
A Learning Infrastructure for Improving
Agent Performance and Game Balance

Jeremy Ludwig and Art Farley

Computer Science Department, University of Oregon
120 Deschutes Hall, 1202 University of Oregon

Eugene, OR 97403
ludwig@cs.uoregon.edu, art@cs.uoregon.edu

Abstract
This paper describes a number of extensions to the dynamic
scripting reinforcement learning algorithm which was
designed for modern computer games. These enhancements
include integration with an AI tool and automatic state
construction. A subset of a real-time strategy game is used
to demonstrate the learning algorithm both improving the
performance of agents in the game and acting as a game
balancing mechanism.

Introduction
One of the primary uses of artificial intelligence algorithms
in modern games [Laird & van Lent, 2001] is to control the
behavior of simulated entities (agents) within a game.
Agent behavior is developed using a diverse set of
architectures that run from scripted behaviors to task
networks to behavior planning systems. Once created,
agents can continue to adapt by using on-line learning
(OLL) algorithms to change their behavior [Yannakakis &
Hallam, 2005]. There are two related goals that OLL can
help acheive. The first is to alter behaviors such that the
computer can outplay the human, creating the highest-
performing behavior [Aha, Molineaux, & Ponsen, 2005].
The second is game balancing, to adapt the behavior of an
agent, or team of agents, to the level of play of the human.
The goal of game balancing is to provide a level of play
that is a challenge to the player but still gives her a chance
to win [Andrade, Ramalho, Santana, & Corruble, 2005].

Dynamic scripting (DS) is a reinforcement learning
algorithm that has been designed to quickly adapt agent
behavior in modern computer games [Spronck, Ponsen,
Sprinkhuizen-Kuyper, & Postma, 2006]. It differs from
reinforcement learning algorithms such as q-learning in
that it learns the value of an action in a game, not the value
of an action in a particular state of a game. This means that
DS is a form of an action-value method as defined by
Sutton and Barto [1998]. The DS learning algorithm has
been tested in both the role playing game Nevewinter

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nights and the real-time strategy game Stratagus [Spronck
et al., 2006]. The Neverwinter Nights work also includes
difficulty scaling mechanisms that works in conjunction
with dynamic scripting to achieve game balancing. The
authors have examined hierarchical reinforcement learning
(HRL) in games using a dynamic scripting-based reward
function [Ponsen, Spronck, & Tuyls, 2006] and compared
its performance to a q-learning algorithm. The DS
algorithm has also been extended to work with case-based
selection mechanism [Aha et al., 2005]. Dynamic scripting
has also been extended with a hierarchical goal structure
intended for real-time strategy games [Dahlbom &
Niklasson, 2006].

This paper describes a set of dynamic scripting
enhancements that are used to create agent behavior and
perform automatic game balancing. The first extension is
integrating DS with a hierarchical task network framework
and the second involves extending dynamic scripting with
automatic state construction to improve learning
performance. The rest of the introduction will describe
these extensions in more detail. The Experiments and
Results section describes two separate instances of
applying this infrastructure to a sub-problem of a real-time
strategy game. The focus of the first experiment is
developing learning agents to play the game; the focus of
the second is the performance of the game balancing
behavior.

Dynamic Scripting Enhancements
A Java version of a dynamic scripting library was
constructed based on the work described by Spronck, et al.
[2006]. This library was implemented with the ability to
learn both after an episode is completed (existing behavior)
and immediately after an action is completed (new
behavior). The library also contains methods for specifying
the reward function as a separate object, so that a user only
needs to write a reward object that implements a particular
interface in order for the library to be used on a different
game. This library differs from the original algorithm in
two main ways. The original DS algorithm selects a subset
of available actions for each episode based on the value
associated with each action. During the game, actions are

7

then selected from this subset by determining the highest-
priority action applicable in the current game state. The
enhanced DS library chooses an action from the complete
set of actions based on its associated value. This makes it
possible for agent behavior to change during an episode
and demonstrate immediate learning.

Despite this change, the weight adjustment algorithm was
not changed. That is, when a reward is applied the value
for action a is updated: V(a) = V(a) + reward. This applies
for all actions selected in the episode (which may be only
one). All unselected action receive compensation: V(a) =
V(a) + compensation, where compensation =
- ((#selectedActions/#unselectedActions) * reward). The
SoftMax action selection mechanism also remained
unchanged and had a fixed temperature of 5 for all
experiments.

