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Abstract
Computer  and  videogames  have  been  described  using 
several formal systems – in this paper we consider them as 
Information  Systems.  In  particular,  we  use  a  Decision 
Theoretic approach to model and analyse off-line, data from 
PacmanTM players.  Our  method  attempts  to  calculate  the 
optimal choices available to a player based on key utilities 
for a given game state. Our hypothesis in this approach is 
that observing a player’s deviation from the optimal choices 
predicted  can  reveal  their  play  preferences  and skill,  and 
thus form a basic player classifier.  The method described 
builds on work done in [Cowley et al 2006], increasing the 
scope and sophistication of the model by decreasing reliance 
on supervision. The downside is a consequent performance 
hit,  which  prevents  real-time  execution  of  the  modelling 
algorithm. In this paper we outline the basic principle of the 
Decision Theoretic approach and discuss the results of our 
evolution toward data-driven classification.

Introduction  

The approach described herein is  grounded in a body of 
research  on  games  as  formal  systems  (systems  of 
information), and we can summarise this as follows. There 
are  several  definitions  of  games  and  gaming  in  the 
literature,  from a  variety  of  sources  such  as  ludologists 
[Wolf & Perron 2003],  game designers [Crawford 2002] 
and game studies researchers [Salen & Zimmerman 2003]. 
However, the academic study of commercial computer and 
video games (hereafter called games) is  still  a very new 
area, especially as regards understanding and systematising 
the relationship between games and players. In particular 
more  study  is  required  into  game  dynamics –  i.e.  the 
interaction that arises between a player and game’s formal 
system. A formal system (or game  mechanics)  defines a 
gameplay logic which can be expressed as a mathematical 
model. Game play in such a model occurs as a (usually) 
deterministic,  emergent  process  of  action  sequences 
belonging to one or more players. As this process equates 
to the player’s exploration of the game’s possibility space 
it  also  correlates  strongly to  their  overall  experience.  In 
other words, often how mechanics give rise to dynamics is 
the  biggest  influence  on  a  player’s  experience  [Salen  & 
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Zimmerman 2006],  and it  is  improvement  of  experience 
that  is  the main goal of player modelling. Therefore our 
goal in this paper is to advance the investigation into player 
modelling using reductionist formal methods. 

Predictive Player Modelling
Predictive  player  modelling  works  by  considering  the 
player’s  in-game  goals  as  equivalent  to  some  target 
function  of  the  game state  and  calculating  this  function 
using  in-game  player-related  data  (similar  to  [Thue  & 
Bulitko 2006]). Our overall aim is develop this method into 
a  player  classifier,  with  validation  based  on  the 
Demographic  Game  Design  (DGD)  [Bateman  &  Boon 
2005]  typology  of  players.  If  successful,  Decision 
Theoretic  modelling  would  provide  a  low-level  building 
block  to  be  used  so  that  a  game's  play  structure  may 
automatically adapt to the preferences and skills of each 
individual player.

The  authors  developed  this  approach  inspired  by 
considering  games  as  Information  Theory  systems, 
especially  the  principle  that  Decision  Theory 
[Gmytrasiewicz & Lisetti 2000] can be used to model the 
choices  that  players  make  on  the  basis  of  available 
information.  This  decision  theoretic  approach  is 
descriptive rather than  prescriptive because although one 
can quite  accurately calculate the optimal choices  that  a 
player  should take given  the  current  game state  and the 
most obvious and observable utilities, players generally do 
not play in an optimal way. This may be due to their lack 
of experience or their personal playing style.

