The WURDE Robotics Middleware and
RIDE Multi-Robot Tele-Operation Interface

Frederick Heckel, Tim Blakely, Michael Dixon, Chris Wilson, and William D. Smart
Department of Computer Science and Engineering
Washington University in St. Louis
Campus Box 1045
One Brookings Drive
St. Louis, MO 63130
United States

{fwph, tmbl, msd2, ccwl, wds}@wustl.edu

Abstract

We have developed highly modular middleware for robotics
programming and an interface for multi-robot teleoperation.
WURDE provides abstractions for the communications, ap-
plications, and systems levels of robotic system development,
which helps to isolate the developer from details not essential
to the immediate task. RIDE is a control interface inspired
by real time strategy games for tasking multiple robots at the
same time, which increases the situational awareness of the
operator and allows a single person to control many more
robots than with single-robot interfaces. In this paper, we de-
scribe WURDE and RIDE and discuss how they were used in
the 2006 AAAI Mobile Robot Competition and Exhibition.

Introduction

One of the major problems in robotics research is still the
difficulty of developing software and adapting existing soft-
ware for use on systems which may be highly customized. A
great deal of effort is spent writing new implementations of
existing algorithms— sometimes even in the same lab. Over
the course of a few years, the same algorithm may be rewrit-
ten multiple times due to change of staff, new robots, ma-
jor system overhauls, or software problems. Building mid-
dleware that is non-invasive (enabling simple adaptation of
existing software), modular (allowing different algorithms
and simulators to be tested easily), communication-agnostic
(freeing the developer from dealing with low-level commu-
nications issues, and easy to use is currently a major priority
in the community. We have developed WURDE, the Wash-
ington University Robotics Development Environment, to
address each of these issues for our lab.

Using WURDE, we have developed a new robot tasking
and control interface. RIDE, the Robot Interactive Display
Environment, is a real time strategy (RTS) game inspired
control interface. We have taken advantage of the common
RTS style of gaming to build an interface which allows a
single user to control many robots at once. This increase the
overall situational awareness of the user and decreases the
burden of control. In this paper, we describe both WURDE
and RIDE, and discuss how they were used in our entry for
the 2006 AAAI Mobile Robot Competition and Exhibition.

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

10

Background
Robot Architectures

Several robotics middleware packages have emerged over
recent years. One of the most widely-used is Player (Gerkey
et al. 2001). Player serves as an interface to many different
types of robot devices, providing drivers that interface with
many different pieces of hardware. In addition, the Stage
and Gazebo simulators are available to use with programs
written with Player. Player is C-based and tied to a TCP/IP-
based communication protocol. It also lacks a module man-
agement system.

The MARIE (C6té et al. 2006) middleware provides tools
which allow the adaptation of different communications pro-
tocols and applications. It is a very flexible system; our soft-
ware differs by placing a very strong focus on ease of use, at
a potential loss of flexibility.

The CARMEN (Carnegie Mellon University 2006a)
package from Carnegie-Mellon University provides soft-
ware to interface with several devices and provide access
to a a number of important algorithms. CARMEN is a very
complete package, but is tied to the CMU IPC communi-
cation system. It is also a C-based system. WURDE takes
advantage of the object-oriented features of C++ while ab-
stracting the communication protocol to reduce dependence
on specific communication mechanisms. WURDE is also
designd primarily as an environment for constructing and
adapting new modules, and has a module monitoring and
management system.

ADE (Kramer & Scheutz 2006) from Notre Dame is a
java-based system. Apart from the language, the chief dif-
ferences between ADE and WURDE are that ADE uses Java
Remote Method Invocation, while WURDE uses a message
passing protocol as its distributed computation mechanism.
ADE also has a security model for controlling access to
modules, something that WURDE currently lacks. The ma-
jor difference is that WURDE primarily uses asynchronous
communication and wraps the communication mechanism
to simplify the process of adding additional communication
protocols.

Real Time Strategy Interfaces

There is some previous work on RTS-style interfaces for
robots. Jones and Snyder (Jones & Snyder 2001), describe

"A technique *

is a trick you
than once.

