
Data-Driven Decision Theory for Player Analysis in Pacman

Ben Cowley, Darryl Charles, Michaela Black, Ray Hickey

School of Information and Computer Engineering, University of Ulster, Coleraine
University of Ulster, Cromore Rd, Coleraine, Northern Ireland, BT52 1SA

{cowley-b, dk.charles, mm.black, rj.hickey}@ulster.ac.uk

Abstract
Computer and videogames have been described using
several formal systems – in this paper we consider them as
Information Systems. In particular, we use a Decision
Theoretic approach to model and analyse off-line, data from
PacmanTM players. Our method attempts to calculate the
optimal choices available to a player based on key utilities
for a given game state. Our hypothesis in this approach is
that observing a player’s deviation from the optimal choices
predicted can reveal their play preferences and skill, and
thus form a basic player classifier. The method described
builds on work done in [Cowley et al 2006], increasing the
scope and sophistication of the model by decreasing reliance
on supervision. The downside is a consequent performance
hit, which prevents real-time execution of the modelling
algorithm. In this paper we outline the basic principle of the
Decision Theoretic approach and discuss the results of our
evolution toward data-driven classification.

Introduction

The approach described herein is grounded in a body of
research on games as formal systems (systems of
information), and we can summarise this as follows. There
are several definitions of games and gaming in the
literature, from a variety of sources such as ludologists
[Wolf & Perron 2003], game designers [Crawford 2002]
and game studies researchers [Salen & Zimmerman 2003].
However, the academic study of commercial computer and
video games (hereafter called games) is still a very new
area, especially as regards understanding and systematising
the relationship between games and players. In particular
more study is required into game dynamics – i.e. the
interaction that arises between a player and game’s formal
system. A formal system (or game mechanics) defines a
gameplay logic which can be expressed as a mathematical
model. Game play in such a model occurs as a (usually)
deterministic, emergent process of action sequences
belonging to one or more players. As this process equates
to the player’s exploration of the game’s possibility space
it also correlates strongly to their overall experience. In
other words, often how mechanics give rise to dynamics is
the biggest influence on a player’s experience [Salen &

 Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Zimmerman 2006], and it is improvement of experience
that is the main goal of player modelling. Therefore our
goal in this paper is to advance the investigation into player
modelling using reductionist formal methods.

Predictive Player Modelling
Predictive player modelling works by considering the
player’s in-game goals as equivalent to some target
function of the game state and calculating this function
using in-game player-related data (similar to [Thue &
Bulitko 2006]). Our overall aim is develop this method into
a player classifier, with validation based on the
Demographic Game Design (DGD) [Bateman & Boon
2005] typology of players. If successful, Decision
Theoretic modelling would provide a low-level building
block to be used so that a game's play structure may
automatically adapt to the preferences and skills of each
individual player.

The authors developed this approach inspired by
considering games as Information Theory systems,
especially the principle that Decision Theory
[Gmytrasiewicz & Lisetti 2000] can be used to model the
choices that players make on the basis of available
information. This decision theoretic approach is
descriptive rather than prescriptive because although one
can quite accurately calculate the optimal choices that a
player should take given the current game state and the
most obvious and observable utilities, players generally do
not play in an optimal way. This may be due to their lack
of experience or their personal playing style.

Previously, the authors implemented predictive player
modelling in [Cowley et al 2006], using a pre-defined set
of states for classification of the player’s utility, which had
the disadvantage of having a low granularity. This resulted
in poor accuracy when classifying the player’s state, which
increased the uncertainty in the prediction function. The
current implementation follows a different approach – to
take account of all relevant features of the current state, so
that utility calculation is built on a weighted feature vector.
This reduces the impact of arbitrary design choices, so
classification of state is more unsupervised and data
driven. The main aim of this paper then is to investigate
whether such a switch from pre-defined states to data-
driven utility calculation improves the predictive power of
the Decision Theoretic method when the weighted features
are themselves predefined.

