
A Scalable Architecture for Multi Agent Vision Based Robot Scavenging

Kamil Wnuk, Brian Fulkerson, Jeremi Sudol
Computer Science Department

University of California, Los Angeles, CA, 90095

Abstract

This paper outlines the technical details and presents
early results from our multi agent robot scavenging sys-
tem, as demonstrated at the 2006 AAAI Robot Exhibi-
tion and Scavenger Hunt Competition. Our system is
designed to be easily scalable in the number of agents,
which are currently limited to Evolution ER1 laptop
robots capable of monocular vision. Each individual
robot possesses the ability to localize itself, recognize
a set of objects, and communicate with peer robots to
coordinate exploration.

Overview
The robot scavenger problem, as posed in the 2006 AAAI
Robotics Competition, is to search the conference environ-
ment for a list of objects and report their position according
to some map of the environment. For convenience, teams
were provided with floor plans for the competition spaces.
However, since the conference environment is highly dy-
namic, with people constantly moving about, as well as ex-
hibits, posters, and other typically characteristic environ-
mental items often shifting, agents acting in the space re-
quire robust reasoning algorithms in addition to simply uti-
lizing floor plans. In addition, conference spaces are large
and typically require long periods to explore for slow mov-
ing robots.

In an attempt to minimize exploration time, we have cho-
sen a scalable multi agent approach to the scavenging prob-
lem, that focuses strongly on the spatial reasoning, planning,
and object recognition elements of the task. We are also par-
ticularly interested in exploring low cost robotics and the
potential of vision as a primary sensing modality, which has
led to our choice of platform. We believe that vision could
prove to be a flexible sensor, able to be more robust in a
highly dynamic environment.

Platform
Our chosen platform is the ER1 robot from Evolution
Robotics (Fig. 1). It serves essentially as a laptop periph-
eral, connecting all sensors and motors through USB. The

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: The Evolution ER1 platform.

robot is equipped with differential drive and a single cam-
era, and on its own sells for under $200, placing it well in
the low cost robotics bracket. We have augmented each plat-
form with two inexpensive ($11 each) short-range infrared
sensors, which we use to avoid hitting unanticipated obsta-
cles. For low level robot control we adapted the ER1 Python
driver developed at Harvey Mudd College, by adding multi-
threaded serial communication, drivers for our infrared sen-
sors, and a simple simulator.

The Highly Organized Bunch Of Scavengers
(HOBOS) Architecture

The philosophy driving our design is that each robot should
be able to reason and act completely on its own, and an arbi-
trary number of robots should be able to cooperate by simply
running a duplicate of the same software.

Each member of the HOBOS system has five key capa-
bilities, which will be described in detail below. These in-
clude localization, path planning, optimal deployment, ob-
ject recognition, and mobile ad hoc peer-to-peer networking.
Each capability was designed and tested as a separate com-
ponent, and final integration is still in progress at the time of
this writing.

Localization
A key component of any agent desiring to do spatial reason-
ing is having some representation of its surrounding envi-
ronment and being able to locate itself in that environment
based on sensory input.

We have chosen to leverage the provided floor plan data
to implement a vision based Markov Localization (Fox,

89

Burgard, & Thrun 1999) method that incorporates structure
from motion techniques to accurately estimate position
(Kosecka, Li, & Yang 2005). This approach utilizes Scale
Invariant Feature Transform (SIFT) keypoints (Lowe 2004)
to represent views in the environment and match locations.
A Hidden Markov Model (HMM) is then incorporated
to improve localization accuracy by adding constraints
enforcing motion only between adjacent locations. Once a
location is matched, structure from motion methods are used
to estimate the offset from the matched view. The algorithm
requires an initialization stage in which an environmental
map is gathered as a set of captured views before the robot
can localize.

SIFT Keypoints A necessary background topic for vision
based localization is the SIFT method for detecting key-
points, developed by David Lowe.