The DS library was then integrated with an existing task
network behavior modeling tool [Fu, Houlette, & Ludwig,
2007]. This tool allows users to graphically draw
flowchart-like diagrams to specify connected sequences of
perceptions and actions to describe agent behavior (e.g.,
see Figure 2). Choose nodes were added to the tool to
indicate that the DS library should be used to choose
between the actions connected to the node. Reward nodes
were also added to indicate the points at which rewards
should be applied for a specific choose node. Each choose
node learns separately, based only on the actions it selects
and the rewards it receives, allowing for multiple choice
and reward nodes in the agent behavior.

The behavior modeling tool supports hierarchical dynamic
scripting by including additional choice points in sub-
behaviors. It also supports a combination of immediate and
episodic learning. For example, a top-level behavior can
choose to perform a melee attack (and be rewarded only
after the episode is over) and the melee attack sub-behavior
can choose to attempt to trip the enemy (and be rewarded
immediately). The resulting system is somewhat similar to
that described by Marthi, Russell, and Latham [2005],
especially the idea of “choice points” though the type of
reinforcement learning is quite different.

The enhanced version of dynamic scripting also makes use
of automatic state construction to improve learning. The
standard DS algorithm considers only a single game state
when learning action values. However, it is easy to see that
at some points game state information would be useful. For
example, in Neverwinter Nights, area-effect spells are
more effective when facing multiple weaker enemies than
when facing a single powerful enemy. So when deciding
what spell to cast, having one set of weights (action values)
for <= 1 enemy and another set of action values for >1
enemy could improve action value learning. The difficulty
lies in extending the algorithm such that agent behavior is
automatically improved while maintaining the efficiency
and adaptability of the original algorithm.

To achieve automatic state construction, each choose node
was designed to contain a variable number of policies and
a classifier that partitions the game state into one of the
available policies. The DS library was integrated with the
Weka data mining system [Witten & Frank, 2005] to
perform automatic construction of game state classifiers.
Based on previous work in automatic state construction in
reinforcement learning [Au & Maire, 2004], the Decision
Stump algorithm was selected as an initial data mining
algorithm. It examines the game state feature vector, the
action taken, and the reward received to classify the game
state into one of two policies. While this does move DS
closer to standard reinforcement learning, by limiting the
number of states in a complex game to a relatively small
number (2-5) it is expected that the generated behavior can
be improved with a negligible impact on the speed of the
algorithm both in terms of number of games required and
computational efficiency.

Experiments and Results
Two games, based on a real-time strategy sub-problem, are
used to demonstrate the dynamic scripting infrastructure.
The first game examines the ability of the infrastructure to
create hierarchical learners that make use of automatic
state construction. The goal of these agents is to perform
the task as well as possible. The second game builds on the
first by creating a meta-level behavior that performs game
balancing in a more complex environment.

Experiment One: Agent Behavior

Figure 1 Worker To Goal Game

The Worker To Goal game attempts to capture the essential
elements of a behavior learning problem by reproducing a
game used by Ponsen, Sponck, & Tuyls [2006]. While they
used this game to compare dynamic scripting and q-
learning algorithms in standard and hierarchical forms, this
paper uses dynamic scripting to make higher level
decisions. The simple game shown in Figure 1 involves
three entities: a soldier (blue agent on the right), a worker

8

(yellow agent on the upper left), and a goal (red flag on the
lower left). The soldier randomly patrols the map while the
worker tries to move to the goal. All agents can move to an
adjacent cell in the 32 by 32 grid each turn. A point is
scored when the worker reaches the goal; the game ends
when the enemy gets within eight units of the worker. If
either the worker reaches the goal or the game ends then
the goal, soldier, and worker are placed in random
locations.

The flat behavior of the worker uses a choose node to
decide between moving a) directly towards the goal or b)
directly away from the enemy. Each move is immediately
rewarded, with +10 for scoring a point, -10 for ending the
game, and a combination of the amount towards the goal
and away from the enemy (1 * distance towards goal + 0.5
* distance away from enemy). This differs from previous
work that used DS only to learn how to perform a) and b)
not decide between the two. That is, this choice point is
learning to make a tactical decision—not how to carry out
the decision.

