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Abstract 
This paper describes a number of extensions to the dynamic 
scripting reinforcement learning algorithm which was 
designed for modern computer games. These enhancements 
include integration with an AI tool and automatic state 
construction. A subset of a real-time strategy game is used 
to demonstrate the learning algorithm both improving the 
performance of agents in the game and acting as a game 
balancing mechanism. 

Introduction   
One of the primary uses of artificial intelligence algorithms 
in modern games [Laird & van Lent, 2001] is to control the 
behavior of simulated entities (agents) within a game. 
Agent behavior is developed using a diverse set of 
architectures that run from scripted behaviors to task 
networks to behavior planning systems. Once created, 
agents can continue to adapt by using on-line learning 
(OLL) algorithms to change their behavior [Yannakakis & 
Hallam, 2005]. There are two related goals that OLL can 
help acheive. The first is to alter behaviors such that the 
computer can outplay the human, creating the highest-
performing behavior [Aha, Molineaux, & Ponsen, 2005]. 
The second is game balancing, to adapt the behavior of an 
agent, or team of agents, to the level of play of the human. 
The goal of game balancing is to provide a level of play 
that is a challenge to the player but still gives her a chance 
to win [Andrade, Ramalho, Santana, & Corruble, 2005].  
 
Dynamic scripting (DS) is a reinforcement learning 
algorithm that has been designed to quickly adapt agent 
behavior in modern computer games  [Spronck, Ponsen, 
Sprinkhuizen-Kuyper, & Postma, 2006]. It differs from 
reinforcement learning algorithms such as q-learning in 
that it learns the value of an action in a game, not the value 
of an action in a particular state of a game. This means that 
DS is a form of an action-value method as defined by 
Sutton and Barto [1998]. The DS learning algorithm has 
been tested in both the role playing game Nevewinter 
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Nights and the real-time strategy game Stratagus [Spronck 
et al., 2006]. The Neverwinter Nights work also includes 
difficulty scaling mechanisms that works in conjunction 
with dynamic scripting to achieve game balancing. The 
authors have examined hierarchical reinforcement learning 
(HRL) in games using a dynamic scripting-based reward 
function [Ponsen, Spronck, & Tuyls, 2006] and compared 
its performance to a q-learning algorithm. The DS 
algorithm has also been extended to work with case-based 
selection mechanism [Aha et al., 2005]. Dynamic scripting 
has also been extended with a hierarchical goal structure 
intended for real-time strategy games [Dahlbom & 
Niklasson, 2006].  
 
This paper describes a set of dynamic scripting 
enhancements that are used to create agent behavior and 
perform automatic game balancing. The first extension is 
integrating DS with a hierarchical task network framework 
and the second involves extending dynamic scripting with 
automatic state construction to improve learning 
performance. The rest of the introduction will describe 
these extensions in more detail. The Experiments and 
Results section describes two separate instances of 
applying this infrastructure to a sub-problem of a real-time 
strategy game. The focus of the first experiment is 
developing learning agents to play the game; the focus of 
the second is the performance of the game balancing 
behavior. 

Dynamic Scripting Enhancements 
A Java version of a dynamic scripting library was 
constructed based on the work described by Spronck, et al. 
[2006]. This library was implemented with the ability to 
learn both after an episode is completed (existing behavior) 
and immediately after an action is completed (new 
behavior). The library also contains methods for specifying 
the reward function as a separate object, so that a user only 
needs to write a reward object that implements a particular 
interface in order for the library to be used on a different 
game. This library differs from the original algorithm in 
two main ways. The original DS algorithm selects a subset 
of available actions for each episode based on the value 
associated with each action. During the game, actions are 
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then selected from this subset by determining the highest-
priority action applicable in the current game state. The 
enhanced DS library chooses an action from the complete 
set of actions based on its associated value. This makes it 
possible for agent behavior to change during an episode 
and demonstrate immediate learning. 
 
