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Abstract

In this paper we try to determine the effectiveness of differ-
ent Al techniques used in simple games. This effectiveness is
measured by comparing game-play experience to implemen-
tation effort. Game-play experience is measured by letting a
test panel play with the different kinds of Al techniques af-
ter which a questionnaire is filled in and the implementation
effort is simply logged. The results showed that the increas-
ing numbers of Al features is valued, but only until a certain
level.

Introduction

Where until recent past graphics was the number one pri-
ority when it came to creating games, nowadays we see a
shift toward another field as well. As processors get faster,
more computing time can be used to create more advanced
Al than before [4, 5]. A well applied Al can result in en-
hanced game-play, a higher replay value and overall a bigger
challenge for the gamer.

Specifically this last aspect is where things can go wrong,
because one can ask the question if smarter always equals
better. Overdeveloped Al can result in games which are too
complicated for the core target audience, resulting in nega-
tive experiences and thus wasted development time. At the
same time, we do not want to create games which lack a
decent level of Al resulting in unchallenging, boring game-
play.

Developing a good Al for a game requires quite a
lot of development time and resources. Preventing over-
development is very important. Putting too much work into
the development of Al might not only result in a game that
is not fun, but also results in wasted programming effort. In
this paper, we try to find a balance between the development
effort on one hand and the game experience on the other. In
this study, development effort is measured in programming
hours and the game experience is measured by questioning
a test panel who has played the different games. As this
balance will strongly depend on the genre of the game, we
limit our research to the field of arcade-style games targeted
toward people from 12 to 60 years of age.

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An Agent that will come to the aid of his comrade
quickly seems intelligent.

Different AI Techniques

In this section an overview will be given of some of the tech-
niques that are mainly used in games nowadays. Such an
overview could never be complete, but it will at least give
the reader an idea of the research domain. Please also note
that on every technique countless variations can be made,
but we have chosen only to treat the common version.

Hard coded Reactive behavior This technique is mainly
used by amateur developers as it is easy to implement, but
it is very limited in its use. Looking at the current state of
an agent and a current event, a simple hard-coded switch
statement is consulted to find the new state. This technique
has a low complexity, but results in simple reactive behavior
which is easy to see through.

FSM Rule-Based behavior With this technique, a Finite
State Machine (FSM) is used to create Rule-Based behavior.
Again, looking at the current state of an agent and a current
event, a state is found. Only this time, a FSM is used, re-
sulting in easy expandability of states and transitions. Per



event, the agent now has a number of states he can transit
into. Which state this will be is chosen at random.

Dynamic Scripting based FSM  The previous technique
can be improved greatly by combining it with Dynamic
Scripting [7, 8], resulting in learning behavior of the agents.
Per event, the agent has again a number of states he can
transit into. A weight value determines the chance a par-
ticular state is chosen. The weight values can be adjusted
in such a manner that the weights of the more efficient re-
sponses become higher and thus will be chosen more often
by the agents. During the entire game these weights will
keep changing so the agents will always keep adapting to
the players’ behavior.

Machine Learning Machine learning is widely used for
finding optimal strategies in competitive domains, i.e. find
the strategy that results in the highest possible payoff for
an agent. There are several different algorithms types such
as supervised learning, unsupervised learning and reinforce-
ment learning. In the application area of computer games,
machine learning can be applied at different stages of the
development of computer games or during game play. How-
ever, machine learning techniques have not been used much
in computer games, mostly restricted to non-complex video
games [2, 6].

Experimental set up

In order to test the efficiency of an Al technique, it will
first be implemented in a small game to log the implemen-
tation effort. Then the game-play experience needs to be
researched by letting a test panel play the game and fill in
questionnaires. The efficiency of a particular technique will
be determined using the questionnaires combined with the
registered implementation effort.

Outline of the paper

This paper is organized as follows. First, a description of
the different Al techniques that were chosen in this research
is given. Second, we outline the set up and implementation.
This is followed by the description of the experiments and
the results. Finally, we give our conclusions and views on
future work.