25

The paper continues in the next section with a
description of our Pacman test-bed implementation, while
section 3 explains the Decision Theoretic formula used,
and how it can be applied to Pacman in a data driven
fashion. In Section 4 we present results from a series of
experiments run on game data collected from gamers with
a broad cross-section of experience, and this leads the
reader to the conclusions and final remarks on the
applicability of the method and possible future work.

Pacman Test-bed Implementation

The Pacman implementation used was created by the
authors and represents an interpretation of the original
Namco game, rather than a clone. Thus we provide a
description of the game mechanics below. Pacman is a
linear and relatively simple game when compared to
modern computer games, yet its possibility space is still far
too complex to search without heuristics. Below we
describe how the game was broken down into its
constitutive elements and fitted into the utility calculation
formula (Initial Caps are used to describe game entities and
their actions; ‘the player’ and ‘Pacman’ are inter-
changeable). This enabled our implementation of the
formula within the test-bed code.
• The game world is a 2D graph, where the nodes of the

graph can be Pill, Dot or empty. This constitutes a level.

• Pacman and the Ghosts (the in-game actors) Move
between nodes along two axes, horizontal and vertical.

• Ghosts move randomly, starting in a central box area.
Random movement was chosen as the Ghosts’ controller
to make it simpler to calculate the probability of future
states in the look-ahead tree (since random movement
gives an even probability distribution to all future states)

• Pacman Eats Dots & Pills when he Moves over them.

• Pacman only Eats Ghosts when he has Eaten a Pill within
the last t game cycles, otherwise Ghosts Eat Pacman and
he loses a Life.

• Eaten sprites re-spawn at their original start node, unless
Pacman has run out of lives, then the game is over.

• Pacman must Eat all Pills and Dots to finish, whereupon
the level ends whether or not the player was still within
the t cycles started from recently Eating a Pill.

• Ghosts are permeable and do not interact with Dots or
Pills or obstruct each other.

• Points are scored as follows: 10 per Dot, 50 per Pill, (100
(2 ^ Num of Ghosts)) for each Ghost Eaten after a Pill.

The above is a description of Constituative rules [Salen &
Zimmerman 2003] – the formal rules that comprise the
game mechanics [Hunicke et al 2004]. Our approach uses
descriptive Decision Theory to model the Constituative
rules, and by this method approximately model the game
dynamics – i.e. how the player interacts with the game (as
described by Operative rules [Salen & Zimmerman 2003]).

Pacman and Decision Theory

To see why we use Decision Theory, consider the situation
where Pacman is unconstrained in a level – for example if
there were no Ghosts. Time is never a constraint in
Pacman, so without Ghosts the path chosen by the player
would be unimportant, as any explorative path would result
in the same utility – collecting all the dots. There would be
no unforeseeable or surprising events, no challenge.
Pacman could follow any path through the level, and the
level would end when the path does. In this game, there are
no meaningful choices to be made, which by some
definitions [Salen & Zimmerman 2003] would mean this
was no longer even a game. Gameplay is created by
choosing between utilities – e.g. save lives by evading (or
increase points by hunting) Ghosts.

In fact, in most games the mechanics of play are
concerned with choosing the action which maximises a
utility function, from a set of actions situated in an
evolving possibility-space. This explanation of gameplay is
very evident in the literature, both before and after the
advent of computer games:

A game is a form of art in which…players…make
decisions in order to manage resources through game
tokens in pursuit of a goal. [Costikyan 1994]

Indeed most formal work on games playing, whether it be
Game Theory [von Neumann & Morgenstern 1947] or
board-game playing computer programs [Bell 1972], relies
on predicting the decisions of opponents based on
estimation of their utility. The problem in translating this
for modern computer games is that firstly, the possibility
space is often very large and states and features cannot be
precisely defined, and secondly most are not turn-based.
This last invalidates many optimisations & heuristics from
the research on board game playing programs [Bell 1972].