Despite this change, the weight adjustment algorithm was 
not changed. That is, when a reward is applied the value 
for action a is updated: V(a) = V(a) + reward. This applies 
for all actions selected in the episode (which may be only 
one). All unselected action receive compensation: V(a) = 
V(a) + compensation, where compensation =  
- ((#selectedActions/#unselectedActions) * reward). The 
SoftMax action selection mechanism also remained 
unchanged and had a fixed temperature of 5 for all 
experiments. 
 
The DS library was then integrated with an existing task 
network behavior modeling tool [Fu, Houlette, & Ludwig, 
2007]. This tool allows users to graphically draw 
flowchart-like diagrams to specify connected sequences of 
perceptions and actions to describe agent behavior (e.g., 
see Figure 2). Choose nodes were added to the tool to 
indicate that the DS library should be used to choose 
between the actions connected to the node. Reward nodes 
were also added to indicate the points at which rewards 
should be applied for a specific choose node. Each choose 
node learns separately, based only on the actions it selects 
and the rewards it receives, allowing for multiple choice 
and reward nodes in the agent behavior. 
 
The behavior modeling tool supports hierarchical dynamic 
scripting by including additional choice points in sub-
behaviors. It also supports a combination of immediate and 
episodic learning. For example, a top-level behavior can 
choose to perform a melee attack (and be rewarded only 
after the episode is over) and the melee attack sub-behavior 
can choose to attempt to trip the enemy (and be rewarded 
immediately). The resulting system is somewhat similar to 
that described by Marthi, Russell, and Latham [2005], 
especially the idea of “choice points” though the type of 
reinforcement learning is quite different. 
 
The enhanced version of dynamic scripting also makes use 
of automatic state construction to improve learning. The 
standard DS algorithm considers only a single game state 
when learning action values. However, it is easy to see that 
at some points game state information would be useful. For 
example, in Neverwinter Nights, area-effect spells are 
more effective when facing multiple weaker enemies than 
when facing a single powerful enemy. So when deciding 
what spell to cast, having one set of weights (action values) 
for <= 1 enemy and another set of action values for >1 
enemy could improve action value learning. The difficulty 
lies in extending the algorithm such that agent behavior is 
automatically improved while maintaining the efficiency 
and adaptability of the original algorithm. 

To achieve automatic state construction, each choose node 
was designed to contain a variable number of policies and 
a classifier that partitions the game state into one of the 
available policies. The DS library was integrated with the 
Weka data mining system [Witten & Frank, 2005] to 
perform automatic construction of game state classifiers. 
Based on previous work in automatic state construction in 
reinforcement learning  [Au & Maire, 2004], the Decision 
Stump algorithm was selected as an initial data mining 
algorithm. It examines the game state feature vector, the 
action taken, and the reward received to classify the game 
state into one of two policies. While this does move DS 
closer to standard reinforcement learning, by limiting the 
number of states in a complex game to a relatively small 
number (2-5) it is expected that the generated behavior can 
be improved with a negligible impact on the speed of the 
algorithm both in terms of number of games required and 
computational efficiency. 

Experiments and Results 
Two games, based on a real-time strategy sub-problem, are 
used to demonstrate the dynamic scripting infrastructure. 
The first game examines the ability of the infrastructure to 
create hierarchical learners that make use of automatic 
state construction. The goal of these agents is to perform 
the task as well as possible. The second game builds on the 
first by creating a meta-level behavior that performs game 
balancing in a more complex environment. 