Implemented Game & Al techniques

As mentioned in the introduction, for this research we focus
on arcade-style games. Mat Buckland explains in [1]:

“When designing Al, always bear in mind that the so-
phistication of your game agent should be proportional
to its life span.”

Common sense also tells us that when dealing with an
arcade-style game, a great number of (sophisticated) Al
techniques can be ignored. As we want to determine the
efficiency of different techniques, the techniques should dif-
fer in expected implementation effort. All techniques based

on Machine Learning are not taken into account, mainly be-
cause they mostly require extensive learning phases or re-
quire on-line learning during game play. The first argument,
requiring a long learning phase, makes machine learning not
very useful in our test since it is not clear whether this learn-
ing time should be added to the development time or not.
The second argument, on-line learning during game play,
makes machine learning not useful since we only allow play-
ers to play the game for relatively short periods of time.

Paint Arena 2D

A simple game, Paint Arena 2D [9], was made (Fig. 1 and 2
were taken from the game.) which includes the different
techniques. This is a paintball game in which the player
takes on 4 enemies in a small arena. The traditional health
bar is replaced by the character itself as it becomes more and
more dirty from being hit. The player can take 5 hits before
being reset to the centre of the arena. When an agent is hit
5 times, it will respawn at one of the spawn points in the
arena. The player can grab soap to clean himself up or use
a soap bubble as a protective shield. Agents will not search
for power ups to save implementation time. To compensate,
they will regenerate health over time and regain a new shield
10 seconds after usage. The different states an agent can be
in can be seen in Table 1.

The next three sections will provide the details on the cho-
sen Al techniques:

Simple Reactive behavior

General Being the least complex technique, this tech-
nique demands: 1) very short development time and 2) result
in a playable game.

The idea of this technique (from now on also referred to
as Tech A) is that the agent always reacts to the same events
in the same way and has a limited amount of actions it can
make (Rule base), resulting in behavior which is predictable,
but still entertaining. Using this technique, the agent will
patrol the area until the player is spotted. It will then switch
to his offensive state, until the player is either taken down, is
out of range or goes out of sight for a while.

Rule Base As mentioned above, the rule base is hard
coded with this technique. This is done purely to save time
as this technique should have the shortest possible devel-
opment time. Below you will find some examples of this
technique’s rule base.

- If the player comes within 10 yards, I will run towards
him whilst shooting (Attack mode).

- If I make physical contact with the player, I will hit him.

- If the player runs away while I am in attack mode, I will
follow.

- If the player is outside my 20 yard radius while I am in
attack mode, I start patrolling.

Rule-based behavior using a FSM

General This technique builds in theory on Tech A, but
now the underlying structure is that of the FSM, resulting



in easy expandable behavior. That is why, when using this
technique (from now on also referred to as Tech B), the agent
will be able to react in a different way on the same kind of
events.

Rule Base The key of this technique is that an agent can
react in multiple ways on the same event and that it will do
this randomly. We can’t call this random picking of a new
state a decision, as it is purely a dice that determines the
new state instead of the agent. One event has multiple states
attached to it, of which a couple can be seen below:

- If the player comes within 10 yards, I will run towards
him (Attack Mode).

- If the player comes within 10 yards, I will run away (Flee
Mode).

- If the player comes within 10 yards, I will shoot him (At-
tack Long Range Mode).

The agent shall randomly picks one of these state transi-
tions. The probability a particular new state is chosen will
depend on a weight which is applied to every unique state
transition. This weight is user-specified (by the game de-
signer) and fixed during run-time of the game. A unique
state transition is identified by its old state, the event and its
new state, so each weight has a key which is build out of
three components.

The improvement of Tech B over Tech A is that the agents
will behave more dynamic and random.

Learning behavior using Dynamic Scripting

General Again, this technique (from now on also referred
to as Tech C) builds upon the previous technique. This time
however, the agents will develop a collective memory, re-
sulting in adaptive behavior of the agents. This memory is
realized by letting the agents adjust the weights discussed
at Tech B, effectively changing the chance a particular new
state is chosen.