Our method follows [Gmytrasiewicz & Lisetti 2000] in
formulating gameplay in terms of Decision Theory.
Information Theory, and by extension Decision Theory,
can be viewed as a formulation of the uncertainty of
making non-trivial choices, and so can be used to describe
the choices that create gameplay. Thus in our
implementation the current information, from the game
state and the heuristics on player utility, is used to make
predictions of the choices of which nodes it is possible for
Pacman to move to. We can fit the choices, and their utility
weights, to a formula using Decision Theory. Thus we can
predict quite accurately the behaviour of a rational, utility-
maximising player. The list of these predictions (i.e. the
actions of a rational player) will give an example of a near-
optimal path.

A rational player formulates its decision making
situation in terms of a finite set, A, of the alternative
courses of action, or plans, it can execute. A member of A,
say ai, can be thought of as a plan consisting of consecutive
actions extending to the future time tai (see section Tree

26

Search). An action plan occurs in a state-delimited world,
formalised as the set of all possible states of the world, S.
In Pacman, the current state is known, and thus our
probability function represents the uncertainty of the player
as we project forward in time – resulting in a probability
distribution P(S) over the state space S. This projection
function is expressed proj : S × A -> P(S), so that
projecting the results of action ai given the current state S
gives the probability of the projected states, proj(S, ai) =
Pi(S). Our Utility function U encodes the desirability of the
projected states to the player. U maps a state to numerical
output, U : S → R. Thus by calculating (Formula 1) we
predict a plan a* that a player should perform to maximise
their utility:

∑
∈

∈=
Ss

jj
iA sUprojaArgMaxa

i
)(* 1

Where j
iproj is the probability assigned by Pi(S) to the

state js . We can derive from this formula the algorithm for
dynamic predictions of optimal utility actions in a game.
Our definition here is closely related to that of stochastic
processes, and in particular to Markov decision processes
[Boutilier, Dean, & Hanks 1999], but it makes explicit the
decision problem the agent is facing by enumerating the
alternative action sequences the agent is choosing among.

Data Driven Decision Theory
Tree Search. The goal of implementing (Formula 1) is to
search the utility-weighted future-moves tree. This tree is
built by finding all possible combinations of positions
which the in-game actors, Pacman and four Ghosts, can
occupy when they move one step; and then iterating that
calculation for a computationally tractable number of steps.
The tree will branch by a factor corresponding to the
number of nodes adjacent to each actor. Our test-bed game
map has 187 navigable nodes – of these 150 have 2
adjacent nodes, 30 have 3 adjacent nodes, and 7 have 4
adjacent nodes. Thus the average branching factor will be
roughly 20/25.25 + 4/25.35 + 1/25.45 ≈ 2.545.

Look-ahead is done by building the tree of possible
future states up to a ply depth congruent to the number of
moves Pacman might need in order to complete a
meaningful action. In other words, players make plans with
strategic goals, but each plan also equates to a sequence of
player’s low-level choices. Decision Theory considers
these sets of choices - thus a plan produced by our
prediction function should be bounded by what is a
reasonable number of moves ahead that the player could
consider. Since players do not know the Ghost movement
control functions, which here are in any case random, it
will be difficult for them to predict Ghost movement very
far in the future (at least until they become quite expert).
This means that we have a boundary constraint (beyond
computational limitations) on how many moves of the
player’s plan we should try to predict. We have posited
that the ideal tree depth is 6, as that is the width of one grid
square when our test-bed game map is partitioned into a 3

3 grid. This grid division is significant because, in 8 of 9
grid squares, there is an attractor for the activity of the in-
game actors. There are the 4 Pills, the 2 re-spawn points,
and the 2 teleport gates (all standard elements of Pacman).
When the distribution of each actor’s movement is plotted,
peaks can be seen around these attractors. Unfortunately, a
depth of 6 produces an intractably large computation under
the current implementation and was scaled back to a depth
of 3 pending algorithmic optimisation (see Future Work
Section).

In building the tree the algorithm explores the game’s
possibility space, ranking each possible state by calculating
the utility to the player of a set of features (as defined
below), and can tell us the how far off the ‘spine’ of the
space is the player’s move. Picture this as the exploration
of a chreode [Kier et al 2002] of optimal play, defining
optimality as the maximal of a utility function.