The SIFT keypoint detector can be briefly summarized
in four steps. The first is detection of extrema in scale
space, which is performed by finding maximum and mini-
mum points in difference of gaussian images. In the second
stage of detection, the location and scale of each keypoint
is determined and low contrast or badly localized keypoints
are removed. In the third stage of SIFT, each keypoint is
assigned an orientation based on the surrounding image gra-
dients. Finally, a 128 bit descriptor is created for each key-
point based on the local image orientation histograms. This
incorporation of scale and orientation information into the
keypoint descriptor is what enables good matching of key-
points across scale and rotation.

Given two images, corresponding keypoints are matched
according to the Euclidean distance between two descrip-
tors. Two points are considered a match only if the ratio
between the second best match and the first best match is
greater than 0.6.

Environmental Representation The environment is rep-
resented as a set of locations. Each location consists of a
number of views (Fig. 2), and each view is stored as a set
of SIFT keypoints extracted from an image captured at a
recorded physical location.

The sequence of images captured on an initial map-
ping run of the robot is partitioned automatically into
locations. A new location aggregates views until there
is an insufficient number of matching keypoints between
sequentially captured images. Two sequential views are
considered to be part of the same location if at least 4
percent of keypoints are matched and if there are at least
6 matched keypoints (Fig. 3). As expected, this con-
structs a representation where long hallways, for example,
are categorized as a single location due to the continu-
ity of stable keypoints throughout the image sequence.
This feature is nicely leveraged to efficiently incorporate a
Hidden Markov Model into the algorithm, as described next.

Hidden Markov Model Once the environmental repre-
sentation is constructed the robot can localize. The initial

Figure 2: The representation of a partial model of the UCLA
Vision Lab. The arrows indicate the location and orientation
of captured views, and the labels indicate their grouping into
locations.

Figure 4: This figure demonstrates the fundamental problem
of the naive view matching approach. Here an unanticipated
chair occludes the camera, blocking characteristic keypoints
and causing the robot, whose actual position is shown by the
red circle at the bottom of the map, to localize itself com-
pletely incorrectly (as shown by the green circle at top).

naive approach to localization is to simply find the stored
view in the representation that best matches what the robot is
currently seeing, according to the number of SIFT keypoints
matched. Thus the view with the most matching keypoints
is the view most likely to be close to the current location of
the robot. This algorithm performs relatively well even with
partial occlusions from humans walking in front of the robot
at a reasonable distance.

The fundamental problem with this approach is that when
distant views look similar or a majority of characteristic key-
points are not visible, as during a major occlusion, the best
matching view can be located very far from the robot’s ac-
tual position (Fig. 4). Thus the natural thing is to attempt
to exploit temporal information, such as the last estimated
position of the robot, in determining the most likely current
position.

In order to prevent huge errors in location recognition,
Kosecka et. al. introduce a HMM to represent neighbor-
hood constraints in the map, and essentially adapt the naive
keypoint matching technique into a Markov Localization al-
gorithm. The environmental representation explained earlier

90

Figure 3: The graph in the center shows the results for SIFT keypoint matching in sequential frames of an 18 frame dataset
gathered in the UCLA Vision Lab. The black line indicates the threshold below which a view is categorized as a new location.
The left and right images show matching between sequential frames, demonstrating good and bad matches respectively.

is particularly conducive to a Markov Localization scheme
because it partitions the space into large areas rather than a
fine scale uniform grid. This greatly reduces the computa-
tion time of the localization step, since there are fewer loca-
tions to consider. For this localization method, it is sufficient
to match to a view within the correct location, as that will
likely provide a good enough correspondence to perform a
structure from motion step to determine the camera offset of
the robot’s current view from the best match in the represen-
tation.