Experiment One: Agent Behavior 

 
Figure 1 Worker To Goal Game 

The Worker To Goal game attempts to capture the essential 
elements of a behavior learning problem by reproducing a 
game used by Ponsen, Sponck, & Tuyls [2006]. While they 
used this game to compare dynamic scripting and q-
learning algorithms in standard and hierarchical forms, this 
paper uses dynamic scripting to make higher level 
decisions. The simple game shown in Figure 1 involves 
three entities: a soldier (blue agent on the right), a worker 
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(yellow agent on the upper left), and a goal (red flag on the 
lower left). The soldier randomly patrols the map while the 
worker tries to move to the goal. All agents can move to an 
adjacent cell in the 32 by 32 grid each turn. A point is 
scored when the worker reaches the goal; the game ends 
when the enemy gets within eight units of the worker. If 
either the worker reaches the goal or the game ends then 
the goal, soldier, and worker are placed in random 
locations.  
 
The flat behavior of the worker uses a choose node to 
decide between moving a) directly towards the goal or b) 
directly away from the enemy. Each move is immediately 
rewarded, with +10 for scoring a point, -10 for ending the 
game, and a combination of the amount towards the goal 
and away from the enemy (1 * distance towards goal + 0.5 
* distance away from enemy). This differs from previous 
work that used DS only to learn how to perform a) and b) 
not decide between the two. That is, this choice point is 
learning to make a tactical decision—not how to carry out 
the decision. 

 
Figure 2 Worker Behavior 

The behavior for this worker is shown in Figure 2. In this 
case, the primitive action MoveTowards selects the move 
that gets the worker closest to the goal and the primitive 
action MoveFrom selects the move that gets the worker as 
far away from the enemy as possible. 
 
The hierarchical version of the worker behavior, 
H_Worker, replaces the primitive action MoveTowards 
with a sub-behavior and introduces another choice point in 
the new MoveTowards sub-behavior as seen in Figure 3. 
This version of the behavior allows the agent to choose 
between moving directly to the goal and selecting the 
move that moves towards the goal while maintaining the 
greatest possible distance from the enemy. The reward 
function for this choice point is the same as that for the 
MOVE choice. 
 
The Worker and H_Worker behaviors were each used to 
control the worker agent in 200 games with the described 
choice points, where all of the agents were positioned 
randomly at the start of each game and the weights for all 

actions were set to 5. A game ends when the soldier 
catches the worker, so the worker can score more than one 
point during a game by reaching the flag multiple times. 
The dynamic scripting learning parameters were fixed 
using the reward function described previously, a 
maximum action value of 30, and a minimum action value 
of 1. 

 
Figure 3 H_Worker ToGoal Behavior 

The Worker scored an average of 2.2 goals over the 200 
games, and this result functions as a base level of 
performance. The learned policy generally hovered around 
[30 (to goal), 1 (from enemy)] for the MOVE choice point, 
which essentially causes the agent to always move directly 
towards the goal. In certain random instances the worker 
might lose more than once in a row, reversing the policy to 
favor moving away from the soldier. This would cause the 
agent to move to the farthest edge until it eventually moves 
back towards the policy that directs the agent to the goal 
([30, 1]). 
 
With the goal of improving behavior, automatic state 
construction was used to classify the game state so that one 
of two policies would be used. A feature vector was 
generated for each choice point selection that included only 
the features previously identified [Ponsen et al., 2006]: 
relative distance to goal, direction to goal, distance to 
enemy, direction to enemy, and the received reward.  
 
The Decision Stump algorithm was used after 1, 2, 5, 10, 
20, and 100 games to partition the game state with varying 
amounts of data. After 1 game the created classifier 
divided the game state into one of two policies based on 
Distance_Goal <= 1.5, which had no significant effect on 
agent behavior.  In all other cases, the generated classifier 
was Distance_Enemy <= 8.5. The DS algorithm with this 
classifier improved significantly (p < .01), scoring an 
average of 2.9 goals over the 200 runs. Visually, the 
worker could be seen sometimes skirting around the enemy 
instead of charging into its path when it was nearly within 
the soldiers range. 
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The H_Worker, without state construction, performed 
significantly better than either version of the Worker 
behavior, with an average score of 4.2 (p < .01) over the 
200 runs. Similar to the Worker behavior, the MOVE 
choice point generally hovered around [30 (to goal), 1 
(from enemy)]. For the PURSUE choice point, the weights 
generally favored moving towards the goal but away from 
the enemy rather than moving directly to the goal [1 
(direct), 30 (to goal from enemy)]. Visually the H_Worker 
will generally spiral to the goal, which allows for moving 
toward the goal while maintaining the greatest possible 
distance from the enemy. 
 