Feature Specification. Ultimately, utility in (Formula 1) is
for a process – e.g. the process of collecting all the Dots in
an area, or getting a Pill then Eating Ghosts. Process utility
must be calculated by summing state utility, and the utility
of a state is judged by global features.

Ideally, features of a Pacman state would be defined by
(ideally, unsupervised) Machine Learning (ML) of the
patterns in gameplay logic through observation of play.
The problem with this approach, as with any attempt at
learning through observation of play, is that it is difficult to
obtain a sufficiently large corpus of state data from
observed games. So in substitution for this method we look
to expert opinion to specify our features, which luckily in
Pacman are not too numerous.

In simple terms, features would be things like: the A* or
Manhattan distance between Pacman and each Ghost;
number of Pills, Lives or Points. Each of these features will
have a relatively simple numerical representation
describing its state in the context of the game engine.

The conceptual form of most of the state features is that
of a vector of opportunity for Pacman, determined by the
capacity for meaningful action and weighted by the
consequent risk/reward ratio. Definitions of heuristics for
the calculation of utility of state features begin with the
primary utility – Score. Since the scoring function of Dot
collection is a one-to-one mapping between potential and
actual Points, the major deciding feature of a state
associated with scoring is the potential for Hunting Ghosts.
The antecedent for Ghost Hunting is for Pacman to Eat a
Pill, so unless Pacman has just done this, the weight
associated with Ghost Hunting will be inversely
proportional to the A* distance from Pacman to the nearest
Pill.

This serves to balance off this weighted feature against
that of Ghost avoidance and Dot collection, so that
aggressive tactics are only predicted if a Pill is sufficiently
close that the distance to it doesn’t offset the predicted
payoff of aggression. Some heuristic features used were:

• Ghost proximity (here measured by A*) and distribution
– these correlate to Pacman’s risk in normal play, and to

27

reward when he has just Eaten a Pill and is invulnerable.

• Individual dots are weighted by adding the distribution
density of adjacent dots, and by the inverse of their
distance to Pacman.

• Risk or the number of lives left to Pacman.

Utility Calculation. The ideal metric for the calculation of
feature utility weights in any game would be the difference
between the value of some metric for the current state and
the absolute value for this metric in the final state. The
final state is the winning state (maximum utility in a non-
binary outcome game). Knowing this final state, one must
simply calculate which next state decreases the difference
by the greatest amount – i.e. maximises player utility. In
practice, obtaining this final state metric requires the
calculation of the entire game possibility space, which is
almost always an intractable calculation. Even TicTacToe,
(i.e. noughts and crosses), has a possibility space on the
order of 10,000 moves and counter-moves.

Therefore, it is necessary to specify metrics that only
look ahead a few steps, and instead of taking as their target
the final state utility these metrics use heuristic measures
of utility. Such measures reflect the two major utility
indices, Points and Lives, and variables which affect them.
Calculating potentiality of scoring is important, since it can
cut down on the amount of lookahead necessary. For
example if, when moving in one direction Pacman comes
closer to some Ghosts, his utility will be higher if he also
comes in proximity to a Pill. This is because the potential
for scoring was raised, whatever the actual future state of
the game.

As each possible state at a time-step is ranked by its
utility contribution to the path to which its parent belongs,
we navigate the tree of states along the path of highest
utility in order to ‘back-up’ the prediction of which next
Pacman move is optimal. In concept, this is a similar
methodology to [Samuel 1950]’s checkers player, which
specifies a polynomial of weighted feature vectors.

Our utility function was implemented as a static (non-
learning) evaluation of Pacman’s scoring potential. Thus
each feature would be weighted by a combination of its
contribution to the Score, and its potentiality of occurrence.
If Pacman were in proximity to a Pill, and all four Ghosts,
this would have the utility of the potential score gained by
eating all four Ghosts, reduced by some constant factor of
the distance to, first the Pill, and then the Ghosts. However
if Pacman had already eaten a Pill, the algorithm would not
reduce the utility of Eating all four Ghosts by the distance
to the nearest Pill. Of course, there is a risk factor involved
with this hunting behaviour, since the timer on the effect of
the Pill wears off after a fixed period. It is unlikely that a
player would be exactly aware of this timer’s duration, so
in chasing all the Ghosts they risk switching back to
vulnerability right beside a Ghost.