Previously,  the  authors  implemented  predictive  player 
modelling in [Cowley et al 2006], using a pre-defined set 
of states for classification of the player’s utility, which had 
the disadvantage of having a low granularity. This resulted 
in poor accuracy when classifying the player’s state, which 
increased the  uncertainty in  the  prediction function.  The 
current implementation follows a different approach – to 
take account of all relevant features of the current state, so 
that utility calculation is built on a weighted feature vector. 
This  reduces  the  impact  of  arbitrary  design  choices,  so 
classification  of  state  is  more  unsupervised  and  data 
driven. The main aim of this paper then is to investigate 
whether  such  a  switch  from  pre-defined  states  to  data-
driven utility calculation improves the predictive power of 
the Decision Theoretic method when the weighted features 
are themselves predefined. 
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The  paper  continues  in  the  next  section  with  a 
description of our Pacman test-bed implementation, while 
section  3  explains  the  Decision  Theoretic  formula  used, 
and  how it  can  be  applied  to  Pacman  in  a  data  driven 
fashion. In Section 4 we present results  from a series of 
experiments run on game data collected from gamers with 
a  broad  cross-section  of  experience,  and  this  leads  the 
reader  to  the  conclusions  and  final  remarks  on  the 
applicability of the method and possible future work.

Pacman Test-bed Implementation

The  Pacman  implementation  used  was  created  by  the 
authors  and  represents  an  interpretation  of  the  original 
Namco  game,  rather  than  a  clone.  Thus  we  provide  a 
description  of  the  game  mechanics  below.  Pacman  is  a 
linear  and  relatively  simple  game  when  compared  to 
modern computer games, yet its possibility space is still far 
too  complex  to  search  without  heuristics.  Below  we 
describe  how  the  game  was  broken  down  into  its 
constitutive elements and fitted into the utility calculation 
formula (Initial Caps are used to describe game entities and 
their  actions;  ‘the  player’  and  ‘Pacman’  are  inter-
changeable).  This  enabled  our  implementation  of  the 
formula within the test-bed code.
• The game world is a 2D graph, where the nodes of the 

graph can be Pill, Dot or empty. This constitutes a level.

•  Pacman  and  the  Ghosts  (the  in-game  actors)  Move 
between nodes along two axes, horizontal and vertical. 

•  Ghosts  move randomly,  starting in  a  central  box area. 
Random movement was chosen as the Ghosts’ controller 
to make it simpler to calculate the probability of future 
states in the look-ahead tree (since random movement 
gives an even probability distribution to all future states)

• Pacman Eats Dots & Pills when he Moves over them.

• Pacman only Eats Ghosts when he has Eaten a Pill within 
the last t game cycles, otherwise Ghosts Eat Pacman and 
he loses a Life.

• Eaten sprites re-spawn at their original start node, unless 
Pacman has run out of lives, then the game is over.

• Pacman must Eat all Pills and Dots to finish, whereupon 
the level ends whether or not the player was still within 
the t cycles started from recently Eating a Pill.

• Ghosts are permeable and do not interact with Dots or 
Pills or obstruct each other.

• Points are scored as follows: 10 per Dot, 50 per Pill, (100 
(2 ^ Num of Ghosts)) for each Ghost Eaten after a Pill.

The above is a description of Constituative rules [Salen & 
Zimmerman 2003]  –  the  formal  rules  that  comprise  the 
game mechanics [Hunicke et al 2004]. Our approach uses 
descriptive  Decision  Theory  to  model  the  Constituative 
rules, and by this method approximately model the game 
dynamics – i.e. how the player interacts with the game (as 
described by Operative rules [Salen & Zimmerman 2003]).

Pacman and Decision Theory

To see why we use Decision Theory, consider the situation 
where Pacman is unconstrained in a level – for example if  
there  were  no  Ghosts.  Time  is  never  a  constraint  in 
Pacman, so without Ghosts the path chosen by the player 
would be unimportant, as any explorative path would result 
in the same utility – collecting all the dots. There would be 
no  unforeseeable  or  surprising  events,  no  challenge. 
Pacman could follow any path through the level, and the 
level would end when the path does. In this game, there are 
no  meaningful  choices  to  be  made,  which  by  some 
definitions [Salen & Zimmerman 2003] would mean this 
was  no  longer  even  a  game.  Gameplay  is  created  by 
choosing between utilities – e.g. save lives by evading (or 
increase points by hunting) Ghosts. 

