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Abstract 

POIROT is an integration framework and reasoning 
control system that combines the products of a variety of 
machine learning mechanisms in order to learn and 
perform complex web services workflows, given a single 
demonstration example. POIROT’s extensible multi-
strategy learning approach to developing workflow 
knowledge is organized around a central hypothesis 
blackboard and representation language for sharing 
proposed task model generalizations. It learns 
hierarchical task models from semantic traces of user-
generated service transaction sequences.  POIROT’s 
learners or hypothesis formers develop, as testable 
hypotheses, generalizations of these workflow traces by 
inferring task order dependencies, user goals, and the 
decision criteria for selecting or prioritizing subtasks 
and service parameters. Hypothesis evaluators, guided 
by POIROT’s meta-control component, plan and execute 
experiments to confirm or disconfirm hypotheses 
extracted from these learning products. Hypotheses and 
analyses of hypotheses are represented on the blackboard 
in the language LTML, which builds on both OWL-S 
and PDDL.  

Introduction

POIROT (Plan Order Induction by Reasoning from One 
Trial) is an architecture, currently under development and 
testing, for controlling a multi-step and multi-strategy 
learning process. The DARPA Integrated Learning 
Program is exploring techniques for applying a variety of 
learning and reasoning strategies to enable systems to learn 
hierarchical procedures from one or at most several 
examples. In general, this requires the regulated application 
of inductive, abductive and explanation-guided 
generalization techniques, and ultimately an ability to do 
self-guided exploration of the space of activities to confirm 

or enhance confidence in one’s ability to perform the task.  

POIROT learns hierarchical task models given a single 
demonstration of a task, a sequence of semantically 
annotated web service calls represented using OWL-S 
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(Martin et al, 2007). Its learning is emergent from the work 
of a number of independent reasoning components 
accumulating shared questions, hypotheses and answers on 
a central blackboard. We believe that in order to make the 
problem tractable, distinct reasoning processes must be 
strategically applied to different aspects of the 
task. POIROT first applies multiple techniques to propose 
generalizations for aspects of a demonstrated workflow 
process, and then experimentally tests its own learning. 
Our approach utilizes a reactive planner as a meta-control 
executive and a semantic blackboard to manage the 
hypotheses developed by our largely independent learning 

components.  

The system is guided in this process by learning goals,
which are managed by a meta-control system called the 
learning moderator. Though the selection of tasks in the 
system’s internal processes are directed by the learning 
moderator, learning goals may be generated by the learning 
components themselves, when they cannot resolve issues. 
POIROT’s learning moderator maintains these goals or 
open learning questions, and triggers components with the 
declared capability to address them, using techniques 
commonly found in multi-agent architectures. In addition 
to managing a number of learning systems, the moderator 
also manages the allocation and timing of internal tasks 
associated with such things as planning how to 
experimentally resolve conflicts between hypotheses created 
by those different learners, or diagnose and repair problems 

with the learned task models.  

In this paper, we describe POIROT’s approach to the 
integration of multiple learning components, reflective 
reasoners and planning and experimentation elements.  We 
first describe POIROT’s task, its architecture, and the 
different modules being integrated. Next, we describe key 
motivations for and design aspects of the Learnable Task 
Modeling Language (LTML), the interlingua of POIROT. 
Although modules in POIROT use very different 
approaches to generate learning hypotheses, their final 
hypotheses are represented in LTML so they can be 
compared, and evaluated or subjected to experiments.  
Finally, we provide a brief summary of previous work in 

the area, and some preliminary results and conclusions. 
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Overview of Learning Task 

POIROT’s objective is to form a generalized hierarchical 
task model from ‘observed’ semantic traces of sequences of 
web service transactions. The domain we are currently 
using for our investigation is medical evacuation airlift 
planning, and our model is analogous to the use of web 
services for trip planning, where one uses different web 
sites to books airline tickets, reserves local transportation 
(e.g., taxis, trains buses) and hotel rooms. Differences from 
these commercial procedures when planning medical 
evacuations include the ability to reserve aircraft for flights 
outside normal schedules, the use of helicopters and 
ambulances rather than trains and taxis, and the reservation 
of hospital beds rather than hotel rooms. A typical 
demonstration used as the basis for POIROT’s learning 
shows a number of patients being scheduled to be moved 
to suitable hospitals, and may also deal with some of the 
special cases that crop up, such as needing to make sure 
the patient is accompanied by appropriate medical 

personnel and equipment.  