Figure 2 Worker Behavior

The behavior for this worker is shown in Figure 2. In this
case, the primitive action MoveTowards selects the move
that gets the worker closest to the goal and the primitive
action MoveFrom selects the move that gets the worker as
far away from the enemy as possible.

The hierarchical version of the worker behavior,
H_Worker, replaces the primitive action MoveTowards
with a sub-behavior and introduces another choice point in
the new MoveTowards sub-behavior as seen in Figure 3.
This version of the behavior allows the agent to choose
between moving directly to the goal and selecting the
move that moves towards the goal while maintaining the
greatest possible distance from the enemy. The reward
function for this choice point is the same as that for the
MOVE choice.

The Worker and H_Worker behaviors were each used to
control the worker agent in 200 games with the described
choice points, where all of the agents were positioned
randomly at the start of each game and the weights for all

actions were set to 5. A game ends when the soldier
catches the worker, so the worker can score more than one
point during a game by reaching the flag multiple times.
The dynamic scripting learning parameters were fixed
using the reward function described previously, a
maximum action value of 30, and a minimum action value
of 1.

Figure 3 H_Worker ToGoal Behavior

The Worker scored an average of 2.2 goals over the 200
games, and this result functions as a base level of
performance. The learned policy generally hovered around
[30 (to goal), 1 (from enemy)] for the MOVE choice point,
which essentially causes the agent to always move directly
towards the goal. In certain random instances the worker
might lose more than once in a row, reversing the policy to
favor moving away from the soldier. This would cause the
agent to move to the farthest edge until it eventually moves
back towards the policy that directs the agent to the goal
([30, 1]).

With the goal of improving behavior, automatic state
construction was used to classify the game state so that one
of two policies would be used. A feature vector was
generated for each choice point selection that included only
the features previously identified [Ponsen et al., 2006]:
relative distance to goal, direction to goal, distance to
enemy, direction to enemy, and the received reward.

The Decision Stump algorithm was used after 1, 2, 5, 10,
20, and 100 games to partition the game state with varying
amounts of data. After 1 game the created classifier
divided the game state into one of two policies based on
Distance_Goal <= 1.5, which had no significant effect on
agent behavior. In all other cases, the generated classifier
was Distance_Enemy <= 8.5. The DS algorithm with this
classifier improved significantly (p < .01), scoring an
average of 2.9 goals over the 200 runs. Visually, the
worker could be seen sometimes skirting around the enemy
instead of charging into its path when it was nearly within
the soldiers range.

9

The H_Worker, without state construction, performed
significantly better than either version of the Worker
behavior, with an average score of 4.2 (p < .01) over the
200 runs. Similar to the Worker behavior, the MOVE
choice point generally hovered around [30 (to goal), 1
(from enemy)]. For the PURSUE choice point, the weights
generally favored moving towards the goal but away from
the enemy rather than moving directly to the goal [1
(direct), 30 (to goal from enemy)]. Visually the H_Worker
will generally spiral to the goal, which allows for moving
toward the goal while maintaining the greatest possible
distance from the enemy.

Applying the Decision Stump classifier after 1, 2, 5, 10,
20, and 100 games always resulted in creating the
Distance_Goal <= 1.5 classifier which had no significant
effect on the average score.

Experiment Two: Game Balancing Behavior
The second experiment builds on the Worker and
H_Worker behaviors by creating a behavior that learns
how to balance the expanded version of the Worker To
Goal game shown in Figure 4. These two behaviors were
chosen as the low and high performers of the previous
experiment. For both workers, automatic state
construction is turned off.

Figure 4 Worker To Goal 2

In Worker To Goal 2, one random goal is replaced with
two fixed goals. There is still one soldier that randomly
patrols the board. The starting location of the agents is also
fixed to be the top of the square barracks in the figure.

At the beginning of each game, the soldier starts out in the
same location and performs the same random patrol of the

game board to allow for easy comparison across different
runs. During its patrol, the soldier will sometimes hover
around one of the goals, in the middle of the goals, at the
worker creation point, or somewhere on the outskirts of the
game board. The random path of the soldier serves as the
dynamic function that the game balancing behavior must
react to and demonstrates different levels of player
competency for (or attention to) a subtask within a game.