With the Markov Model the most likely robot location is
decided by maximizing location likelihood:

P (Lt = li|o1...t) ∝ p(ot|Lt = li)P (Lt = li|o1:t−1). (1)
In the above equation, Lt is the location at time t; li is the ith
location in the set of all locations; and ot is the data observed
by the robot at time t. The posterior represents the most
likely location of the robot conditioned on all of the obser-
vations made so far. The first term on the right hand side of
equation (1) is referred to as the observation likelihood and
defines the probability that an observation came from a par-
ticular location. Again borrowing Kosecka et. al.’s notation,
the observation likelihood is computed as the cardinality of
the correspondence set between the input image and the ith
location C(i), normalized by the sum of all correspondence
sets.

p(ot|Lt = li) =
C(i)∑
j C(j)

. (2)

Where C(i) is defined as the maximum correspondence with
a constituent view of the ith location. Finally, the last term
of equation (3) is expanded to represent the neighborhood
constraints,

P (Lt = li|o1:t−1) =
N∑

j

A(i, j)P (Lt−1 = lj |o1:t−1), (3)

where
A(i, j) = P (Lt = li|Lt = lj), (4)

and P (Lt = li|Lt = lj) is the transition probability, set to 1
if two locations are neighbors of each other. After construc-
tion, the matrix A is normalized by rows.

Figure 5: Once the HMM is incorporated in the localization,
the correct location is matched for the scenario in Fig. 4,
even though the best matching view is in a different location.
This is because the preceding correct match has changed the
probability density to focus in the lower region of the map,
making a fair match in the lower region more likely than a
great match in a non-neighboring location.

This localization method has proved remarkably robust
even to temporary full occlusions. In dynamic environments
it recovers quickly from errors since occlusions don’t
typically last long, and recognizable features reappear
after a bad frame is captured. The knowledge from the
robot’s previous state keeps the probability distribution
from quickly drifting too far during such short interferences
(Fig. 5).

Structure From Motion The final step in the localization
system is leveraging structure from motion methods to es-
timate the robot’s offset from the best matched view in the
saved environmental representation. According to the epipo-
lar geometry between two views (Ma et al. 2003), if the
camera is calibrated corresponding points x1 and x2 in two
images are related by:

xT
2 T̂Rx1 = xT

2 Ex1 = 0 (5)

91

where R is a rotation and T̂ is the 3×3 skew symmetric ver-
sion of the translation vector T = [tx, ty, tz]T . E is referred
to as the essential matrix, and in the special case of planar
motion (ty = 0) the essential matrix looks as follows:

E =

[0 −tz 0
tz cos θ 0 tz sin θ − tx cos θ

0 tx 0

]
(6)

In this special case only four corresponding points are
necessary to obtain a least squares solution to the essential
matrix. The rotation angle θ and translation can then be in-
ferred directly by imposing the positive depth constraint (Ma
et al. 2003) on the four possible solutions. This gives an es-
timate of the current position of the robot relative to the best
matched view in the stored environmental representation.

In their paper, Kosecka et. al. faced the additional dif-
ficulty of having to deal with unknown focal length, how-
ever since our cameras had a manually adjusted static focal
length, we computed it in the calibration step and avoided
the extra computation otherwise necessary. For camera cal-
ibration we utilized Intel’s OpenCV calibration procedures.

Path Planning and Navigation
The agents will work in a partially-known dynamic environ-
ment. Thus, adaptive and cost effective path planning is a
crucial design component. We use the D* algorithm (Stentz
1995) for its robustness to dynamic environmental changes
while preserving optimality and completeness.

The D* Algorithm D* is an adapted version of the A*
informed search that is more suitable in dynamically chang-
ing environments. Typically when an uncharted obstacle is
discovered while using A*, one would have to recompute
the entire state-space to maintain guarantees of optimality.
However, by keeping track of changes of the nodes’ hypo-
thetical costs, D* allows for a significantly reduced update
of only the affected nodes on the way to the path. It still pre-
serves optimality and completeness (they are optimal based
on known information).

Like A* the algorithm maintains an Open list to keep track
of nodes to be explored, and a Closed list for nodes that have
already been explored. The Open list is used to propagate
discovered changes in the arc and path costs, where arcs are
single step jumps and the path cost is the overall cost to the
goal. States X on the Open list are sorted in ascending order
by the function key(X), which is an estimate of the mini-
mal path cost. When states are expanded they are classified
as either Raise or Lower states. The Raise states are those
such that key(X) < h(X), where h(X) is the estimated
sum cost to the goal. They propagate information about arc
cost increases. The Lower states, key(X) = h(X) carry
information about cost reductions – discovered cheaper arc
costs, or new paths found.