As mentioned, each unique transition has a key which is
build out of three components: The old state, the event and
its new state. We call unique transitions family members,
if they have the same old state and event in their key. The
weights of all transitions in a family should always add up
to 100

Mathematical functions are used to determine the effec-
tiveness and the new weight of a particular transition.

Definition 1 (Effectiveness transition). The effectiveness of
a particular transition E(t) is the amount of damage d in-
flicted on the player plus the received damage r divided by
a constant C.

r

E(t)=d+ c (1)
Definition 2 (Transition weight). The probability P(t) a
particular transition is chosen, is e to the power of the ef-
fectiveness E(t), divided by the sum of all the probabilities
of the n transitions in this transition family.
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Figure 2: When all agents respond to a help call, things get
difficult.

The improvement of Tech C over Tech B is that the agents
will keep adapting their behavior to that of the player during
the entire game.

Choices made

These particular three techniques were chosen because they
are not too difficult to implement but are still very diverse in
implementation. Because the addition of states when using
Tech A’s implementation is very time-consuming, Tech B
and C allow for a larger rule-base (much faster addition of
states possible because of code architecture). That is why
the rule-bases are not entirely equal. Also, almost no time
was reserved for tweaking and tuning all techniques. While
normally this is a very important part of the process, when
comparing techniques this is not so much the case and it was
preferred to keep the development times down.

Expectations

The efficiency of the three techniques have to be determined.
As mentioned, this efficiency is measured by both program-
ming effort and the game experience.

Definition 3 (Game Experience). A game provides a good
game experience, when the game-play is both challenging,
intuitive and unpredictable in such a manner, that the player
would very much like to play the game again.

A number of key elements can be extracted from defini-
tion 3, on which expectations can be based. Firstly, there
are the hypotheses on the effects of the techniques. These
hypotheses describe what influence the techniques have on
how the player will play the game.

Hypothesis 1. With any technique, the player needs to time
his actions and react accordingly.

Hypothesis 2. The expected improvement by using Rule-
based behavior using a FSM over Simple Reactive behavior
is that the agents will behave more dynamic, random and
therefore are less predictable.



Hypothesis 3. It is expected that if the player notices the
learning behavior in Learning behavior using Dynamic
Scripting, he will try to manipulate the agents.

Secondly, we can formulate three main hypotheses on
both the influence of how the player needs to react on the
actual game-play and the game experience of the player.

Hypothesis 4. If the player needs to time his actions and
react accordingly, the game-play will be improved.

Hypothesis 5. When agents behave more dynamic and less
predictable, the game-play will be improved.

Hypothesis 6. If the player is able to manipulate agents, the
game-play and replay value will be improved.

Hypotheses 1 and 2 state that if the Al technique becomes
more complicated the player is pushed to adapt more. Hy-
potheses 4 to 6 state that if the player needs to act more to
defeat the Al, the game play is improved.

Set Up and Implementation
Set Up

In order to test the efficiency of the chosen Al techniques,
the techniques themselves were implemented. To this end, a
game will be made which implements the Al techniques and
the development time of the three different Al techniques
will be logged.

With the programming effort known, only the game-play
experience needs to be researched. To this end, a question-
naire should be developed and a test panel is needed to play
the different types of the game and fill in the questionnaires.

The efficiency of a particular technique can then be ex-
tracted from the filled in questionnaires combined with the
registered implementation effort.

Implementation

As mentioned before, Paint Arena 2D [9] was made to im-
plement the different techniques.

When the game starts, a flood fill algorithm automatically
fills the level with a navigation graph. This graph is used by
the agents for patrolling (A* search to random node), attack-
ing, assisting and pursuit (A* search to the player) and flee-
ing (A* to level corner away from the player). As the agents
always stay on this graph, no collision detection against the
level is needed.