Workers are created dynamically throughout the game and
multiple workers can exist at any time. All workers share
the same choice points. That is, all instances of Worker and
H_Worker share the same set of values for the MOVE
choice point and all H_Worker instances share a single set
of values for the PURSUE choice point. So, for example, if
one worker is caught all of the remaining workers will be
more likely to move away from the enemy.

In this game, every time a worker makes it to the goal the
computer scores one point. Every time the soldier captures
a worker, the player scores one point. At the end of each
episode the score decays by one point, with the idea that it
isn’t very interesting when nothing happens.

The Worker and H_Worker behaviors were modified to
work in the context of this new game. First, the MOVE
choice point in both the Worker and H_Worker is used to
decide among moving towards goal 1, towards goal 2, or
away from the enemy as shown in Figure 5.

Figure 5 Worker 2 Behavior

Figure 6 shows the modification of the H_Worker
MoveTowards sub-behavior. Now this behavior chooses
from moving directly to the goal, moving towards the goal
and maximizing the distance from the enemy, or moving
towards the desired goal and minimizing the distance
between the worker and the other goal.

The behaviors of the modified Worker and H_Worker
agents are very similar to the behaviors of the version
described previously. The reward function and learning
parameters were not changed for these behaviors, so the
system is attempting to learn the best possible actions for
these agents. At the MOVE choice point, the main
difference is that workers will all go to one goal until the

10

soldier starts to capture workers heading to that goal. At
this point, the workers quickly switch to moving towards
the second goal. This works very well if the soldier is
patrolling on top of one of the goals. At the H_Worker
PURSUE choice point, moving towards the goal but away
from the enemy was generally preferred over the other two
possible actions.

Figure 6 H_Worker 2 ToGoal Behavior

The game balancing behavior shown in Figure 7 attempts
to keep the score as close to zero as possible by performing
a number of possible actions each episode (30 game ticks).
Keeping the score close to zero balances the number of
workers that make it to the goal and the number of workers
captured. Admittedly, this is an arbitrary function where
the main purpose is to demonstrate the learning capabilities
of the system and the actual function learned is of
secondary importance.

Figure 7 Game Balancing Behavior

The available actions are creating a Worker, creating an
H_Worker, doing nothing (noop), speeding up (performing
up to five actions/episode) and slowing down (performing
down to one action/episode). This meta-level behavior was

created using the same choice point infrastructure used in
the agent behaviors.

The learning parameters for this choice point were
different than the parameters for the worker agents. First,
the minimum action value was set to 1 and the maximum
action value was 10. The temperature of the SoftMax
selection algorithm remained at 5. The reward function
was |s| - |s’|, where s is the score at the beginning of the
episode and s’ is the score at the end. This rewards actions
that bring the score closer to zero. Unlike the worker
agents which are rewarded immediately, this behavior only
receives a reward at the end of an episode.

The game balancing behavior was allowed to run for 100
episodes (3,000 actions) to form a single game. In each
game, the soldier starts at the same position and makes the
exact same movements. For comparison, two other reward
functions were also tested. The first doubles the reward,
which causes them to have a bigger impact. The second
halves the reward so the learning impact of a reward is
halved. To provide an upper level bound on behavior, a
fourth algorithm was created where the GAME choice
point was replaced by a random decision.

-15

-10

-5

0

5

10

15

20

25

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Episode

S
co

re
 (W

or
ke

r -
 S

ol
di

er
)

Random
Standard
* 2.0
* 0.5

Figure 8 Game Balance Results

The average score (#worker goals - #workers captured)
after each episode for the four different cases is presented
visually in Figure 8. This graph also indicates the position
of the soldier at various times during the game (100
episodes). Initially the soldier starts near the goals. In the
middle portion of the game the soldier is located so it tends
to capture all of the workers as soon as they are created,
driving the score down. Towards the end of the game the
soldier wanders around the periphery and scores tend to go
up.

Table 1 Mean Absolute Deviation
Random 12.0

Standard Reward 8.3
Double Reward 9.8

Half Reward 6.9

To capture a quantitative measurement, the mean absolute
deviation (MAD) [Schunn, 2001] was also computed

11

across the eight games for each type and is shown in Table
1. The standard, double, and half reward cases are all
statistically significant improvements (p < .01).