The algorithm has two main components, ProcessState
and ModifyCost. These two functions are responsible
for computing the optimal path and introducing discovered
changes respectively.

Figure 6: This figure shows the D* algorithm at work on
a zoomed in map segment. The arrows indicate the path
planned for the robot (red dot on left) to the destination
(green dot in the center), and the black squares represent
walls. Gray squares indicate a dynamic obstacle that was
detected during travel, and the dynamically replanned path
is shown by the changed direction of neighboring arrows.

Additionally, there are variations in the results of the al-
gorithm that depend on the quality of initial knowledge and
the exploration approach. Exploration style is an interpre-
tation of the cost of traversing unknown regions. If such a
cost is very low, then the approach is considered optimistic,
and if it’s more expensive than using already explored paths
then it’s pessimistic. If there is prior information, an aver-
age approach may be taken where costs to traverse unknown
areas of the map are approximated by an average of known
costs and priors surrounding that area (a lower resolution
is used for this computation). Comparisons of these differ-
ent techniques (Stentz 1996) suggest that given prior infor-
mation about the path costs in the environment, the average
method finds the best solutions overall. Also the optimistic
approach is slightly better than the pessimistic. In our case
the dynamic aspects are highly volatile (like humans wan-
dering through the space), thus it is difficult to use the aver-
age approach, and we employ the optimistic one.

Optimal Deployment
Ultimately, our goal is to find scavenger hunt items as
quickly as possible. In order to facilitate this, we have con-
structed an architecture which allows multiple robots to co-
operate on the search task by dividing the space between
them and allowing each robot to cover one section. In our
framework, adding robots will at best linearly decrease the
search time.

There are two problems to be addressed here. The first
is how to divide the search space between robots such
that each robot covers approximately equal portions of
space. This is an optimal deployment problem. Once
the area has been divided, the second task is to globally
plan a path which covers this area. Here, we will focus
on the deployment problem. We refer those interested in
gaining a recent overview of path coverage to (Choset 2001).

Deployment Problem We pose the deployment problem
as follows: Given n agents and a map of the environment to
search, how should the agents divide the area such that the

92

Figure 7: vi attempts to move its boundary, taking a polygon
of area from vj

Figure 8: In this example, a non-convex portion of the region
vi from vj . Therefore, the distance between them is not a
line, but rather an arc which is formed by taking a line from
vi to the convex

entire space is covered in minimal time? Since all agents
can move at the same rate and have the same visibility cone,
the time to cover the space will be smallest when each agent
covers an equal amount of area.

When the area to be covered is convex, an elegant dis-
tributed algorithm exists which uses voronoi regions to cover
the area. This algorithm is described in (Cortes et al. 2002).
When the region to be covered has uniform probability of
containing the object (in other words, no prior information
about the space is available), this algorithm corresponds
to iteratively perturbing the voronoi boundaries in order to
minimize:

C =
n∑

i=1

Area2(vi(p1, p2, · · · , pn)) (7)

Where vi is the voronoi region centered at point i. An
illustration of the idea of perturbing the boundary is shown
in Fig. 7. This algorithm can be extended to non-convex
regions, but it becomes a bit messy. This is because the
voronoi regions, and hence the area added by perturbing the
border, are not lines when the region is non-convex. Con-
sider Fig. 8. When a non-convex portion of the space sep-
arates two agents, the voronoi partition between them be-
comes a line augmented with an arc.

Instead, we consider the task as an area equalization
problem in a non-convex domain. First, we convert the
space into a grid. We initially divide the grid among n
agents by initializing their positions by sampling uniformly
among the space. One the agents have been placed, they
claim responsibility for exploring grid squares near them
iteratively until all grid squares have been claimed. We
next iteratively update the bordering regions between agents
until the areas have been equalized. This step is described
in more detail below.