In  fact,  in  most  games  the  mechanics  of  play  are 
concerned  with  choosing  the  action  which  maximises  a 
utility  function,  from  a  set  of  actions  situated  in  an 
evolving possibility-space. This explanation of gameplay is 
very  evident  in  the  literature,  both  before  and  after  the 
advent of computer games:

A game is  a  form of  art  in  which…players…make 
decisions in order to manage resources through game 
tokens in pursuit of a goal. [Costikyan 1994]

Indeed most formal work on games playing, whether it be 
Game  Theory  [von  Neumann  &  Morgenstern  1947]  or 
board-game playing computer programs [Bell 1972], relies 
on  predicting  the  decisions  of  opponents  based  on 
estimation of their utility. The problem in translating this 
for modern computer games is that firstly, the possibility 
space is often very large and states and features cannot be 
precisely defined, and secondly  most are not turn-based. 
This last invalidates many optimisations & heuristics from 
the research on board game playing programs [Bell 1972].

Our method follows [Gmytrasiewicz & Lisetti 2000] in 
formulating  gameplay  in  terms  of  Decision  Theory. 
Information  Theory,  and  by  extension  Decision  Theory, 
can  be  viewed  as  a  formulation  of  the  uncertainty  of 
making non-trivial choices, and so can be used to describe 
the  choices  that  create  gameplay.  Thus  in  our 
implementation  the  current  information,  from  the  game 
state and the heuristics on player utility, is used to make 
predictions of the choices of which nodes it is possible for 
Pacman to move to. We can fit the choices, and their utility 
weights, to a formula using Decision Theory. Thus we can 
predict quite accurately the behaviour of a rational, utility-
maximising player.  The list of these predictions (i.e.  the 
actions of a rational player) will give an example of a near-
optimal path.

A  rational  player  formulates  its  decision  making 
situation  in  terms  of  a  finite  set,  A,  of  the  alternative 
courses of action, or plans, it can execute. A member of A, 
say ai, can be thought of as a plan consisting of consecutive 
actions extending to the future time tai (see section  Tree 
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Search). An action plan occurs in a state-delimited world, 
formalised as the set of all possible states of the world, S. 
In  Pacman,  the  current  state  is  known,  and  thus  our 
probability function represents the uncertainty of the player 
as we project forward in time – resulting in a probability 
distribution  P(S)  over  the  state  space  S.  This  projection 
function  is  expressed  proj :  S × A  ->  P(S),  so  that 
projecting the results of action ai given the current state  S 
gives the probability of the projected states, proj( S,  ai  ) = 
Pi(S). Our Utility function U encodes the desirability of the 
projected states to the player. U maps a state to numerical 
output, U  :  S →  R.  Thus by calculating (Formula 1) we 
predict a plan a* that a player should perform to maximise 
their utility:

∑
∈

∈=
Ss

jj
iA sUprojaArgMaxa

i
)(* 1

Where j
iproj  is  the probability assigned by Pi(S)  to  the 

state js . We can derive from this formula the algorithm for 
dynamic predictions of optimal utility actions in a game. 
Our definition here is closely related to that of stochastic 
processes, and in particular to Markov decision processes 
[Boutilier, Dean, & Hanks 1999], but it makes explicit the 
decision problem the agent is  facing by enumerating the 
alternative action sequences the agent is choosing among.

Data Driven Decision Theory
Tree Search. The goal of implementing (Formula 1) is to 
search the utility-weighted future-moves tree. This tree is 
built  by  finding  all  possible  combinations  of  positions 
which the in-game actors,  Pacman and four  Ghosts,  can 
occupy when they move one step; and then iterating that 
calculation for a computationally tractable number of steps. 
The  tree  will  branch  by  a  factor  corresponding  to  the 
number of nodes adjacent to each actor. Our test-bed game 
map  has  187  navigable  nodes  –  of  these  150  have  2 
adjacent nodes,  30 have 3 adjacent nodes,  and 7 have 4 
adjacent nodes. Thus the average branching factor will be 
roughly 20/25.25 + 4/25.35 + 1/25.45 ≈ 2.545.