The game choice behavior did perform as expected in
some games. For example, it could be seen that if the score
was positive and the workers were being captured then it
would ratchet the speed to maximum and create standard
workers (thus lowering the score by having more workers
captured). Another interesting finding is that halving the
reward (slowing down learning) resulted in the lowest
MAD. Since actions are spread out evenly over an episode,
a worker created at the end of an episode may not reach the
goal or get captured until the next episode. Ignoring half of
the reward each episode effectively takes this into account,
while demonstrating the sensitivity of RL algorithms to
different reward functions.

The game balancing performance -- while an improvement
over a random controller -- was not as good as expected.
We are still investigating ways to improve the game
balancing behavior and the effects of applying automatic
state construction techniques to this choice point.

Conclusion and Future Work
This paper demonstrates a single learning mechanism
capable of both learning how to balance the game and how
to play the game, representing different game aspects as a
single type of learning problem. While promising, the two
experiments discussed are only an initial test of the
dynamic scripting infrastructure. The results show that
automatic state construction can be used to improve agent
behavior at a minimal cost, but more research is required to
determine how to make this a generally useful feature.
Additionally, while the game balancing behavior works to
some extent, there is a lot of room for improvement. We
are currently investigating applying automatic state
construction and introducing a hierarchy of game
balancing behaviors to improve performance.

It remains to be seen if these extensions can improve upon
the behavior of the original DS algorithm in a large scale
modern computer game. Our future work will focus on
such an integration that will demonstrate the effectiveness
and efficiency of the infrastructure as a whole. This will
allow the enhanced DS algorithm to be compared to both
the original DS algorithm as well as other standard RL
algorithms such as q-learning.

References
Aha, D. W., Molineaux, M., & Ponsen, M. (2005).
Learning to win: Case-based plan selection in a real-time
strategy game. Paper presented at the Sixth International
Conference on Case-Based Reasoning, Chicago, IL.

Andrade, G., Ramalho, G., Santana, H., & Corruble, V.
(2005). Extending reinforcement learning to provide
dynamic game balancing. Paper presented at the
Reasoning, Representation, and Learning in Computer
Games: Proceedings of the IJCAI workshop, Edinburgh,
Scotland.
Au, M., & Maire, F. (2004). Automatic State Construction
using Decision Tree for Reinforcement Learning Agents.
Paper presented at the International Conference on
Computational Intelligence for Modelling, Control and
Automation, Gold Coast, Australia.
Dahlbom, A., & Niklasson, L. (2006). Goal-directed
hierarchical dynamic scripting for RTS games. Paper
presented at the Second Artificial Intelligence in
Interactive Digital Entertainment, Marina del Rey,
California.
Fu, D., Houlette, R., & Ludwig, J. (2007). An AI Modeling
Tool for Designers and Developers. Paper presented at the
IEEE Aerospace Conference.
Laird, J. E., & van Lent, M. (2001). Human-level AI’s
killer application: Interactive computer games. AI
Magazine, 22(2), 15-26.
Marthi, B., Russell, S., & Latham, D. (2005). Writing
stratagus-playing agents in concurrent ALisp. Paper
presented at the Reasoning, representation, and learning in
computer games: Proceedings of the IJCAI workshop,
Edinburgh, Scotland.
Ponsen, M., Spronck, P., & Tuyls, K. (2006). Hierarchical
reinforcement leanring in computer games. Paper
presented at the ALAMAS'06 Adaptive Learning and
Multi-Agent Systems, Vrije Universiteit, Brussels,
Belgium.
Schunn, C. D. (2001). Goodness of Fit Metrics in
Comparing Models to Data. Retrieved 06/06, 2004, from
http://www.lrdc.pitt.edu/schunn/gof/index.html
Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., &
Postma, E. (2006). Adaptive game AI with dynamic
scripting. Machine Learning, 63(3), 217-248.
Sutton, R., & Barto, A. (1998). Reinforcement Learning:
An Introduction: MIT Press.
Witten, I. H., & Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques, 2nd Edition. San
Francisco: Morgan Kaufmann.
Yannakakis, G. N., & Hallam, J. (2005). A scheme for
creating digital entertainment with substance. Paper
presented at the Reasoning, representation, and learning in
computer games: Proceedings of the IJCAI workshop,
Edinburgh, Scotland.

12

