
KSU Willie in Scavenger Hunt at AAAI '06

Aaron Chavez, Michael Marlen, Chris Meyer,
Andrew King, Joseph Lutz, and Dr David Gustafson

Computing and Information Sciences
Kansas State University
Manhattan, KS 66506

Introduction

The Kansas State University
entry into the AAAI 2006 robot
scavenger hunt consists of a Pioneer
P3AT robot (see figure 1) running
Windows 2000, scalable client/server
software architecture, blob-based object
recognition, and a path-planning
package coupled with an off-the-shelf
Monte-Carlo package that we have
augmented.

Figure 1: KSU’s P3AT robot

Client / Server Architecture

For flexibility in development,
we built a client / server model (see
figure 2) to abstract the ARIA
(ActivMedia) API and allow for
distributed computation. The server
process(es) run on the robot(s). This
allows for clients to be written that can
control multiple robots. The server keeps
track of robot state; such as the velocity
of the drive motors, the data being

returned from the sonar sensors, the
pan/tilt angle of the camera, and the
charge of the internal battery. As the
state of the robot changes (either from
default behavior coded into the server, or
by other clients requesting a state
change) the server generates a series of
messages which are broadcast to all
connected clients to notify them of the
state change. All state change requests
from clients are served in order of the
time they were received.

Figure 2: Server process with remote clients
performing various robot related computation

A client is simply any process
that connects to the server. For the
scavenger hunt we developed two
clients: one to provide robot remote
control and visual object identification,
the other to perform path planning and
Monte-Carlo localization. Clients can

4

send requests to the server for
information that the broadcast messages

don’t provide or to alter the running state
of the robot. Clients can ask for the
current image from the camera, request
the motors to change velocity, request
the camera to tilt and request the camera
to pan. Clients have to be written to play
nice with other clients, because the
server has no facility to resolve any
contention between requests (i.e. two
clients keep requesting different drive
motor velocities.) See figure 3.

Blob-Based Image Recognition

Because the colors of the objects
in the scavenger hunt (lots of fluorescent
colors) were not likely to be found in the
competition environment, we developed
a simple blob-based object recognition
system (see figure 4). Although we
started using the ACTS software, we
eventually switched and integrated the
CORAL Group’s Color Machine Vision
Project blob software (CMVision) into
the server process at the AAAI '05
Conference. This year we developed our

own blobbing software tuned to meet the
requirements of our own image
recognition algorithms (such as storing
silhouette maps). This blobbing
software works similarly to CMVision in
that it works in the YUV color space, but
the algorithm that is used to build the
blobs is different and caches explicit
blob silhouettes (Boolean maps of blob
regions). Our blobbing facility is
implemented in C# and managed C++.

 The image recognition client has
three purposes: 1) Allows the human
operator to calibrate the blobbing system
with a YUV color space interface to
isolate the color regions that should be
blobbed 2) Training: the human operator
can present the robot with an example of
an object and the software keeps track of
the blob and silhouette statistics
associated with that image 3) Real time
object recognition: visually shows where
in the image an object has been detected
in real time.

Calibration allows the operator to
choose what part of the YUV color
space is to be associated with a channel.
For instance, an operator may wish to
assign channel 1 to blob colors that are
orange with low luminosity (such as the
orange cone) then the operator could
take another channel to associate with
orange of a different luminosity (the
orange of the stuffed dinosaur seems to
have a higher luminosity component
than the cone.) The operator, of course,
can calibrate other channels to blob other
colors that are present in the objects
being searched for.

Figure 3: An example of a multi robot architect-
ture using our framework

5

Object training is a process that
takes place after the blobbing system’s
channels have been calibrated to the
appropriate colors. The training system
allows the operator to present the robot
with a good example of the object. The
blob and silhouette statistics from the
example image are recorded and
associated with the object label that the
operator provides. In essence, the
operator would place a cone in front of
the robot, type in the name “cone” and
click the “train” button. That training
data and its associated label is then
stored in a list of known objects.

Object recognition itself is very
simple: Our blobbing software is set up
so that it has multiple channels that it is
performing blobbing on. Each channel
is calibrated to a different region of the
YUV color space that could be relevant
to the scavenger hunt objects. Each time
new blob information is sent to the
client, the client compares the blob
statistics and relative locations of the
blobs in the image against learned
statistics for the object type.

If the statistics are similar then
the object is considered to be found.
The centroid of the object is computed
by averaging the centroids of all the
blobs that compose it, and the region of

Figure 4: This is the object recognition interface processing a video feed in real time. It has
been trained to recognize cones. The blob silhouettes and object regions are visualized in the
lower right section of the interface. The UV projection of the image is in the upper right.

6

the object in the image is computed by
bounding an area with the maximum X
and Y edges of all the blobs in the RGB
version of the image. In addition, if there
is silhouette statistics associated with the
object it thinks it has found, the
silhouette data is used as a sanity check
before declaring that an object is
“found.” This allows the robot to
distinguish between two different object
types that are of the same or similar
color.

Localization and Path Planning

For basic localization and local
path planning, we use MobileRobotic's
SONARL package. Due to the unreliable
nature of the sonar sensors used in
conjunction with basic Monte-Carlo
localization, we added visual landmark
recognition to the robot's localization
tool box. If we have an environment
that is problematic for sonar but has
visual landmarks (such as unique signs
or objects that are stationary) we can
train the robot to see those landmarks
and associate a certain robot pose with

visually seeing those landmarks. In
addition, if the robot identifies an object
that is not already a landmark it will
generate a landmark on the fly and place
it on the correct location in the human
generated map of its environment (see
figure 5).

SONARL is used to do local path
planning (such as navigating around
dynamic objects detected by the sonar.)
We also built long term path planning
software on top of SONARL. Our
software uses a “Zamboni” sweep
pattern to navigate across a search grid.
If grid locations are unreachable, due to
either SONARL being unable to plan a
path to the grid location or because there
is an obstruction detected visually, the
“Zamboni” algorithm looks for another
grid location to search. If the robot had
to skip a grid location because it was
previously obstructed from it will try to
search it again after it has traveled to
other locations. If the location is still
obstructed it will end its search, noting
which grid locations where obstructed.

7

Summary/Conclusion

At AAAI '06 our robot
performed as we (see figure 6) wanted it
to. The visual recognition was able to
identify and discern the objects it was
supposed to and the localization and path
planning worked fairly well given the
number of dynamic objects (people) in
the environment.

We did have some issues with
our path planning building a path around
visually detected obstructions too closely
that caused our robot to clip some
objects and drag those objects under its
wheels.

Figure 6: the KSU robotics team

The biggest issue we encountered
during the event was the amount of
computational load we were putting on
the robot and the client computers. Even

Figure 5: A birds eye view of the competition area from the AAAI '06 scavenger hunt. As the robot
encounters hunt items it renders an icon at the object's perceived location, as well as the robot's
current location in the map.

8

with a 1.86 Ghz dual core laptop doing
the vision processing we were having
trouble maintaining an acceptable frame
rate (>10FPS) with all of our processing
features active. We feel that a significant
part of this problem has to do with
allocating new heap regions for each
pass, and then deleting those heap
regions after each pass. We also could
have multi-threaded the processing
framework in a way to take better
advantage of the dual core setup.

9