With implementations of features and utility as
described above, our current implementation of (Formula
1) can be described with the following pseudo-code:

->Read new game state
->Build possible future states tree
->For each direction open to Pacman
->Calculate utility of child states
->Update Pacman position = direction
corresponding to highest utility

^-Iterate up to max tree depth
^-Iterate for all game states

Data Driven Analysis Experiment

The aim of this paper was to investigate the potential of
our data driven Decision Theoretic approach as the
foundation for a player classifier, based on comparative
analysis of predicted and actual behaviour. The manner in
which this would work is as follows.

Feature weights can be specified for individuals to
match patterns observed in their play/associated with their
type. This allows a form of player classification
corresponding to observed play styles [Bateman & Boon
2005]. As play progresses, well-chosen features should be
reflecting the play decisions that the player needs to make.
If their decisions are all potentially equally likely, then
whatever they decide to do indicates what their play
preference is. The weights of those features that reflect
play decisions will therefore correspond to these same play
preferences – in future work, adjusting weights to maintain
high accuracy of predictions could allow the method to be
used to a learn a player model in real-time.

To see how the weights of gameplay features could
reflect player preferences, we can examine some of the
common play activities in Pacman with reference to the
DGD typology. Dot collection is the default activity, and
unless the player is in a hurry to finish, should be of quite
low weight compared to Pills and Ghosts. How the player
regards Ghost-hunting has a substantial effect on their
choices in most situations. If not too interested in
achievement, they may play through the whole level as a
dot clearing exercise, crossing Pills simply because they’re
in the way – corresponding to a Wanderer-style of play.
Next is more moderate hunting behaviour, the Manager
style, where the player waits for a few Ghosts before
Eating a Pill, but no risks are taken by chasing all four.
Then there’s the Conqueror’s approach, carefully hoarding
each Pill until all four Ghosts are in proximity, looking for
the maximum 1550 points that would be gained from
Eating one Pill and four Ghosts. These styles are taken
from player typological research [Bateman & Boon 2005].

Such activities are naturally arising out of the mechanics
of game play, and as such represent an inherent dynamic of
the game. This is why the player’s pursuit of these
activities was chosen to define the states in the authors’
first implementation of Decision Theoretic Pacman – yet as
was reported, such an approach failed to give accurate
results. Instead of abandoning or ignoring the observed
existence of such states, we would look to find
classification of states arising from the more sophisticated
data driven Decision Theoretic approach described herein,

28

as opposed to defining them ourselves. In other words, we
envision a classifier, built on top of the new data driven
approach, which can translate data from a state-tree look-
ahead model into analogues of player typologies for use in
reasoning about player behaviour.

Experimental Design. To create this type of classifier, we
first need to test the validity of predicting the actions of a
single type of player. Setting up the choice of features and
balancing weights was done by hand, guided by expert
opinion and the player type descriptions of the DGD
[Bateman & Boon 2005]. This was thought to be
sufficiently accurate as the Pacman feature set and the
player type under investigation are both relatively simple.

In placing the analysis step off-line, using recorded
game state data, we remove what seems to be a vital
component of player modelling – the ability to react in
real-time to the learning curve of the player. However, in
order to validate the method, the authors consider it a
worthwhile first step to take the most complex game state
data, and analyse it using the least parsimonious
methodology. This serves several ends.

Firstly, we can establish a worst-case scenario
estimation of computational time and resource
consumption in the current test-bed. Algorithm analysis
can then explore in detail the most computationally
expensive sub-routines for the process of optimisation.
Secondly, basing the method on a higher dimensional data
space will help prevent getting a balance of feature weights
that is over-fitted to our training data set.