Look-ahead  is  done  by  building  the  tree  of  possible 
future states up to a ply depth congruent to the number of 
moves  Pacman  might  need  in  order  to  complete  a 
meaningful action. In other words, players make plans with 
strategic goals, but each plan also equates to a sequence of 
player’s  low-level  choices.  Decision  Theory  considers 
these  sets  of  choices  -  thus  a  plan  produced  by  our 
prediction  function  should  be  bounded  by  what  is  a 
reasonable number of moves ahead that the player could 
consider. Since players do not know the Ghost movement 
control functions,  which here are in any case random, it 
will be difficult for them to predict Ghost movement very 
far in the future (at least until they become quite expert). 
This  means that  we have a boundary constraint  (beyond 
computational  limitations)  on  how  many  moves  of  the 
player’s plan we should try  to predict.  We have posited 
that the ideal tree depth is 6, as that is the width of one grid 
square when our test-bed game map is partitioned into a 3

3 grid. This grid division is significant because, in 8 of 9 
grid squares, there is an attractor for the activity of the in-
game actors. There are the 4 Pills, the 2 re-spawn points, 
and the 2 teleport gates (all standard elements of Pacman). 
When the distribution of each actor’s movement is plotted, 
peaks can be seen around these attractors. Unfortunately, a 
depth of 6 produces an intractably large computation under 
the current implementation and was scaled back to a depth 
of 3 pending algorithmic optimisation (see  Future Work 
Section).

In building the tree the algorithm explores the game’s 
possibility space, ranking each possible state by calculating 
the  utility  to  the  player  of  a  set  of  features  (as  defined 
below), and can tell us the how far off the ‘spine’ of the 
space is the player’s move. Picture this as the exploration 
of a chreode [Kier  et al  2002] of optimal play,  defining 
optimality as the maximal of a utility function.

Feature Specification. Ultimately, utility in (Formula 1) is 
for a process – e.g. the process of collecting all the Dots in 
an area, or getting a Pill then Eating Ghosts. Process utility 
must be calculated by summing state utility, and the utility 
of a state is judged by global features.

Ideally, features of a Pacman state would be defined by 
(ideally,  unsupervised)  Machine  Learning  (ML)  of  the 
patterns  in  gameplay  logic  through  observation  of  play. 
The problem with this  approach,  as  with any attempt  at 
learning through observation of play, is that it is difficult to 
obtain  a  sufficiently  large  corpus  of  state  data  from 
observed games. So in substitution for this method we look 
to expert opinion to specify our features, which luckily in 
Pacman are not too numerous.

In simple terms, features would be things like: the A* or 
Manhattan  distance  between  Pacman  and  each  Ghost; 
number of Pills, Lives or Points. Each of these features will 
have  a  relatively  simple  numerical  representation 
describing its state in the context of the game engine.

The conceptual form of most of the state features is that 
of a vector of opportunity for Pacman, determined by the 
capacity  for  meaningful  action  and  weighted  by  the 
consequent risk/reward ratio. Definitions of heuristics for 
the calculation of  utility  of  state  features  begin with the 
primary utility – Score. Since the scoring function of Dot 
collection is a one-to-one mapping between potential and 
actual  Points,  the  major  deciding  feature  of  a  state 
associated with scoring is the potential for Hunting Ghosts. 
The antecedent for Ghost Hunting is for Pacman to Eat a 
Pill,  so  unless  Pacman  has  just  done  this,  the  weight 
associated  with  Ghost  Hunting  will  be  inversely 
proportional to the A* distance from Pacman to the nearest 
Pill. 

This serves to balance off this weighted feature against 
that  of  Ghost  avoidance  and  Dot  collection,  so  that 
aggressive tactics are only predicted if a Pill is sufficiently 
close  that  the  distance  to  it  doesn’t  offset  the  predicted 
payoff of aggression. Some heuristic features used were:

• Ghost proximity (here measured by A*) and distribution 
– these correlate to Pacman’s risk in normal play, and to 
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reward when he has just Eaten a Pill and is invulnerable.

• Individual dots are weighted by adding the distribution 
density  of  adjacent  dots,  and  by  the  inverse  of  their 
distance to Pacman.

• Risk or the number of lives left to Pacman.

Utility Calculation. The ideal metric for the calculation of 
feature utility weights in any game would be the difference 
between the value of some metric for the current state and 
the absolute  value for  this  metric  in  the  final  state.  The 
final state is the winning state (maximum utility in a non-
binary outcome game). Knowing this final state, one must 
simply calculate which next state decreases the difference 
by the greatest amount – i.e. maximises player utility. In 
practice,  obtaining  this  final  state  metric  requires  the 
calculation of the entire game possibility space, which is 
almost always an intractable calculation. Even TicTacToe, 
(i.e. noughts and crosses),  has a possibility space on the 
order of 10,000 moves and counter-moves. 

