) manually constructed priors
for 3 of the most important concepts in the system: the
start_time, the end_time and the date for the reservation.
For all other concepts, we assumed uniform priors;

• Confusability scores: features describing the confus-
ability between various concept hypotheses. These con-
fusability scores were determined empirically from the
collected data.

Results
We trained and evaluated models in three different setups:
<k=2,m=1,n=1>, <k=3,m=2,n=1> and <k=4,m=3,n=1>.
We report results from the simpler model <k=2,m=1,n=1>.
The larger models generated very similar results, and no
significant performance improvements were observed.
 For each system action, we trained a separate multino-
mial generalized linear (regression) model (Fahrmeir and
Tutz, 2001). We trained the models in a stepwise approach:
the next most informative feature (as measured by the im-
provement in the average log likelihood over the training
set) was added to the model at each step. We used the
Bayesian Information Criterion to prevent over-fitting.
 We evaluated the models using a 10-fold cross-valida-
tion procedure. Figure 3 shows the error-rates for 3 differ-
ent models. Given the multinomial nature of the target
variable (k=2 + other), the error-rate is computed as for a
3-class classification problem; results using different met-
rics such as average (log)-likelihood of the correct hy-
pothesis are omitted here, but are available in (Bohus,
2006). The basic model (BM) uses all features except for
the priors and confusability scores. In contrast, the full
model (FM) uses the full set of features. Finally, the run-
time model (RM) uses only the features available at run-
time, i.e. all features except the prosodic ones.

 We compared each model’s performance against 3 base-
lines: initial, heuristic and correction. The initial baseline
reflects the error in the initial system belief, before the up-
date is performed. The heuristic baseline reflects the error
rate for the heuristic update rule currently used by the sys-
tem. Finally, we also report a correction baseline. A corpus
analysis (Bohus and Rudnicky, 2005a) has revealed that
users do not always correct system errors. As a result, even
if we knew precisely when the user is correcting the sys-
tem, we would not be able to construct perfectly accurate
beliefs in one time-step. The correction baseline assumes
that the hypothesis undergoing the confirmation is correct,
unless the user attempts to correct the system (note that this
baseline is defined only for system confirmation actions).
 As Figure 3 illustrates, the data-driven models signifi-
cantly outperform the heuristic rules previously used in the
system (h). For updates after system confirmation actions
the performance surpasses even the correction baseline (c);
this is possible because the models use information that is
not available to the correction baseline, such as the pros-
ody of the user response, barge-in, as well as priors and
confusability for the various concept hypotheses.
 For all actions, the full models (FM), which include the
priors and confusability information, perform better than
the basic models (BM). No significant degradation of per-
formance is observed for the runtime models (RM). An-
other interesting observation is that the basic model (BM)
does not produce statistically significant improvements
over the heuristic baseline for the request action. For this
action, the heuristic rule simply constructs a belief based
on the confidence score of the recognized hypothesis. The
fact that our basic belief updating model is not able to per-
form better implies that the confidence annotation model is

5.65.7

8.6
9.5

98.2

0 %

4 %

8 %

12 %

i h B M FM RM

6.25.25.06.1

30.8

16.1

0 %

10 %

20 %

30 %

i h B M FM RM c

explicit confirmation

30.3

26.0

18.3
15.0 15.8

21.5

0%

1 0%

2 0%

3 0%

i h B M FM RM c

14.1

9.29.2

11.7

14.915.2

0 %

5 %

10 %

15 %

i h B M FM RM c

14.814.8
19.3

44.8

79.7

0%

1 5%

3 0%

4 5%

i h B M F M RM

implicit confirmation

request other

initial baseline (i)

heuristic baseline (h)

basic model (BM)

full model (FM)

runtime model (RM)

correction baseline (c)

unplanned implicit confirmation

Figure 3. Error-rates for belief updating models

well calibrated in our system (no further improvements are
feasible). However, adding confusability and prior infor-
mation (the full model – FM), leads to a significant de-
crease in error (from 8.6% to 5.7%). We believe these re-
sults highlight the importance of using high-level, domain-
specific information such as priors and confusability.
 In order to gain a better understanding of the relative
contributions and predictive power our features, we in-
spected the set of selected features and their corresponding
weights in each regression model. The following features
were generally found to be very informative: priors and
confusability features, confidence of the initial top hy-
pothesis before the update, concept identity, barge-in, dia-
log expectation match, and the presence of repeated gram-
mar slots. More details about the constructed models are
available in (Bohus, 2006).