Given these considerations, testing the method involved
using data sets from full-featured, complete one-level
games of a single player typed as Conqueror under the
DGD player typology. That is, one player aimed for high
scores in one complete level with four Ghosts and four
Pills. Look ahead was set at 3, so that state trees that
branch on the order of 25 times at each node would have a
magnitude (or count-of-leaves) of approximately 215. Data
sets averaged around 300 states, the number of moves it
took our normally skilled player to complete a level.

Player movement is enabled by mapping the keyboard
arrow keys [↑,↓,→,←] to integers from 0 to 3 respectively.
Thus the function which implements the Decision Theory
formula above, and whose domain is the set of game states,
has the range [0..3]. A one-to-one comparison between
prediction function output and actual moves made in the
training data produced the results in (Chart 1 and 2).

Results. The results show that prediction accuracy
averages at 39%, and the duration of consecutive
predictions (a sign of accurate classification of activity
sequences) averages 2.33 with standard deviation of 2.35.
The latter figures imply that our method is not predicting
long sequences of Pacman’s actions, but this is belied by
the significant occurrence (10%) of long and very long
sequences (over 6) of correct predictions. Overall, the
picture that emerges is that some features exist which
facilitate precise prediction modelling, even to the

magnitude of 19 consecutive correct predictions. The
feature most associated with high frequency of correct
predictions is that where Pacman Hunts Ghosts. In a state
where this feature has a high utility, Pacman will have just
eaten a Pill and will be relatively close to one or more
Ghosts – a situation which presents an obvious high-
scoring opportunity to the player and generates a clearly
defined high-utility path within the prediction function.

Chart 1: First 250 game states, correct predictions = 1,
incorrect predictions = -1, black lines are predictions

Chart 2: Another 290 game states, where accuracy ≈ 45%

On further analysis an interesting correlation becomes
apparent. Patterns of moves, or the frequency with which
directions are followed and changed, can be seen to match
across a significantly higher proportion of the test results
than had actual values. This is illustrated best by
considering smaller portions of the data so that the
correlations can be more clearly seen (Chart 3).

In this chart, we can see that the black line, representing
Predictions, has a similar profile to the grey line (actual
Moves), but is slightly offset in time. In other words, the
decision theory function predicts the same behavioural
patterns but is not getting the timing right. In graphs of the
other results sets (which we have not space to show here),
a similar pattern arises. This suggests the Prediction
function wasn’t working with a deep enough look-ahead
tree. The correlation shown in (Chart 3) implies that the
low accuracy of predictions can be explained as a
consequence of insufficient refinement of weights under
circumstances where two or more features compete closely
in terms of utility. In these cases, final choice of direction
will be almost arbitrary as the utility calculation it comes
from is based on insufficiently refined weights or a too-
shallow look-ahead tree and cannot classify the ‘true’ spine
of the data space (the action sequence of highest utility).

Future Work. The authors’ initial concern is to optimise
the performance of the method. Since calculation of the
look-ahead tree consumes the lion’s share of execution
time, we plan to apply a form of the alpha-beta heuristic to
prune the tree in mid-build. Of course, the simplest
optimisation is often the best – reduction of the data space
dimensionality. In considering games of 3 or less Ghosts,
we reduce tree branching by a power of 2 for every Ghost.

29

Chart 3: Radar graph - Actual Moves overlays Predictions

Conclusion

This paper details the authors’ second implementation of a
Decision Theory approach, and in conclusion, the data
driven Decision Theoretic analysis method does not yet
provide a statistically significant improvement of accuracy
over previous work done in [Cowley et al 2006].

The main reason for this is insufficient balancing of the
weights of state features. Since game data was provided by
a single player, it was not thought that weights could be
learned using such a small training set. Instead, weights
were set manually leading to unbalanced and indeterminate
features as explained above. Another specification flaw
was the random movement of the Ghosts, which doesn’t
correspond to player’s intuition: they would tend to ascribe
agency to the Ghosts.

However, in this experiment we investigated the
capacity for utility-centric Decision Theory to do
predictive player modelling, and we saw results which
suggest that this method could indeed work as a classifier
if a learning step were introduced. Experimental setup
suffered from a common flaw of games research – over-
reliance on unproven assumptions of gameplay. Certain of
these assumptions could be circumvented by learning
weights for utility-measuring features of the game state.