Therefore,  it  is  necessary to  specify  metrics  that  only 
look ahead a few steps, and instead of taking as their target 
the final state utility these metrics use heuristic measures 
of  utility.  Such  measures  reflect  the  two  major  utility 
indices, Points and Lives, and variables which affect them. 
Calculating potentiality of scoring is important, since it can 
cut  down  on  the  amount  of  lookahead  necessary.  For 
example if, when moving in one direction Pacman comes 
closer to some Ghosts, his utility will be higher if he also 
comes in proximity to a Pill. This is because the potential 
for scoring was raised, whatever the actual future state of 
the game.

As each possible state  at  a  time-step is  ranked by its 
utility contribution to the path to which its parent belongs, 
we navigate  the  tree  of  states  along  the  path of  highest 
utility in order to ‘back-up’ the prediction of which next 
Pacman  move  is  optimal.  In  concept,  this  is  a  similar 
methodology to  [Samuel  1950]’s  checkers  player,  which 
specifies a polynomial of weighted feature vectors.

Our utility function was implemented as a static (non-
learning) evaluation of  Pacman’s scoring potential.  Thus 
each feature would be weighted by a combination of  its 
contribution to the Score, and its potentiality of occurrence. 
If Pacman were in proximity to a Pill, and all four Ghosts, 
this would have the utility of the potential score gained by 
eating all four Ghosts, reduced by some constant factor of 
the distance to, first the Pill, and then the Ghosts. However 
if Pacman had already eaten a Pill, the algorithm would not 
reduce the utility of Eating all four Ghosts by the distance 
to the nearest Pill. Of course, there is a risk factor involved 
with this hunting behaviour, since the timer on the effect of 
the Pill wears off after a fixed period. It is unlikely that a 
player would be exactly aware of this timer’s duration, so 
in  chasing  all  the  Ghosts  they  risk  switching  back  to 
vulnerability right beside a Ghost.

With  implementations  of  features  and  utility  as 
described above, our current implementation of (Formula 
1) can be described with the following pseudo-code:

->Read new game state
->Build possible future states tree
->For each direction open to Pacman
->Calculate utility of child states
->Update Pacman position = direction 
corresponding to highest utility

^-Iterate up to max tree depth
^-Iterate for all game states

Data Driven Analysis Experiment

The aim of this paper was to investigate the potential of 
our  data  driven  Decision  Theoretic  approach  as  the 
foundation  for  a  player  classifier,  based  on  comparative 
analysis of predicted and actual behaviour. The manner in 
which this would work is as follows. 

Feature  weights  can  be  specified  for  individuals  to 
match patterns observed in their play/associated with their 
type.  This  allows  a  form  of  player  classification 
corresponding to observed play styles [Bateman & Boon 
2005]. As play progresses, well-chosen features should be 
reflecting the play decisions that the player needs to make. 
If  their  decisions  are  all  potentially  equally  likely,  then 
whatever  they  decide  to  do  indicates  what  their  play 
preference is.  The  weights of  those  features  that  reflect 
play decisions will therefore correspond to these same play 
preferences – in future work, adjusting weights to maintain 
high accuracy of predictions could allow the method to be 
used to a learn a player model in real-time.

To  see  how  the  weights  of  gameplay  features  could 
reflect  player  preferences,  we  can  examine some of  the 
common play activities  in Pacman with reference to the 
DGD typology. Dot collection is the default activity, and 
unless the player is in a hurry to finish, should be of quite 
low weight compared to Pills and Ghosts. How the player 
regards  Ghost-hunting  has  a  substantial  effect  on  their 
choices  in  most  situations.  If  not  too  interested  in 
achievement, they may play through the whole level as a 
dot clearing exercise, crossing Pills simply because they’re 
in the way – corresponding to a Wanderer-style of play. 
Next  is  more  moderate  hunting  behaviour,  the  Manager 
style,  where  the  player  waits  for  a  few  Ghosts  before 
Eating a Pill,  but no risks are taken by chasing all four. 
Then there’s the Conqueror’s approach, carefully hoarding 
each Pill until all four Ghosts are in proximity, looking for 
the  maximum  1550  points  that  would  be  gained  from 
Eating  one  Pill  and  four  Ghosts.  These  styles  are  taken 
from player typological research [Bateman & Boon 2005]. 