Tech A When using this technique, the agent is able to get
triggered (e.g. when the player comes near), resulting in a
state switch. Note, however that, to save time, a FSM isn’t
used, but instead the different events are hard coded in one
big switch statement. The only states implemented here are
Patrol and AtackLR. This results in a very simple game with
a short development time.

Tech B For this technique, a FSM is used, following Mat
Buckland’s example in [1]. All states from Table 1 are im-
plemented and the transition weights are chosen by insight.

State Description

Patrol Wander through the arena
Call Help Call the help of the other agents nearby
Run to Player Run towards player position until in
short range
Attack LR Shoot with (weaker) long range weapon
Attack SR Shoot with (stronger) short range
weapon
Shield Place a soap bubble around yourself
Hide Run for a corner of the arena, away
from the player
Assist Agent Run towards player position until in
long range

Table 1: States an agent can be in

Tech C The same FSM from Tech B is used, but this time
an extra feature was added that monitors the effectiveness of
decisions of the agents.

Every time the changeState method of the FSM is called
by an agent, this state change (also referred to as a decision)
is stored to a special class named TransControl. With this
decision is stored: the current time, a pointer to this agent,
the old state, the condition and the new state.

The three parameters “old state”, ’condition” and “new
state”, form a combined primary key of a transition, from
now on referred to as an unique transition. The collection of
all unique transitions of which the first two key parts are the
same, is referred to as a family.

When the game starts, the weights equal those of Tech
B. Every iteration of the games main loop, TransControl is
checked to see if decisions made in the past can be judged
yet. To this end, the time stored with the decision is checked
with the current time. If a predefined amount of time has
passed, the effectiveness of the decision is calculated using
Equation 1 and the weights within the family of this deci-
sion are updated using Equation 2 for every family member.
An addition needs to be made for ”Call Help”, as the dam-
age done by assisting agents must also be taken into account
when calculating effectiveness. Therefore a list of assists
is maintained, storing the assisting agent’s ID, the victim
agent’s ID and the current time as soon as an agent goes into
the ”Assist Agent” state.

If the agent dies before his decision is judged, the deci-
sion is discarded as the amount of damage taken can’t be
determined anymore. If the player died before a decision
was judged, the maximum health of the player is added to
the inflicted damage to prevent wrap-around negative num-
bers. E.g. a player with 2 health taking 4 damage ends with
3 health, as it died and respawned with 5 health. This would
give a score of -1. When 5 is added, we get the desired score
of 4.

Experiments and Results

To test the effectiveness of a technique, both the implemen-
tation effort and the game play experience is needed. The
implementation effort is maintained during development and
can be found in Table 2. Experiments are needed to deter-



Al Technique | Hours

Tech A 31
Tech B 45
Tech C 87

Table 2: Programming effort (By one person)

mine the game play experience. We conducted an experi-
ment using a test panel to determine this experience.

User tests

A questionnaire was developed to test the experiences of the
test panel, holding questions about fun factor, difficulty, pre-
dictability, replay value and comparison questions between
the played versions. An event logger was also implemented
in the test game, logging facts like score, number of deaths,
shielding, number of kills and long and short range bullets
fired.

The test panel consisted of 25 testers, ranging from pro-
grammers to house wives and from 20 to 60 years old. Sub-
groups (4 to 5 testers each) were created in such a way that
testers from the same category (e.g. programmers) were
spread out as much as possible.

Hypothesizes 1 to 6 amongst others were used to create
the user tests themselves.

Experiments

The order in which the versions are presented to the test
panel will influence the outcome, as people become more
experienced after playing the game. To negate this effect,
we divided our test panel in 6 subgroups, each only compar-
ing two versions. This resulted in groups testing AB, BA,
BC, CB, AC and CA.

Each subgroup first gets to play the first version for 5 min-
utes, has a 30 seconds break before testing the second ver-
sion for 5 minutes, after which the questionnaire must be
filled in directly. Because another subgroup tests the same
two versions in opposite order, we minimize the influence
of the order of presentation. A practice level was added so
the tester can familiarize with the controls before starting the
actual test.