Jim B

Figure 1: Lewis, our iRobot B21r research robot.

a system that is very similar to ours, although it is designed
for the control of a small number of free-flying space robots.
Our system differs from theirs in our extensive use of sensor
and data visualizations and in our use of a sliding autonomy
system that allows the robots to request assistance.

Parasuraman, Galster, and Miller describe a task-level
control interface called Playbook (Parasuraman, Gastler, &
Miller 2003), and evaluate its effectiveness on a simulated
unmanned vehicle control task. Subjects controlled six sim-
ulated vehicles under a range of conditions. The interface
was a two-dimensional representation of the world, where
the only sensor visualization was a representation of the
robot’s field of view.

A number of robot simulations take advantage of first-
person computer games technology (for example,the USAR
simulation (Wang, Lewis, & Gennari 2003)), but typi-
cally do not take advantage of the associated interfaces.
The game-based simulator described by Faust, Simon, and
Smart (2006) allows humans to directly control human
avatars, using a first-person interface, but this is still essen-
tially a direct teleoperation interface.

The WURDE Middleware

The WURDE (Washington University Robotics Develop-
ment Environment) middleware is a highly modular, ab-
stracted library and set of utilities to simplify robotics de-
velopment. WURDE does not require the use of any partic-
ular robot software architecture, but does assume that soft-
ware will be written as a number of small, interconnected
applications. The modular structure allows the researcher
to easily test different algorithms and configurations of the

11

RIDE ‘

Obstacle
’7 Avoider
Face Vector
Detector Mover
Pan-Tilt Firewire Laser | Rabot Ego
Unit Camera Rangefinder | Drive Motion

Figure 2: The WURDE architecture.

robot. In addition, it is very simple to switch between dif-
ferent robots and simulations using this method, since the
low-level interfaces to specific hardware (or simulated hard-
ware) are contained in a small number of modules that are
easy to replace.

Our primary goal in designing WURDE was to develop
middleware for robotics that is extremely simple to use, es-
pecially for those new to programming mobile robots. It is
far too common to spend large amounts of time adapting
programs written for other robots or writing common boil-
erplate code. Robotics development is hard enough without
dealing with low-level software and communication issues
that can be abstracted, so we aim to minimize these aspects
of development so that researchers can focus on research.
WURDE is designed to make it simple to write new com-
munication adaptors, so it is not tied to a particular proto-
col. At present, we are using Carnegie Mellon University
IPC (Carnegie Mellon University 2006b) for our primary
communication adaptor.

Abstraction

WURDE uses four layers of abstraction: Communications,
Interfaces, Applications, and Systems. Each layer is cleanly
separated from the other layers.

The Communications layer defines basic types and meth-
ods for moving data in a communications adaptor. The
adaptor also provides facilities for auto-generating code
which is specific to different types of data (similar to
CORBA), or using another method such as templating for
the same purpose. Apart from basic types, such as Points,
Time, and Vectors, the communications layer does not
specifically define message types for data. This makes it
easy to add new message types without having to modify
any communications adaptor code.

The Interface layer describes the data which each type of
robot capability actually requires. For an obstacle avoider,
this may be the current state of the robot (stuck, moving,
idle), and some commands (move to location, set max speed,
set avoidance radius). These interfaces are described us-
ing XML which is then used to generate code which can be
called from the Applications layer as well as any code which

| need an
ObstacleAvoider
TeleOp
MCP
Okay, I'll start
laserAvoider

rFlexServer

| need a
RobotDrive NESS
MCP Avoider
Okay, I'll start

Figure 3: Module startup with MCP.

is necessary to work with the communications adaptor (such
as marshalling data). These interfaces are independent of the
communications layer.

The Applications layer is composed of a common API,
providing a standard programming interface for controlling
different aspects of individual applications, communications
endpoints, and various useful utilities. Developers can im-
plement new algorithms at this level, without being con-
cerned about how data moves. Not only is the underlying
communications protocol handled by the communications
layer, but the process of finding the correct sources and sinks
for data is handled by the systems layer. Developers im-
plement the algorithm and specify what types of data are
needed (i.e., an obstacle avoider requires a robot drive, a
range sensor, and odometry), but not where it comes from.