POIROT’s observations are of a sequence of calls to web 
services that perform tasks such as looking up airports by 
geographic location, finding available flights to and from 
those airports, reserving seats on flights and reserving 
hospital beds at the destinations. Figure 1 shows the GUI 
used by people to call these services and thereby 
demonstrate the task. A demonstration given to the human 
subjects we are comparing our performance to shows how 
each service is selected, its parameters filled in, and the 

request submitted.  

Figure 1: POIROT GUI

Integration by Multi-agent Blackboard 

Architecture 

POIROT’s software framework uses a combination of agent 
and semantic web service architectural elements to integrate 
multiple learning and execution components as shown in 
Figure 2. The central hypothesis blackboard where learning 
hypotheses and commentary are exchanged is built on a 
persistent RDF store (Sesame), extended to support 
context-bounded queries and a publish-subscribe interface 
that is used to wake up POIROT components. Hypothesis 

formers use bottom up (inductive) and top down (abductive 
or explanation-based) generalization techniques to produce 
hypotheses that are posted on the hypothesis blackboard. 
The learning moderator communicates about internal 
system tasks and learning goals with the other modules 
using a simple handshake protocol, and receives task status 
feedback through the same blackboard, but using a slightly 
different API that permits updates to transient facts about 
status and more control over component activation than the 

pub-sub mechanism used by other modules. 

Figure 2: POIROT Architecture 

Learning and Reasoning Technologies 

In this section we describe a subset of the reasoning 
approaches that POIROT will ultimately integrate, 
focusing on ones that we are currently using during this 
phase of the research.  Our overall learning framework is 
based in part on the concept of goal-driven learning, 
described previously (Hunter 1989, 1990, Ram & Hunter, 
1992, Cox & Ram, 1994, desJardins, 1995) as 
‘knowledge acquisition planning’ or ‘planning to learn’. 
Goal-driven learning leads to targeted searches for 
explanations when observations don’t fit into the 
developing model, and to the creation of new knowledge 
goals about the availability of choices and decision 
processes associated with task elaboration. POIROT also 
uses more traditional bottom up approaches that generalize 
the given observations, using some background knowledge 
to guide the degree of generalization. We describe the latter 
first, and then discuss the role of explanation-based method 

in forming hierarchical task models.  

Task Structure Determination  

In this, the first year of the project, we have relied 
primarily on two learning systems for basic task structure 
determination, each directly generalizing on the observed 
trace. Both techniques utilize the dependencies between 
information gathering actions (data querying services) and 
information consuming ones (when service parameters are 

A compatible existing 

flight was found!
Invoke “Lookup Flight” service 

and enter the parameters (from, 

to, earliest, latest) and hit OK.
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filled in) as a means of inferring dependencies between 

actions (service calls).  

WIT (from UMBC) is based on their prior work on 
context-free grammar induction (Oates et al, 2002; Yaman 
and Oates 2007). The demonstration POIROT observes is 
treated as containing a small set of examples of service call 
sequences, each handling (that is, scheduling for transit) 
one of the specified patients. WIT uses these as its set of 
positive training examples to produce essentially a finite 
state model of the transitions between steps. While this 
model can serve as a recognizer for acceptable workflows, it 
cannot by itself be used to plan one, as it does not model 
the choices that must be made at branch points.  

A second hypothesis former utilizes and extends the work 
of Winner and Veloso (2002, 2003). This system, 
DISTILL, automatically learns problem-specific universal 
procedures from demonstrated examples. DISTILL 
produces workflow methods that loop over loosely ordered 
steps that are runtime conditionalized. It develops these 
conditions by a causal analysis of the actions in the 
demonstration. Both WIT and DISTILL post their 
solutions as LTML representations of hypotheses about 

suitable subtask methods generalized from the trace.  