Area Equalization After the agents have been initialized
and the region has been divided among them, we use Potts
model to iteratively update the areas until they are equal.
Potts model is a generalization of the Ising model to an ar-
bitrary number of labels. For labels xi ∈ [1 · · ·L], the prob-
ability of label being a particular value is controlled by it’s
neighbors:

p(xi) =
1
Z

e
β
P

xj∈N(xi)
1xi=xj (8)

Where N(xi) are the neighbors of square xi. Intuitively,
this suggests that when all of the neighbors of xi have a dif-
ferent label, xi will be flipped to that label. In order to real-
ize this model, we use a sequential scan Gibbs sampler with
three constraints. The constraints are:

1. Only consider changing the value of grid squares along
the border between regions.

2. Only consider changing the value of grid square if the re-
gion it currently belongs to is larger than the optimal area.

3. Consider updating grid squares which are further away
from the center of mass of the region more often then grid
squares which are closer to the center of mass.

Together, these constraints equalize the areas each agent
has to cover and try to make the covered regions contiguous.
The first constraint is common sense, there is no reason to
flip grid squares which are internal to the area. The second
constraint assures that we do not take area away from a re-
gion which is already too small. We calculate the optimal
area by counting the number of grid squares in the search
region and dividing by the number of agents. The last con-
straint makes grid squares which have been separated from
the main body of the area very likely to be flipped, and also
prefers that the border of the region should be as close to the
center of mass of the region as possible.

Pseudocode for the implementation of our Gibbs sampler
follows:

for each grid square i:
build a histogram of the occurrences
of each label in N(i)

apply potts model to each non-zero
entry in this histogram

normalize this to a probability
density

sample from the CDF of this density
function by:

generate a random number r
find the label where the
CDF is first greater than r

switch the grid square to
that label

We start by iterating many times with high temperature
(small β). This equalizes the areas. Once the areas have
been nearly equalized, we smooth the boundaries by iter-
ating with a low temperature (high β). Fig. 9 shows our
results with a U-shaped non-convex space filled with a vary-
ing number of agents. Fig. 10 shows the results of our al-
gorithm in a space which contains holes. Note that when in

93

places where the map is locally convex, the partitions resem-
ble voronoi partitions.

In principle, this algorithm could potentially be performed
in a distributed manner since the decision to flip involves
only knowledge of neighboring squares in the grid which
belong to a neighboring agent. However, our implementa-
tion was centralized.

Object Recognition
In order to recognize the objects in the scavenger hunt, we
utilize a simplified version of the method described in (Lowe
2004). First, a database of object views is constructed by
imaging the objects of interest from multiple viewpoints and
computing the SIFT keypoints for these images. During the
scavenger hunt, SIFT keys are constructed for each image
and matched with the object SIFT keys in the database. If
more than 10% of the keys from any view of the object in
the database match, we consider the object to be present at
our current location.

Provided that enough viewpoints are captured in the
database building stage, this method is invariant to the pose
of the object. Additionally, due to the nature of the SIFT
descriptor, the method is also somewhat insensitive to the
scene lighting. It also handles partial occlusions of the tar-
get object, as long as enough of the object is unoccluded to
gather the required number of matching keys.

Communication Over Sparse Mobile Ad Hoc
Peer-to-Peer Networks
A critical component of any multiagent system is communi-
cation. In order to reason effectively as a team, robots must
be able to automatically discover each other and exchange
information. Keeping our design philosophy in mind, the
leading goals for communication were easy scalability,
no centralized services, and robustness to mobility. As
these conditions were typical characteristics of peer-to-peer
systems, and a number of projects in the field of Mobile
Ad Hoc Networking (MANET) have recently addressed
communication issues similar to those that we predicted
to encounter, we selected an application layer peer-to-peer
approach, adapting methodologies from MANET research.
Due to our platform, our inherent network layer utilizes
802.11 wireless cards installed in the laptops used to control
the robots.