Finally, the systems layer abstracts the details of individ-
ual applications away: the systems developer can specify
how different applications connect to one another to provide
required sources of information, but does not need to mod-
ify any source code. The connections are currently specified
using XML configuration files. Current work on this layer
is focused on building the application connections automati-
cally using an optimization approach. One of the major fea-
tures our systems layer provides is the ability to initialize a
large number of robot applications without the need to write
a startup script.

Modules

WURDE is designed to work with many different “modules”
running as independent processes on one or multiple sys-
tems. Modules communicate asynchronously via the under-
lying communications protocol. The communications end-
points are connected by the MCP (Master Control Program)
based on a layout described using an XML file and using in-
formation automatically harvested from the modules when
the MCP is initialized. When a new module is started by
the user, it first communicates with the MCP to determine
where it should find the information it needs, and then enters
the standard run loop. The MCP meanwhile initializes any
additional modules that are required (see figure 3). These

12

Figure 4: Microsoft’s Age of Empires.

modules repeat the process until all requirements are ful-
filled.

This mechanism allows the researcher to swap low-level
modules while leaving high-level modules unchanged. We
take advantage of this with a number of modules built to
work with the iRobot B21r and ATRV Jr platforms, and the
Player/Stage simulation environment(Gerkey et al. 2001).
In addition, we have built a vision module to interface with
Firewire cameras and the Intel OpenCV vision software (In-
tel Corporation 2006).

The RIDE Interface

Another module built with WURDE is the RIDE interface,
our multi-robot tasking and control program. RIDE takes
advantage of paradigms developed the computer gaming
world. For many years now, there have been computer
games which require the user to control a large number of
diverse agents in a complex environment. One of the most
popular styles of games in recent years has been the real-
time strategy game.

Figure 4 shows a screenshot from Age of Empires II,
a typical real-time strategy game(Microsoft Games 1999).
The user can select one or more units on a central iconic,
isometric view of the world. Units, terrain, and other fea-
tures are shown in this part of the window. Once units have
been selected, a list of possible tasks for the units is dis-
played below this window, depending on the type of units
selected. Clicking on one of these tasks assigns it to all cur-
rently selected units. Other details about the units are also
displayed below the main world view.

Figure 5 shows RIDE, the Robot Interactive Display En-
vironment, our supervisory control interface for large teams
of mobile robots.! The main window shows an iconic view
of the world, just as in RTS games. Additional GUI ele-
ments allow control over the camera position, display infor-
mation about the selected robots, and allow selected robots
to be tasked by the operator, as in RTS games. Robots can
also request help; when this happens, a yellow exclamation
mark is placed over the robot. The human operator can then
quickly see which robots may need to be re-tasked due to a
problem.

' Although all of the functionality of the interface is in place,
it is not yet “production quality”. We are currently working on
improving the look-and-feel of the GUL

Figure 5: RIDE.

Figure 6: RIDE with occupancy grid.

One example of sensor visualizations can also be see in
figure 5. The sensor displayed in this case is a SICK laser
rangefinder with 180 radial distance measurements. In this
display, if the difference between adjacent readings is small,
they are joined by a green line, and otherwise a red line. This
helps to highlight objects and walls, making it much easier
for a human operator to interpret the sensor readings. This
was a very simple but extremely effective innovation which
helped improve operator understanding of the situation.

RIDE also displays sensor information and can render oc-
cupancy grids as walls in the world, as seen in figure 6. In
the future, we will be able to texture map the current camera
image from the robot onto the walls; this code is still in an
early stage and not shown here. We plan to run user stud-
ies soon to confirm the effectiveness of RIDE and determine
how to improve the interface.