Hierarchical Structure Determination  

The LIGHT Hypothesis Former builds on prior work by 
Langley and his colleagues on the problem of learning of 
hierarchical task networks from traces of successful 
problem-solving (e.g., Choi & Langley, 2005) or from 
observations. The method learns hierarchical 
representations of planning knowledge similar to that in 
Nau et al.'s (1999) SHOP2 planning system. It builds sets 
of methods that together can be used to accomplish the 
demonstrated task. Methods are encoded with a head (goal 
state), an ordered set of subtasks, and a set of conditions 
under which the method should be considered. LIGHT’s 
learning method determines the hierarchical problem 
decomposition by back-chaining through the activity and 
observation sequence (a semilattice in which each subplan 
has a single root node) to form a hierarchical structure that 
suggests a general method for each subgoal. It indexes 
methods for subgoals by the goal literals they achieve. 
Where appropriate, the resulting structures include 
disjunctive and recursive methods, substantially reducing 
the time required to solve novel problems, even for 

problems larger than the training example.   

POIROT uses LIGHT as a means of identifying subtasks 
that be separated out from the overall activity sequence 

represented by the demonstration trace.   

Explanation-Based Composition of Activities  

POIROT can be viewed in part as processing a stream of 
observations to explain how they form a coherent whole. 
While bottom-up hypotheses formers identify regularities 
in a demonstrated workflow, aspects of the workflow that 
are not repeated and do not have observable causal support 
are more difficult to generalize in a useful way without 

applying additional background knowledge to explain their 
relevance. Explanations are produced by inferring 
relationships between steps using explanatory schemas that 
tie the steps to the domain goals of the demonstrator. 
POIROT’s Explanation of Intent Hypothesis Former is 
based on Meta-AQUA (Cox, 1996; Cox & Ram, 1999), a 
goal-driven explanation and learning system that has the 
top level goal to understand each observation in its input 
stream. It relies on domain knowledge, a case library of 
prior plan schemas and a set of general explanation patterns 
that are used to characterize useful explanations involving 

that background knowledge.   

POIROT relies on Meta-Aqua to explain steps that do not 
have strong observable connection to other steps in the 
demonstration. For example, steps that gather information 
used to confirm a precondition for another step, when that 
precondition is not otherwise known to be required to 
perform the step in general. If the rationale for the 
precondition can be plausibly explained by analogy to a 
historical example and/or by reference to the user’s goals, 
then that explanation justifies the insertion of an ordering 
constraint into the temporal network of steps represented in 

the generalized workflow for that context.  

Meta-Aqua is also used to associate high level 
demonstrator goals with observed demonstrator actions. 
This, independent of local causal relations, helps sets of 
intentionally related steps to be organized into loosely 

coupled hierarchical methods.  

Using ILP to learn loop ordering criteria 

The class of tasks POIROT learns is intrinsically 
repetitive. Many patients must be scheduled, using limited 
resources. This leads to choices about priorities that appear 
in the workflow as choices about such things as the order 
in which patients are considered for transit. Critical 
patients are given first crack at being scheduled so that they 

arrive at their destination in the shortest period of time.  

When POIROT recognizes that the procedure involves 
satisfying a repetitive goal – scheduling a set of patients for 
transit, and learns a procedure for scheduling one patient, it 
is ready to address the learning goals associated with 
learning repetitive, resource-bounded processes. One of 
these is the question of how (or whether) to impose a 
particular order on the satisfaction of the conjuncts of this 
top level goal. While this could be based on an attempt to 
explain the priorities of the demonstrator, in general there 
won’t be enough information available to do this directly.  

This issue has been addressed by Jude Shavlik’s group at 
the University of Wisconsin, who have developed a 
Hypothesis Formation module (DRILL) using inductive 
logic programming techniques based on (Goadlich et al, 
2004) to learn logical predicates describing the relative 
ordering relationships among elements of the set of goal 
objects (i.e., the patients) that aligns with the order in 
which the those objects were observed to be processed 
(patients scheduled), and is inconsistent with other 
orderings. This module will, in general, be triggered when 
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the meta-control system identifies that there is postulated 
loop over a set of unordered objects, and it is able to gather 
as examples the observed order the objects were considered 

in during the demonstration.  

The Learnable Task Modeling Language 

The modularity of our architecture depends on an ability to 
share hypotheses and conclusions using descriptions on the 
hypothesis blackboard. A group led by Drew McDermott, 
Mark Burstein and Robert Goldman has developed a 
language for representing the accumulated hypotheses about 
generalizations of the observed task. called the Learnable 
Task Modeling Language (LTML) LTML is based in part 
on the PDDL planning language (McDermott et al, 2000), 
and OWL-S, but also includes a simple s-expression 
syntax for RDF descriptions, and the whole language fully 
translates into OWL/RDF for storage on the POIROT 
blackboard. LTML is used to represent planning methods, 
plans, observations or traces, and domain concepts. It is 
also used to capture hypothesis annotation information, 
including such as things as provenance (which learning 
system proposed it) conflicts between hypotheses, 

explanations and learning goals. 