In the final analysis, it was necessary to move beyond
the dependence of the authors’ earlier work on pre-defined
states for classification. Such dependence limits potential
refinement of classification accuracy, a limitation which is
circumvented by considering data from a full feature-set of
each state in a look-ahead tree. Naturally, consideration of
the full data space does not guarantee accuracy of
predictions, but accuracy is made more achievable by

facilitating iterative refinement of feature weights. With
some promising trends apparent in the current results, it is
hoped that optimisation of the prediction algorithm and
learned balancing of feature weights can produce a
workable player classification method.

Acknowledgements

Pacman is a registered Trademark of Namco Corp.

References

Bateman, C. & Boon, R. 2005. 21st Century Game Design,
Charles River Media, London.
Bell, A.G., 1972. Games Playing with Computers. London :
Allen and Unwin.
Boutilier, C., Dean, T., & Hanks, S., 1999. Decision-Theoretic
Planning: Structural Assumptions and Computational Leverage.
Journal of Artificial Intelligence Research, 11, 1-94.
Costikyan, G. 1994. I Have No Words And I Must Design.
Interactive Fantasy Journal 2. Republished in [Salen &
Zimmerman 2006].
Cowley, B., Charles, D., Black, M., & Hickey, R. 2006. Using
Decision Theory for Player Analysis in Pacman. In Proceedings
of the SAB'06 Workshop on Adaptive Approaches for
Optimizing Player Satisfaction in Computer and Physical
Games, Rome, Italy, October 2006. Yannakakis, G.N. &
Hallam, J. Eds. Technical Report TR-2006-2, Maersk Institute
for Production Technology, University of Southern Denmark,
Odense, Denmark.
Crawford, C. 2002. Chris Crawford on Game Design, Prentice
Hall PTR, London.
Gmytrasiewicz, P. & Lisetti, C. 2000. Modelling User Emotions
during Interactive Entertainment Sessions, In Papers from the
AAAI 2000 Spring Symposium on Artificial Intelligence and
Interactive Entertainment, Tech. Report SS-00-02. AAAI Press.
Hunicke, R., LeBlanc, M., & Zubek, R. 2004. MDA: A Formal
Approach to Game Design and Game Research. In Proceedings
of the Challenges in Game AI Workshop, 19th National
Conference on A.I. (AAAI ‘04), California. AAAI Press.
Kier, L.B., Cheng, C.K., & Testa, B, 2002. A Cellular Automata
Model of Ligand Passage over a Protein Hydro-dynamic
Landscape, Journal of Theoretical Biology, 214, 415–426.
Salen, K., & Zimmermen, E., 2003. Rules of Play: Game Design
Fundamentals, The MIT Press.
Salen, K., & Zimmermen, E., Eds., 2006. The Game Design
Reader: Rules of Play Anthology, MIT Press, Cambridge, Mass.
Samuel, A. L. 1950. Some studies in machine learning using the
game of checkers. IBM J. Res. & Dev. 3 (1950), 211-229.
Thue, D. & Bulitko, V. 2006. Modelling Goal-Directed Players
in Digital Games. In Proceedings of the Artificial Intelligence
and Interactive Digital Entertainment conference (AIIDE),
Laird J. & Schaeffer, J. Eds. June 20-23, Marina del Rey,
California. AAAI 2006.
Von Neumann, J. & Morgenstern, O. 1947. Theory of Games
and Economic Behaviour, Princeton University Press.
Wolf, M.J.P., & Perron, B., Eds., 2003. The Video Game
Theory Reader, Routledge, NY.

Move Pattern Analysis

0

1

2

3
1

2 3 4 5 6 7 8
9 10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

31
32
33

34
35

36
37

38
39

40
41

4243
4445

4647484950
51

5253545556
5758

5960
61

62
63

64
65

66
67
68

69
70
71

72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
9293

9495
96 97

98 99100
Preds

Moves

30