Applying the Decision Stump classifier after 1, 2, 5, 10, 
20, and 100 games always resulted in creating the 
Distance_Goal <= 1.5 classifier which had no significant 
effect on the average score. 

Experiment Two: Game Balancing Behavior 
The second experiment builds on the Worker and 
H_Worker behaviors by creating a behavior that learns 
how to balance the expanded version of the Worker To 
Goal game shown in Figure 4. These two behaviors were 
chosen as the low and high performers of the previous 
experiment.  For both workers, automatic state 
construction is turned off. 
 

 
Figure 4 Worker To Goal 2 

In Worker To Goal 2, one random goal is replaced with 
two fixed goals. There is still one soldier that randomly 
patrols the board. The starting location of the agents is also 
fixed to be the top of the square barracks in the figure.  
 
At the beginning of each game, the soldier starts out in the 
same location and performs the same random patrol of the 

game board to allow for easy comparison across different 
runs. During its patrol, the soldier will sometimes hover 
around one of the goals, in the middle of the goals, at the 
worker creation point, or somewhere on the outskirts of the 
game board. The random path of the soldier serves as the 
dynamic function that the game balancing behavior must 
react to and demonstrates different levels of player 
competency for  (or attention to) a subtask within a game. 
 
Workers are created dynamically throughout the game and 
multiple workers can exist at any time. All workers share 
the same choice points. That is, all instances of Worker and 
H_Worker share the same set of values for the MOVE 
choice point and all H_Worker instances share a single set 
of values for the PURSUE choice point. So, for example, if 
one worker is caught all of the remaining workers will be 
more likely to move away from the enemy. 
 
In this game, every time a worker makes it to the goal the 
computer scores one point. Every time the soldier captures 
a worker, the player scores one point. At the end of each 
episode the score decays by one point, with the idea that it 
isn’t very interesting when nothing happens. 
 
The Worker and H_Worker behaviors were modified to 
work in the context of this new game. First, the MOVE 
choice point in both the Worker and H_Worker is used to 
decide among moving towards goal 1, towards goal 2, or 
away from the enemy as shown in Figure 5. 

 
Figure 5 Worker 2 Behavior 

Figure 6 shows the modification of the H_Worker 
MoveTowards sub-behavior. Now this behavior chooses 
from moving directly to the goal, moving towards the goal 
and maximizing the distance from the enemy, or moving 
towards the desired goal and minimizing the distance 
between the worker and the other goal. 
 
The behaviors of the modified Worker and H_Worker 
agents are very similar to the behaviors of the version 
described previously. The reward function and learning 
parameters were not changed for these behaviors, so the 
system is attempting to learn the best possible actions for 
these agents. At the MOVE choice point, the main 
difference is that workers will all go to one goal until the 
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soldier starts to capture workers heading to that goal. At 
this point, the workers quickly switch to moving towards 
the second goal.  This works very well if the soldier is 
patrolling on top of one of the goals. At the H_Worker 
PURSUE choice point, moving towards the goal but away 
from the enemy was generally preferred over the other two 
possible actions. 

 
Figure 6 H_Worker 2 ToGoal Behavior 

The game balancing behavior shown in Figure 7 attempts 
to keep the score as close to zero as possible by performing 
a number of possible actions each episode (30 game ticks). 
Keeping the score close to zero balances the number of 
workers that make it to the goal and the number of workers 
captured. Admittedly, this is an arbitrary function where 
the main purpose is to demonstrate the learning capabilities 
of the system and the actual function learned is of 
secondary importance. 
 