Such activities are naturally arising out of the mechanics 
of game play, and as such represent an inherent dynamic of 
the  game.  This  is  why  the  player’s  pursuit  of  these 
activities was chosen to define the states in the authors’ 
first implementation of Decision Theoretic Pacman – yet as 
was  reported,  such  an  approach  failed  to  give  accurate 
results.  Instead  of  abandoning  or  ignoring  the  observed 
existence  of  such  states,  we  would  look  to  find 
classification of states arising from the more sophisticated 
data driven Decision Theoretic approach described herein, 
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as opposed to defining them ourselves. In other words, we 
envision a classifier,  built on top of the new data driven 
approach, which can translate data from a state-tree look-
ahead model into analogues of player typologies for use in 
reasoning about player behaviour.

Experimental Design. To create this type of classifier, we 
first need to test the validity of predicting the actions of a 
single type of player. Setting up the choice of features and 
balancing  weights  was  done  by  hand,  guided  by  expert 
opinion  and  the  player  type  descriptions  of  the  DGD 
[Bateman  &  Boon  2005].  This  was  thought  to  be 
sufficiently  accurate  as  the  Pacman  feature  set  and  the 
player type under investigation are both relatively simple.

In  placing  the  analysis  step  off-line,  using  recorded 
game  state  data,  we  remove  what  seems  to  be  a  vital 
component  of  player  modelling  –  the  ability  to  react  in 
real-time to the learning curve of the player. However, in 
order  to  validate  the  method,  the  authors  consider  it  a 
worthwhile first step to take the most complex game state 
data,  and  analyse  it  using  the  least  parsimonious 
methodology. This serves several ends. 

Firstly,  we  can  establish  a  worst-case  scenario 
estimation  of  computational  time  and  resource 
consumption  in  the  current  test-bed.  Algorithm analysis 
can  then  explore  in  detail  the  most  computationally 
expensive  sub-routines  for  the  process  of  optimisation. 
Secondly, basing the method on a higher dimensional data 
space will help prevent getting a balance of feature weights 
that is over-fitted to our training data set.

Given these considerations, testing the method involved 
using  data  sets  from  full-featured,  complete  one-level 
games  of  a  single  player  typed  as  Conqueror  under  the 
DGD player typology. That is, one player aimed for high 
scores  in  one  complete  level  with four  Ghosts  and four 
Pills.  Look  ahead  was  set  at  3,  so  that  state  trees  that 
branch on the order of 25 times at each node would have a 
magnitude (or count-of-leaves) of approximately 215. Data 
sets averaged around 300 states, the number of moves it 
took our normally skilled player to complete a level.

Player movement is enabled by mapping the keyboard 
arrow keys [↑,↓,→,←] to integers from 0 to 3 respectively. 
Thus the function which implements the Decision Theory 
formula above, and whose domain is the set of game states, 
has  the  range  [0..3].  A  one-to-one  comparison  between 
prediction function output and actual moves made in the 
training data produced the results in (Chart 1 and 2).

Results.  The  results  show  that  prediction  accuracy 
averages  at  39%,  and  the  duration  of  consecutive 
predictions  (a  sign  of  accurate  classification  of  activity 
sequences) averages 2.33 with standard deviation of 2.35. 
The latter figures imply that our method is not predicting 
long sequences of Pacman’s actions, but this is belied by 
the  significant  occurrence  (10%)  of  long  and  very  long 
sequences  (over  6)  of  correct  predictions.  Overall,  the 
picture  that  emerges  is  that  some  features  exist  which 
facilitate  precise  prediction  modelling,  even  to  the 

magnitude  of  19  consecutive  correct  predictions.  The 
feature  most  associated  with  high  frequency  of  correct 
predictions is that where Pacman Hunts Ghosts. In a state 
where this feature has a high utility, Pacman will have just 
eaten a  Pill  and will  be relatively close to  one  or  more 
Ghosts  –  a  situation  which  presents  an  obvious  high-
scoring opportunity to the player and generates a clearly 
defined high-utility path within the prediction function.