How Does Scavenger Hunt Affect Communication
Based on results from our optimal deployment module,
one can see that it will often be the case that robots will be
assigned to explore regions of a map that may be divided by
significant obstacles or have points on their extremes that
may be very distant from each other. Since the conference
center is large and will have multiple different halls and
rooms, it is highly likely that during exploration the robots
will never all be simultaneously connected to each other for
long. This means that it is critical that our communication
system be tolerant of sizeable periods of net partitioning.
It also implies that agents must be able to discover au-
tonomously when they are within communication range and

with whom they can communicate.

Related Work A number of related work has been done
addressing the above problems under the category of de-
lay tolerant networking. The standard method of addressing
sparse networks with long periods of network partitioning is
referred to as the store-carry-forward (Zhao, Ammar, & Ze-
gura 2004) paradigm. Variations of this method are classed
into two categories: proactive and reactive. In reactive ap-
proaches agents typically disseminate packets to multiple
peers, who then either propagate or store those messages in
hopes that the receiving node soon becomes available. In
proactive approaches, agents have partial knowledge about
the movement patterns of others and utilize predictions of
where an unreachable destination node might be to alter their
course, so that they can get close enough to send a message.
The proactive approach however, is not appropriate for our
problem. Since our primary focus is full coverage and ef-
ficiency in exploration, our robots cannot afford to deviate
from their planned paths to improve communication.

Related work has also been done on message ferrying
(Zhao, Ammar, & Zegura 2004), in which additional
mobile message ferry agents deliver messages to peers.
This approach is related but does not apply to our problem
specifically, as our only agents are the robots.

HOBOSnet The HOBOSnet protocol is a peer-to-peer
overlay that is currently configured to send and respond to
two types of messages: discovery and robot state update.
A two-hop multicopy (Groenevelt, Nain, & Koole 2005)
approach is used to deliver the important state update mes-
sages to the designated recipients, while discovery messages
are only sent to reachable nodes and not propagated. Each
node in the overlay stores two tables. One table consists of
all nodes that it has ever contacted, and the other consists
of all connected nodes (those that have replied to a recent
discovery message). Entries in the connected nodes table
expire with a time to live (TTL) of 10 seconds. This TTL
is reset each time a message is exchanged between the two
nodes, whether it is a discovery or state update message.
In addition each node stores a queue of messages it is to
forward to specific peers if it happens to encounter them.
Each message also has its own TTL value.

Node Discovery The node discovery messages are imple-
mented as a UDP broadcast that includes the IP address and
robot identification (stored internally on each robot) of the
sender. All nodes receiving the discovery message reply
back with an acknowledgement that includes their identify-
ing information. Based on this brief communication both
the sender and receiver update their global knowledge and
currently connected tables.

Node discovery is performed as a combination of an on-
demand and proactive approach. The algorithm can best be
summarized in pseudocode as follows:

while (1):
// proactive

94

Figure 9: The partitions of a U shaped region for a varying number of agents. Top row from left: Original map, 2 agents, 3
agents. Bottom row from left: 5 agents, 10 agents, 20 agents.

Figure 10: The partitions of a non-convex region which contains holes for a varying number of agents. Top row from left:
Original map, 2 agents, 5 agents. Bottom row from left: 10 agents, 20 agents, 50 agents.

95

if (isempty(global node list) ||
exist(stored messages))

Send discovery message

// on-demand
else if (send message request)

if (unknown(destination) ||
destination.ttl < time)
Send discovery message

sleep(interval)

State Update The state update messages are implemented
via directed TCP messages. To minimize the amount of data
transmitted at once, there are two possible types of state up-
date messages. The first type is a general info message,
which includes the source and destination addresses, the
source robot position, the total number of objects that the
source robot knows have been found globally, and a times-
tamp. If the receiver of the message determines that the
sender knows of more objects that have been found it fol-
lows up with a query, to which the sender sends out an ob-
jects found message, including a list of object IDs and the
locations in which they were found. Python’s pickle module
is used to serialize data for transfer.