Impact on Global Dialog Performance
So far, we have shown that the proposed models signifi-
cantly outperform the heuristic rules typically encountered
in current spoken dialog systems. While these results are
encouraging, our ultimate goal is to improve global dialog
performance in a real, practical spoken dialog system. An
important question therefore remains: do improvements on
the local (one-step) belief updating task translate into im-
provements in global dialog performance?
 To address this question, we implemented the runtime
models in the RavenClaw dialog management framework
(Bohus and Rudnicky, 2003) and conducted a new user
study to assess their impact on dialog performance.
 During this experiment 40 participants interacted with
the RoomLine system (each performed up to 10 scenario-
driven interactions during a time period of 40 minutes).
The participants were randomly assigned into 2 groups: the
control group interacted with a version of the RoomLine
system that used heuristic update rules: after each yes-type
answer to an explicit confirmation, the system would boost
the top hypothesis to 0.95; after each no-type answer, the
system erased the hypothesis. Whenever a new value for a
concept appeared, the system performed a naïve probabilis-
tic update (e.g. multiplying the distributions and renormal-
izing). Participants in the treatment group interacted with a
version of the system that used the runtime belief updating
models. In all other respects, the systems were identical.
 Our previous data analysis indicated that improvements
in belief updating performance are likely to translate in
global performance improvements especially when the
word-error-rate (WER) is high. At low WER, simply trust-
ing the inputs leads to generally accurate beliefs and not
many opportunities for improvement exist; however, as
recognition performance degrades, it becomes more and
more important for the system to accurately assess its be-
liefs. In light of this observation, we decided to include
only non-native speakers of north-American English in this
user study. Nevertheless, the average per user WER in this
population ranged from 8.4% to 49.8%.
 The corpus collected in this experiment contains 384
dialogs and 6389 user turns (the results we report here

were computed after we excluded one participant who
misunderstood 7 of the 10 scenarios; keeping this partici-
pant in the corpus leads to a stronger, but we believe less
accurate result). The task success rate was higher in the
treatment condition: 81.3% vs. 73.6%. To better under-
stand the effect of the proposed belief updating models on
task success (TS), we performed a logistic analysis of vari-
ance using the experimental condition as a fixed effect and
WER as a covariate. The resulting model is:

Logit(TS) ← 2.09 - 0.05·WER + 0.69·Condition

 This model shows that both the WER (p<10-4) and the
experimental condition (p=0.0095) have a significant im-
pact on task success. Based on this fitted model, we plot
the probability of task success as a function of WER in the
two experimental conditions in Figure 4. As this figure
illustrates, the proposed models lead to gains in task suc-
cess across a wide range of WER. As expected, the im-
provements are larger at high WER. For instance, at a
WER of 30%, the belief updating models produce a 14%
absolute improvement in task success (from 64% to 78%).
To attain the same task success with the control system, we
would need a 16% WER. In effect, we have cut the WER
in half. The largest improvement in task success, 16.3%, is
obtained at a WER of 47%. At very high WER, the im-
provements decrease again, as it becomes much harder to
improve global performance under these conditions. The
analysis of variance shows than on average the proposed
models improve the log-odds of task success by the same
amount as a 13.6% absolute reduction in WER.
 The proposed belief updating models also exert a sig-
nificant impact on dialog efficiency. An analysis of vari-
ance using the experimental condition as a fixed effect,
WER as a random effect and task duration for successful
tasks (in number of turns) as the main effect shows that:

Duration ← -0.21 + 0.013·WER - 0.106·Condition

 Both WER (p<10-4) and the experimental condition
(p=0.0003) have a significant effect on task duration. The
improvements due to the belief updating models are
equivalent to a 7.9% absolute reduction in WER.

0 20% 40% 60% 80% 100%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
treatment
control