A central issue in an integrated learning system is the 
representation of hypotheses. As our focus is on learning 
process workflows, hypotheses must describe the 
intentions and procedures learned from the human 
demonstrator. Workflow methods describe such things as 
the information passed from one action (step) to another, 
state effects, action conditions, resources (informational 
resources, permissions, etc.), and ultimately, certainty of 
conditional outcomes and measures of utility of methods 

for achieving goals. 

Our current draft of LTML satisfies a number of sometimes 
competing requirements. It had to be capable of describing 
hierarchical task methods in a way that was acceptable to 
HTN planners such as SHOP2. It had to do so in a way 
that allowed arbitrary fragments of such descriptions to be 
independently derived or referenced, so that they could be 
annotated as hypotheses. It had to support descriptions of 
relationships among hypotheses, such as conflicts or 
congruences, and support capturing of explanations or 
justifications for hypotheses. It also had to support internal 
learning goals and task descriptions that made reference to 

hypotheses as objects of the discourse.  

Thus, for learning and hypothesis formation, LTML 
needed to enable modular chunks of information to be 
added, annotated and contradicted by different reasoners. It 
must be easy to keep track of a family of related but 
competing hypotheses, and to circumscribe a set of 
consistent hypotheses so that they may be tested together 
by construction of an experiment. In contrast, many 
planners represent plans and actions as single compound 
expressions which lack these modularity properties.  For 
example, the SHOP hierarchical planner assumes a plan 
library of methods, each of which is written in a special-
purpose notation specifying steps and their orderings. Our 

need for referential modularity required breaking down 
these task models into sets of assertions internally, and we 
were able to do this adequately using OWL description 
logic formalisms, with some additional devices for 
circumscribing contexts and referencing portions of named 
descriptions.  Figure 3 shows a sample method definition. 
Note that includes a step referencing the example from 

which it was generalized.  

(Method WIT@Method0

(body

(seq seq0 (links v0 - Set)

(acts

(perform step0

(med@lookupRequirements )

(put (med@lur_out => v0))

(occurrence TraceElt1))

(loop step1

(links (v1 (over v0)))

(body

(perform step2 (Method1 (in <= v1))))))) )

Figure 3: Small LTML fragment 

Hypotheses and Experimentation 

POIROT also includes an Experimental Design module 
(CMAX) being developed by Paul Cohen and Clay 
Morrison at USC/ISI. This module will identify and plan 
how to explore unresolved causal constraint questions in 
its target domain of learning. The causal hypothesis 
generator in CMAX explores which likely causes are 
simultaneous or otherwise coincidental changes of state; for 
example, it considers when knowledge revealed by one 
event is utilized (directly or indirectly using the results of 
further inference) in a later task; as well as extant but 

general causal models. 

The causal hypothesis evaluator plans simple confirmatory 
and disconfirmatory experiments to refine the scope of such 
hypotheses. Causal conditions and other task structure 
hypotheses are tested by the execution of experiments that 
systematically vary the demonstration trace to establish the 
conditions under which an action to test the hypotheses 
can be performed. Typically this will involve manipulating 
conditions in the simulated environment provided by the 

set of available web services. 

This hypothesize and test approach provides a domain 
grounded means to compare and contrast disparate 
hypotheses about task methods.  The results of these 
experiments can be used to select one hypotheses over 
another, or to produce new hypotheses that refine the 

models suggested by others. 

Using an HTN Planner for Experimentation  

POIROT tests what it has learned by selecting sets of task 
achievement methods that together should be sufficient to 
enable an HTN Planner to reenact the demonstration or to 
perform other suitably similar tasks. The SHOP2 Planner 
has been incorporated into POIROT by Robert Goldman at 
SIFT Technologies and Dana Nau at the University of 
Maryland.  It interprets LTML descriptions of HTN 
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planning domains and problems, develops executable task 
plans, and executes them using a runtime module called 
SHOPPER. SHOPPER in turn invokes domain web 
services through calls to the OWL-S virtual machine 
(OVM), developed by Katia Sycara’s group at CMU 

Robotics Institute (Paolucci et al, 2003).  