Unlike discovery messages, state updates use the two-hop
multicopy algorithm to communicate with mobile nodes to
whom they may not be immediately connected. This algo-
rithm copies a message from the sender to all immediately
connected nodes, who are then only allowed to forward a
message specifically to the destination node. In an extremely
sparse system like ours, there would be no benefit from
a multicopy approach of higher degree, which would only
clutter the network with many duplicate messages. Each
message is kept in node queues for a 30 second limit, and if
an original sender does not receive a reply within 40 seconds
it resends the original message, likely with updated state in-
formation.

Discussion
The majority of our system capabilities were demonstrated
in simulation at the 2006 AAAI Robotics Exhibition. Unfor-
tunately full integration of all components was not yet com-
pleted by the time of the scavenger hunt competition, thus
only our autonomous obstacle avoidance and object recog-
nition systems were demonstrated. Integration work is cur-
rently continuing and the system is expected to be fully func-
tional soon.

We plan for the HOBOS framework to serve as a general
research platform for exploration of both single and multi
agent approaches to various problems in robotics. Once
full integration is completed, various object recognition rou-
tines, communication protocols, task division methods, and
localization and mapping approaches may be tried on the
system.

Significant extensions planned for the future of the sys-
tem include the development of a real time visual simulta-
neous localization and mapping (SLAM) method to replace

the current localization component, elimination of the pla-
nar motion assumption, and the addition of visual odome-
try. These changes would enable the framework to accept
any agents capable of carrying a camera and a processing
unit, which would have obvious ramifications for large scale
search and rescue tasks, enabling autonomous agents to co-
operate with humans and rescue animals such as dogs.

Improvements in the path planning algorithm are also in
design. One of the aspects of D* is re-tuning it to account
for the fact that the robot itself has significant size, without
sacrificing the resolution of the path planner and the IR sen-
sor data. We also plan to implement an improved version of
D* where an additional soft constraint is minimized, which
in our case would be the number of overall turns (Stentz
2002).

References
Choset, H. 2001. Coverage for robotics - a survey of recent
results. Annals of Mathematics and Artificial Intelligence
31:113–126.
Cortes, J.; Martinez, S.; Karatas, T.; and Bullo, F. 2002.
Coverage control for mobile sensing networks. In Pro-
ceedings of the International Conference on Robotics &
Automation (ICRA), volume 20(2), 1327–1332. IEEE.
Fox, D.; Burgard, W.; and Thrun, S. 1999. Markov local-
ization for mobile robots in dynamic environments. Jour-
nal of Artificial Intelligence Research 11:391–427.
Groenevelt, R.; Nain, P.; and Koole, G. 2005. The mes-
sage delay in mobile ad hoc networks. In Proceedings of
SIGMETRICS. Association for Computing Machinery.
Kosecka, J.; Li, F.; and Yang, X. 2005. Global localization
and relative positioning based on scale-invariant keypoints.
Robotics and Autonomous Systems 52(1):27–38.
Lowe, D. G. 2004. Distinctive image features from
scale-invariant keypoints. Int. Journal of Computer Vision
60(2):91–110.
Ma, Y.; Soatto, S.; Kosecka, J.; and Sastry., S. 2003. An In-
vitation to 3-D Vision: From Images to Geometric Models.
Springer Verlag.
Stentz, A. 1995. Optimal and efficient path planning for
unknown and dynamic environments. International Jour-
nal of Robotics and Automation 10.
Stentz, A. 1996. Map-based strategies for robot navigation
in unknown environments. In Proceedings of AAAI. AAAI.
Stentz, A. 2002. Cd*: a real-time resolution optimal re-
planner for globally constrained problems. In Proceedings
of AAAI. AAAI.
Zhao, W.; Ammar, M.; and Zegura, E. 2004. A message
ferrying approach for data delivery in sparse mobile ad hoc
networks. In Proceedings of MobiHoc. Association for
Computing Machinery.

96

