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Introduction

The Kansas State University 
entry into the AAAI 2006 robot 
scavenger hunt consists of a Pioneer 
P3AT robot (see figure 1) running 
Windows 2000, scalable client/server 
software architecture, blob-based object 
recognition, and a path-planning 
package coupled with an off-the-shelf
Monte-Carlo package that we have 
augmented.

Figure 1: KSU’s P3AT robot

Client / Server Architecture

For flexibility in development, 
we built a client / server model (see 
figure 2) to abstract the ARIA 
(ActivMedia) API and allow for 
distributed computation.  The server 
process(es) run on the robot(s). This 
allows for clients to be written that can 
control multiple robots. The server keeps 
track of robot state; such as the velocity 
of the drive motors, the data being 

returned from the sonar sensors, the 
pan/tilt angle of the camera, and the 
charge of the internal battery.  As the 
state of the robot changes (either from 
default behavior coded into the server, or 
by other clients requesting a state 
change) the server generates a series of 
messages which are broadcast to all 
connected clients to notify them of the 
state change.  All state change requests
from clients are served in order of the 
time they were received.

Figure 2:  Server process with remote clients 
performing various robot related computation

A client is simply any process 
that connects to the server.  For the 
scavenger hunt we developed two 
clients:  one to provide robot remote 
control and visual object identification,
the other to perform path planning and 
Monte-Carlo localization.  Clients can 

4



send requests to the server for 
information that the broadcast messages

don’t provide or to alter the running state 
of the robot.  Clients can ask for the 
current image from the camera, request 
the motors to change velocity, request 
the camera to tilt and request the camera 
to pan. Clients have to be written to play 
nice with other clients, because the 
server has no facility to resolve any 
contention between requests (i.e. two 
clients keep requesting different drive 
motor velocities.)  See figure 3.

Blob-Based Image Recognition

Because the colors of the objects 
in the scavenger hunt (lots of fluorescent 
colors) were not likely to be found in the 
competition environment, we developed 
a simple blob-based object recognition 
system (see figure 4).  Although we 
started using the ACTS software, we 
eventually switched and integrated the 
CORAL Group’s Color Machine Vision 
Project blob software (CMVision) into 
the server process at the AAAI '05 
Conference.  This year we developed our 

own blobbing software tuned to meet the 
requirements of our own image 
recognition algorithms (such as storing 
silhouette maps).  This blobbing 
software works similarly to CMVision in 
that it works in the YUV color space, but 
the algorithm that is used to build the 
blobs is different and caches explicit 
blob silhouettes (Boolean maps of blob 
regions). Our blobbing facility is 
implemented in C# and managed C++.

 The image recognition client has 
three purposes: 1) Allows the human 
operator to calibrate the blobbing system 
with a YUV color space interface to 
isolate the color regions that should be 
blobbed 2) Training: the human operator 
can present the robot with an example of 
an object and the software keeps track of 
the blob and silhouette statistics 
associated with that image 3) Real time 
object recognition: visually shows where 
in the image an object has been detected 
in real time.

Calibration allows the operator to 
choose what part of the YUV color 
space is to be associated with a channel.  
For instance, an operator may wish to 
assign channel 1 to blob colors that are 
orange with low luminosity (such as the 
orange cone) then the operator could 
take another channel to associate with 
orange of a different luminosity (the 
orange of the  stuffed dinosaur seems to 
have a higher luminosity component 
than the cone.) The operator, of course,
can calibrate other channels to blob other 
colors that are present in the objects 
being searched for. 

Figure 3: An example of a multi robot architect-
ture using our framework
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Object training is a process that 
takes place after the blobbing system’s 
channels have been calibrated to the 
appropriate colors.  The training system 
allows the operator to present the robot 
with a good example of the object.  The 
blob and silhouette statistics from the 
example image are recorded and 
associated with the object label that the 
operator provides. In essence, the 
operator would place a cone in front of 
the robot, type in the name “cone” and 
click the “train” button. That training 
data and its associated label is then 
stored in a list of known objects.  

Object recognition itself is very 
simple: Our blobbing software is set up 
so that it has multiple channels that it is 
performing blobbing on.  Each channel 
is calibrated to a different region of the 
YUV color space that could be relevant
to the scavenger hunt objects.  Each time 
new blob information is sent to the 
client, the client compares the blob 
statistics and relative locations of the 
blobs in the image against learned 
statistics for the object type.

If the statistics are similar then 
the object is considered to be found.  
The centroid of the object is computed 
by averaging the centroids of all the 
blobs that compose it, and the region of 

Figure 4: This is the object recognition interface processing a video feed in real time. It has 
been trained to recognize cones.  The blob silhouettes and object regions are visualized in the 
lower right section of the interface.  The UV projection of the image is in the upper right.
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the object in the image is computed by 
bounding an area with the maximum X 
and Y edges of all the blobs in the RGB 
version of the image. In addition, if there 
is silhouette statistics associated with the 
object it thinks it has found, the 
silhouette data is used as a sanity check 
before declaring that an object is 
“found.” This allows the robot to 
distinguish between two different object 
types that are of the same or similar 
color.

Localization and Path Planning

For basic localization and local 
path planning, we use MobileRobotic's 
SONARL package. Due to the unreliable 
nature of the sonar sensors used in 
conjunction with basic Monte-Carlo 
localization, we added visual landmark 
recognition to the robot's localization 
tool box.  If we have an environment 
that is problematic for sonar but has 
visual landmarks (such as unique signs 
or objects that are stationary) we can 
train the robot to see those landmarks 
and associate a certain robot pose with 

visually seeing those landmarks.  In 
addition, if the robot identifies an object 
that is not already a landmark it will 
generate a landmark on the fly and place 
it on the correct location in the human 
generated map of its environment (see 
figure 5).

SONARL is used to do local path 
planning (such as navigating around 
dynamic objects detected by the sonar.) 
We also built long term path planning 
software on top of SONARL.  Our 
software uses a “Zamboni” sweep 
pattern to navigate across a search grid.  
If grid locations are unreachable, due to 
either SONARL being unable to plan a 
path to the grid location or because there 
is an obstruction detected visually, the 
“Zamboni” algorithm looks for another 
grid location to search.  If the robot had 
to skip a grid location because it was 
previously obstructed from it will try to 
search it again after it has traveled to 
other locations.  If the location is still 
obstructed it will end its search, noting 
which grid locations where obstructed.
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Summary/Conclusion

At AAAI '06 our robot 
performed as we (see figure 6) wanted it 
to. The visual recognition was able to 
identify and discern the objects it was 
supposed to and the localization and path 
planning worked fairly well given the 
number of dynamic objects (people) in 
the environment.

We did have some issues with 
our path planning building a path around 
visually detected obstructions too closely 
that caused our robot to clip some 
objects and drag those objects under its 
wheels.

Figure 6: the KSU robotics team

The biggest issue we encountered 
during the event was the amount of 
computational load we were putting on 
the robot and the client computers.  Even 

Figure 5: A birds eye view of the competition area from the AAAI '06 scavenger hunt.  As the robot 
encounters hunt items it renders an icon at the object's perceived location, as well as the robot's 
current location in the map.
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with a 1.86 Ghz dual core laptop doing 
the vision processing we were having 
trouble maintaining an acceptable frame 
rate (>10FPS) with all of our processing 
features active. We feel that a significant 
part of this problem has to do with 
allocating new heap regions for each 
pass, and then deleting those heap 
regions after each pass.  We also could 
have multi-threaded the processing 
framework in a way to take better 
advantage of the dual core setup.
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