word error rate

30
%

 W
E

R

16
%

 W
E

R

64%

78%
78%

pr
ob

ab
ili

ty
 o

f
ta

sk
 s

uc
ce

ss

Figure 4. Improvement in task success at different
word-error rates

Discussion and Future Work

To date, various machine learning methods have been pro-
posed for detecting turn-level misunderstandings (Walker
et al, 2000) and corrections (Hirschberg et al, 2001) in
spoken dialog systems. Our work bridges these ideas and
provides a unified approach that allows systems to con-
tinuously monitor and update their beliefs throughout the
conversation.
 Independent of the gains in effectiveness and efficiency,
the proposed method has several other desirable properties.
First, the proposed approach learns from data, tracks mul-
tiple hypotheses, and integrates information across multi-
ple turns in the conversation. The idea of updating beliefs
through time appears in previous work. Higashinaka et al.
(2003) keep track of multiple dialog-states and resolve the
ambiguities using empirical probabilities of dialog-act /
dialog-act and dialog-act / dialog-state sequences. Before
that, Paek and Horvitz (2000) used a handcrafted Dynamic
Bayesian Network to continuously update the belief over a
user’s goal in a command-and-control application. We take
inspiration from their work and we automatically induce
the models from data. The advantage of the proposed ma-
chine learning technique (generalized linear models) is that
it allows us to consider a very large number of features
from different knowledge sources in the system, and it
does not require expert knowledge about the potential rela-
tionships between these features. The most informative
features are automatically selected and weighted accord-
ingly.
 Second, the proposed approach is sample efficient and
scalable. The approach focuses on a local (one-turn) rather
than a global optimization. Furthermore, the beliefs over
each concept are updated independently (we are not model-
ing any inter-concept dependencies at this point). Although
we sacrifice theoretical global optimality, learning is feasi-
ble even with relatively little training data. We have shown
this approach can lead to significant gains in task success
and dialog efficiency in a real-world, fairly complex spo-
ken dialog system. RoomLine operates over a space of 29
concepts with cardinalities ranging between two to several
hundred possible values. Our study indicates that good
local decisions can sum up to improvements in overall per-
formance. In the future, we plan to integrate a data-driven
decision making component with this belief updating
framework (Bohus and Rudnicky, 2005b). We believe this
approach will help overcome the scalability issues that
have hindered the deployment of learning-based optimiza-
tion of dialog management (Singh et al, 2000) in real-
world spoken dialog systems (Paek, 2006).
 Last but not least, the approach is portable. The pro-
posed belief updating framework was implemented as part
of a generic dialog management engine, decoupled from
any particular dialog task (we are planning to reuse it in
other RavenClaw-based dialog systems). More impor-
tantly, the approach does not make any strong assumptions
about the dialog management approach used (e.g. form-
filling, plan-based, task-oriented, information state update,
etc), and consequently does not tie a developer into any

particular type of dialog controller.
 We believe further performance improvements are pos-
sible. We plan to train and evaluate models that incorporate
more information from the n-best list (n > 1). Furthermore,
we plan to add other high-level pragmatic features (e.g.
features that capture domain-specific constraint violations).
Another question we intend to address is: what is the trade-
off between training set size and performance gains? Fi-
nally, we plan to investigate the transferability of these
models across different domains.

Acknowledgements

This work grew out of initial discussions between the
first author and Tim Paek and Eric Horvitz at Microsoft
Research. We would like to thank them for their very
useful feedback and contributions at various stages in
this work. In particular, the idea of abstracting over the
distribution of slot values was initially proposed by Tim
Paek. We would also like to thank Antoine Raux and the
other members of the Dialogs on Dialogs reading group
at CMU for useful discussions and feedback.

References

Bohus, D., and Rudnicky, A. 2005a. Constructing Accurate Be-
liefs in Spoken Dialog Systems. in Proceedings of ASRU-2005,
San Juan, Puerto Rico.
Bohus, D., and Rudnicky, A. 2005b. Error Handling in the
RavenClaw Dialog Management Architecture, in Proceedings of
HLT-EMNLP 2005, Vancouver, Canada.
Bohus, D., 2006. www.cs.cmu.edu/~dbohus/blf_upd/
Fahrmeir, L., and Tutz, G., 2001 Multivariate Statistical Model-
ing Based on Generalized Linear Models, in Springer Series in
Statistics, ISBN 0387951873
Hirschberg, J., Litman, D., Swerts, M., 2001 Identifying User
Corrections Automatically in Spoken Dialogue Systems, in Pro-
ceedings of NAACL’01, Pittsburgh, PA, June 2001
Krahmer, E., Swerts, M., Theune, M. and Weegels, M. 2001,
Error Detection in Spoken Human Machine Interaction, in Inter-
national Journal of Speech Technology, Vol.4, No.1, 19-29.
Paek, T., and Horvitz, E., 2000, DeepListener: Harnessing ex-
pected utility to guide clarification dialog in spoken language
systems, in Proceedings of ICSLP’2000, Beijing, China, 2000.
Paek, T., 2006, Reinforcement Learning for Spoken Dialogue
Systems: Comparing Strengths and Weaknesses for Practical
Deployment, MSR Technical Report MSR-TR-2006-62.
RoomLine, 2003 – http://www.cs.cmu.edu/~dbohus/RoomLine
Higashinaka, R., Nakano, M., and Aikawa, K., 2000 – OCorpus-
based discourse understanding in spoken dialogue systems, in
Proceedings of ACL-2003, Sapporo, Japan.
Singh, S., Litman, D., Kearns, M., Walker, M., 2000 – Optimizing
Dialogue Management with Reinforcement Learning: Experi-
ments with the NJFun System, in Journal of Artificial Intelligence
Research, vol. 16, pp 105-133, 2000.
Walker, M., Wright, J., Langkilde, I., 2000 – Using Natural Lan-
guage Processing and Discourse Features to Identify Under-
standing Errors in a Spoken Dialogue System, in ICML-2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