AAAI 2006

In July 2006, we brought our robot to the AAAI Mobile
Robot Competition and Exhibition in Boston, MA. This was
our first “field test” of WURDE, and we encountered sev-
eral challenges and unexpected issues over the course of
the conference. Fortunately, we were able to work around
them to demonstrate WURDE and RIDE, thanks in part to
the structure of our software architecture. Our largest prob-
lem was with the obstacle avoider, which experienced some
bugs leading to incorrect behavior. Due to the modularity of
our architecture, we were able to split our team so that some
people focused on debugging the obstacle avoider while oth-
ers checked RIDE to make sure it was working correctly.
Certain aspects of RIDE turned out to be very successful.
The laser display technique described earlier allowed robot
operator to easily drive the robot in areas of the conference
center where the operator had not been himself. Even with-

13

out employing any mapping routines, and only using sensor
displays, some operators were able to navigate the robot a
significant distance and then return to the robot work area.

None of the difficulties we experienced were major prob-
lems and we were able to meet our goals to demonstrate
WURDE and RIDE. While WURDE was relatively invisi-
ble (indeed, a correctly functioning architecture tends to go
unnoticed) we were able to show off RIDE to various people
at the conference using both our robot, Lewis, and in simu-
lation using Stage. We received some very positive feedback
from this process, and some suggestions to help improve the
interface.

Conclusion

At the AAAI 2006 Mobile Robot Competition and Exhi-
bition, we demonstrated our new robotics middleware and
RTS-based control interface. We are continuing to develop
these software packages and plan to release our source code
in January 2007. Our middleware allows rapid development
of robot applications by creating clean levels of abstraction
so that the developer is not bogged down with irrelevent
details at any stage of the development process. It is sim-
ple enough to allow inexperienced programmers to quickly
grasp the basics while sacrificing very little flexibility.

The RIDE control interface allows a single user to con-
trol many robots easily, using a paradigm taken from the
computer gaming world. Although we successfully demon-
strated RIDE at AAAI 2006, there is still much to be done.
The major job, currently underway, is improving the usabil-
ity of the interface and adding more sensor visualizations,
including learned maps. We are also adding more tasks to
the the repertoire as we develop more capabilities in the
WURDE framework.

References

Carnegie Mellon University. 2006a. Carmen Robot Navi-
gation Toolkit. Web site: http://carmen.sourceforge.net/.

Carnegie Mellon University. 2006b. Inter Process Com-
munication. Web site: http://www.cs.cmu.edu/ IPC/.
Coté, C.; Brosseau, Y.; Létourneau, D.; Raievsky, C.; and
Michaud, F. 2006. Robotic software integration using
marie. International Journal of Advanced Robotic Systems
3(1):55-60.

Faust, J.; Simon, C.; and Smart, W. D. 2006. A video
game-based mobile robot simulation environment. In Pro-

ceedings of the International Conference on Robots and
Systems (IROS).

Gerkey, B. P.; Vaughan, R. T.; Stoy, K.; Howard, A.;
Sukhatmem, G. S.; and Matari¢, M. J. 2001. Most valuable
player: A robot device server for distributed control. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1226—1231.

Intel Corporation. 2006. The
Source Computer Vision Library. Web
http://www.intel.com/technology/computing/opencv/.

Open
site:

Jones, H., and Snyder, M. 2001. Supervisory control of
multiple robots based on a real-time strategy game interac-

tion paradigm. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, volume 1,
383-388.

Kramer, J., and Scheutz, M. 2006. Ade: A framework for
robust complex robotic architectures. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS 2006).

Microsoft Games. 1999. Age of Empires II: Age of Kings.
Web site: http://www.microsoft.com/games/age?2/.

Parasuraman, R.; Gastler, S.; and Miller, C. 2003. Human
control of multiple robots in the RoboFlag simulation envi-
ronment. In Proceedings of the IEEE International Confer-
ence on Systems, Man, and Cybernetics, volume 4, 3232—
3237.

Wang, J.; Lewis, M.; and Gennari, J. 2003. USAR: A
game based simulation for teleoperation. In Proceedings
of the 47th Annual Meeting if the Human Factors and Er-
gonomics Society.

14