 
Figure 7 Game Balancing Behavior 

The available actions are creating a Worker, creating an 
H_Worker, doing nothing (noop), speeding up (performing 
up to five actions/episode) and slowing down (performing 
down to one action/episode). This meta-level behavior was 

created using the same choice point infrastructure used in 
the agent behaviors. 
 
The learning parameters for this choice point were 
different than the parameters for the worker agents. First, 
the minimum action value was set to 1 and the maximum 
action value was 10. The temperature of the SoftMax 
selection algorithm remained at 5. The reward function 
was |s| - |s’|, where s is the score at the beginning of the 
episode and s’ is the score at the end. This rewards actions 
that bring the score closer to zero. Unlike the worker 
agents which are rewarded immediately, this behavior only 
receives a reward at the end of an episode. 
 
The game balancing behavior was allowed to run for 100 
episodes (3,000 actions) to form a single game. In each 
game, the soldier starts at the same position and makes the 
exact same movements. For comparison, two other reward 
functions were also tested. The first doubles the reward, 
which causes them to have a bigger impact. The second 
halves the reward so the learning impact of a reward is 
halved. To provide an upper level bound on behavior, a 
fourth algorithm was created where the GAME choice 
point was replaced by a random decision. 
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Figure 8 Game Balance Results 

The average score (#worker goals - #workers captured) 
after each episode for the four different cases is presented 
visually in Figure 8. This graph also indicates the position 
of the soldier at various times during the game (100 
episodes). Initially the soldier starts near the goals. In the 
middle portion of the game the soldier is located so it tends 
to capture all of the workers as soon as they are created, 
driving the score down. Towards the end of the game the 
soldier wanders around the periphery and scores tend to go 
up. 
 

Table 1 Mean Absolute Deviation 
Random 12.0 

Standard Reward 8.3 
Double Reward 9.8 

Half Reward 6.9 
 
To capture a quantitative measurement, the mean absolute 
deviation (MAD) [Schunn, 2001] was also computed 
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across the eight games for each type and is shown in Table 
1. The standard, double, and half reward cases are all 
statistically significant improvements (p < .01). 
 
The game choice behavior did perform as expected in 
some games. For example, it could be seen that if the score 
was positive and the workers were being captured then it 
would ratchet the speed to maximum and create standard 
workers (thus lowering the score by having more workers 
captured). Another interesting finding is that halving the 
reward (slowing down learning) resulted in the lowest 
MAD. Since actions are spread out evenly over an episode, 
a worker created at the end of an episode may not reach the 
goal or get captured until the next episode. Ignoring half of 
the reward each episode effectively takes this into account, 
while demonstrating the sensitivity of RL algorithms to 
different reward functions.  
 
The game balancing performance -- while an improvement 
over a random controller -- was not as good as expected. 
We are still investigating ways to improve the game 
balancing behavior and the effects of applying automatic 
state construction techniques to this choice point.  

Conclusion and Future Work 
This paper demonstrates a single learning mechanism 
capable of both learning how to balance the game and how 
to play the game, representing different game aspects as a 
single type of learning problem. While promising, the two 
experiments discussed are only an initial test of the 
dynamic scripting infrastructure. The results show that 
automatic state construction can be used to improve agent 
behavior at a minimal cost, but more research is required to 
determine how to make this a generally useful feature. 
Additionally, while the game balancing behavior works to 
some extent, there is a lot of room for improvement. We 
are currently investigating applying automatic state 
construction and introducing a hierarchy of game 
balancing behaviors to improve performance.  
 
It remains to be seen if these extensions can improve upon 
the behavior of the original DS algorithm in a large scale 
modern computer game. Our future work will focus on 
such an integration that will demonstrate the effectiveness 
and efficiency of the infrastructure as a whole. This will 
allow the enhanced DS algorithm to be compared to both 
the original DS algorithm as well as other standard RL 
algorithms such as q-learning. 
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