Chart 1: First 250 game states, correct predictions = 1, 
incorrect predictions = -1, black lines are predictions

Chart 2: Another 290 game states, where accuracy ≈ 45%

On  further  analysis  an  interesting  correlation  becomes 
apparent.  Patterns of moves, or the frequency with which 
directions are followed and changed, can be seen to match 
across a significantly higher proportion of the test results 
than  had  actual  values.  This  is  illustrated  best  by 
considering  smaller  portions  of  the  data  so  that  the 
correlations can be more clearly seen (Chart 3). 

In this chart, we can see that the black line, representing 
Predictions,  has a similar  profile to the grey line (actual 
Moves), but is slightly offset in time. In other words, the 
decision  theory  function  predicts  the  same  behavioural 
patterns  but is not getting the timing right. In graphs of the 
other results sets (which we have not space to show here), 
a  similar  pattern  arises.  This  suggests  the  Prediction 
function wasn’t  working with a  deep enough look-ahead 
tree.  The correlation shown in (Chart 3) implies that the 
low  accuracy  of  predictions  can  be  explained  as  a 
consequence  of  insufficient  refinement  of  weights  under 
circumstances where two or more features compete closely 
in terms of utility. In these cases, final choice of direction 
will be almost arbitrary as the utility calculation it comes 
from is based on insufficiently refined weights or a too-
shallow look-ahead tree and cannot classify the ‘true’ spine 
of the data space (the action sequence of highest utility). 

Future Work. The authors’ initial concern is to optimise 
the performance of  the method.  Since calculation of  the 
look-ahead  tree  consumes  the  lion’s  share  of  execution 
time, we plan to apply a form of the alpha-beta heuristic to 
prune  the  tree  in  mid-build.  Of  course,  the  simplest 
optimisation is often the best – reduction of the data space 
dimensionality. In considering games of 3 or less Ghosts, 
we reduce tree branching by a power of 2 for every Ghost.
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Chart 3: Radar graph - Actual Moves overlays Predictions

Conclusion

This paper details the authors’ second implementation of a 
Decision  Theory  approach,  and  in  conclusion,  the  data 
driven  Decision  Theoretic  analysis  method  does  not  yet 
provide a statistically significant improvement of accuracy 
over previous work done in [Cowley et al 2006]. 

The main reason for this is insufficient balancing of the 
weights of state features. Since game data was provided by 
a single player, it was not thought that weights could be 
learned using such a small  training set.  Instead,  weights 
were set manually leading to unbalanced and indeterminate 
features  as  explained  above.  Another  specification  flaw 
was the random movement of the Ghosts, which doesn’t 
correspond to player’s intuition: they would tend to ascribe 
agency to the Ghosts.

However,  in  this  experiment  we  investigated  the 
capacity  for  utility-centric  Decision  Theory  to  do 
predictive  player  modelling,  and  we  saw  results  which 
suggest that this method could indeed work as a classifier 
if  a  learning  step  were  introduced.  Experimental  setup 
suffered from a common flaw of games research – over-
reliance on unproven assumptions of gameplay. Certain of 
these  assumptions  could  be  circumvented  by  learning 
weights for utility-measuring features of the game state.

In the final analysis, it was necessary to move beyond 
the dependence of the authors’ earlier work on pre-defined 
states for classification. Such dependence limits potential 
refinement of classification accuracy, a limitation which is 
circumvented by considering data from a full feature-set of 
each state in a look-ahead tree. Naturally, consideration of 
the  full  data  space  does  not  guarantee accuracy  of 
predictions,  but  accuracy  is  made  more  achievable  by 

facilitating  iterative  refinement  of  feature  weights.  With 
some promising trends apparent in the current results, it is 
hoped  that  optimisation  of  the  prediction  algorithm and 
learned  balancing  of  feature  weights  can  produce  a 
workable player classification method.
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