This experimental execution module enables POIROT to 
develop and execute plans to evaluate its shared task 
models, and provide feedback on the quality of those 
execution results. The use of semantic web services 
described using OWL-S both provides the learners with 
declarative models of the primitive actions of the domain 
being observed, and enables the system (through the 
OVM) to perform experiments by actually calling the 
demonstrated services, even though they were not known 

to the system beforehand.  

Related Work  

Investigation of multi-strategy reasoning and learning 
systems can be traced as far back as to the Pandemonium 
system (Selfridge, 1959) that combined multiple 
competing pattern recognition methods. Similarly the area 
of multi-strategy learning (Michalski & Tecuci, 1994) 
seeks to organize and taxonomize the various learning 
methods and to develop procedures whereby multiple 
learning algorithms can be effectively combined. 
Michalski's (1994) Inferential Theory of Learning provides 
a fundamental taxonomy of learning methods that includes 
inductive, deductive, and analogical algorithms. 
Furthermore the general idea of a learning goal was 
established here. In Michalski's view the default learning 
goal is to increase the total knowledge of the system, 

though he did not refine the notion. 

A large body of work has focused on acquiring and using 
domain knowledge to reduce planning search. Some of the 
most commonly used forms of learning for planning 
include control rules, e.g., (Minton, 1988); case-based and 
analogical reasoning, e.g., (Kambhampati & Hendler, 
1992; Veloso, 1992); and hierarchical and skeletal 
planning (Knoblock, 1994; Korf, 1985).  Many of these 
methods suffer from the utility problem, in which learning 
more information can actually be counterproductive because 
of difficulty with storage and management of the 
information and with determining which information to use 

to solve a particular problem. 

Other work has focused on analyzing example plans to 
reveal a strategy for planning in a particular domain. One 
example of this approach is Shavlik's algorithm 
BAGGER2 (Shavlik, 1990), which uses example solutions 
and domains and background knowledge in the form of 
recurrences to learn an algorithm for problem-solving also 
in the form of recurrences. BAGGER2 was able to learn 
such algorithms from very few examples, but relied on 
background knowledge and was unable to identify parallel 
repetition steps in a transport-domain problem. DISTILL 
can be seen as an extension of this work but with no 

reliance on background knowledge and addressing richly 

structured parallel repetition.  

Our learning of task hierarchies is related to methods for 
learning macro-operators (e.g., Iba, 1988; Mooney, 1989), 
in that they explicitly specify the order in which to apply 
operators, but they do not typically support recursive 
references. Recent learning work in programming by 
demonstration such as (Lau, 2001) is also related to our 
approach. Here, text editor macros are learned by reasoning 
about how to generalize examples using version space

algebras. 

Preliminary Results and Conclusions 

The POIROT Project is just completing the first of several 
year-long phases of development. During each phase, our 
approach is being tested by comparison with the 
performance of a pool of human subjects given similar 
background information and practice with a web services 
interface.  For this phase we tested 40 subjects using a 
demonstration of scheduling four patients that took 41 
service calls and 116 parameter assignments.  Using 
automated scoring rules, subjects average about 87% 
correct in choices of service calls and parameter 
assignments, but get only about 55% of the right answers.  
Our preliminary tests with POIROT, combining results 
from WIT and DISTILL primarily, get very similar 

results.  

These results are preliminary in several important respects.  
We have not incorporated some of the modules that will 
induce a stronger hierarchical and goal-directed structure to 
the learned model (e.g., LIGHT), or detailed preference 
criteria (DRILL), and so our scoring criteria have not been 
extended to capture errors due to those factors. We have 
also not scored the system on a suite of problems that 
systematically explores the space. More thorough 

experimental results will be presented at the workshop. 

The overall objective of the POIROT project is the 
development of an architecture that draws on and combines 
the strengths of a collection of machine learning approaches 
to solve the difficult problem of learning complex 
procedural models from a single demonstration. To date, 
we have been primarily focused on infrastructure 
development required to support the suite of learning 
components that will ultimately be part of POIROT. Over 
the course of the next year, we will be addressing a number 
of issues relating to the control and coordination of these 
various learning and reasoning elements, and explicit 
modeling of the level of certainty of the alternative 

hypotheses that they produce.   
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