Results

As mentioned, Hypotheses 1 to 6 amongst others were used
to create the user tests. It are these Hypotheses that are used
to formalize the results.

Results entire test panel These are the combined results
from all test panel members. Table 3 shows in the second
column that Hypothesis 1 is confirmed. Strange enough,
with Tech B and C the player believes less timing and re-
action is needed. The third column states that when the Al
gets more advanced, the player feels he can manipulate the
agents more. While in fact, this was only possible with Tech
C.

The perception of the agent’s behavior by the player is
stated in Table 4. It shows the tester’s opinion on agent be-
havior. E.g. 75 percent of the testers who played with Tech

Tech | Timing Manipulate agent

A 100% 6%
B 66% 33%
C 81% 44%

Table 3: Outcome questionnaire on Hypotheses 1 and 3. Per-
centage of testers that claimed to have made certain actions.

Behavior | % A % B %C

Believable 31 66 43
Intuitive 38 66 31
Predictable | 75 50 19

Table 4: Outcome questionnaire on Hypothesis 2. The per-
centage of testers that played a particular Al version and
found that version strongest in a particular genre of behavior.

Tech | Score  St.Dev.

A 3.40 1.05
B 3.41 1.33
C 3.67 1.05

Table 5: Replay value. Average score on a 1 to 5 scale.

Posing | %A %B %C
More actions needed | 31 50 50
Shorter playtime 44 44 31
More fun game 38 56 50

Table 6: Outcome challenge and fun of the game. The per-
centage of testers that played a particular Al version and
found the posing most applicable on that version.

A, found the agents more predictable than with the other
techniques. Tech B is both more believable and more intu-
itive than the other two. This outcome confirms Hypothe-
sis 2. The large difference between Tech B and C is remark-
able.

As for Hypotheses 4 to 6, the game-play needs to be eval-
uated. Therefore we questioned the players about the key
elements from Definition 3. In Table 5 can be seen that the
difference in replay values is negligible. As for challeng-
ing, Table 6 shows that when playing with Tech A, only 31
percent of the gamers claimed they needed to perform more
actions for the same result with this technique. This indi-
cates that the larger part had less trouble with this technique,
resulting in Tech B and C seeming more challenging. The
difference in time perception here is negligible.

The results of the following statements provide a clear an-
swer to Hypotheses 4 to 6:

- As the game demands more timed actions and reacting,
I enjoy the game experience more. Score: 79%, st. dev
0.76

- As the enemy becomes less predictable, I enjoy the game
experience more. Score: 83%, st. dev 0.69

- If I can manipulate the enemies’ behavior with my ac-



tions, I enjoy the game experience more. Score: 83%, st.
dev 0.83

Finally, the gamers claim in Table 6 that playing with
Tech B was most fun.

Conclusion

Despite the fact that the difference in techniques is recog-
nized, the gamers do not seem to have a particular prefer-
ence. Especially the differences in replay and agent behavior
is hardly noticeable. However, on predictability and overall
judgment is Tech B preferred over the other two techniques.

Looking at Table 2, it is clear that with increasing features,
the implementation effort increases as well. It shows that
Tech C costs twice as much effort to implement than Tech
B. As the results show that Tech C does not score twice as
much as Tech B, it can be concluded that Tech B is more
efficient than Tech C. The difference in efficiency between
Tech A and B is not so obvious. As Tech B scores higher
on game-play experience, but at the same time costs more
implementation effort, Tech A and B could be called equally
efficient. As Tech A and B are equally efficient, but Tech B
is valued more, Tech B is preferred in this context.

As the players state that the game experience is improved
as the enemy becomes less predictable, it is advised to make
larger rule bases and create good algorithms for random de-
cision making. When making simple games this is preferred
over putting more effort in the Al system itself.

This research was limited to arcade-style game-play and
aimed on some techniques which are easy to implement.
When looking at other game genres, the Al techniques used
are very different. Lots of research can be aimed towards
these other, more advanced genres, including more difficult
Al techniques [3].
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