Workflow Inference: What to Do with One Example and No Semantics

Fusun Yaman and Tim Oates
Department of Computer Science & Electrical Engineering
University of Maryland Baltimore County
{fusun, oates} @cs.umbc.edu

Abstract

It is much easier to get human experts to provide ex-
ample action sequences than declarative representations
of either the semantics of the atomic actions in the se-
quences or the workflow used to generate the sequences.
To address this particular instance of the knowledge
acquisition bottleneck, this paper describes an algo-
rithm called Workflow Inference from Traces (WIT)
that learns workflows from a single action-sequence
(trace) without the need for action semantics (i.e., pre-
conditions or effects). WIT is based on model merging
techniques borrowed from the grammar induction liter-
ature. It starts with a workflow that generates just the
observed trace, generalizing with each merge. Prior to
the merging phase, an alphabet of action types is created
in which similar action instances are grouped according
to their input/output characteristics in the trace. It is a
sequence of tokens in this alphabet that is merged. We
empirically evaluate the performance of WIT using a
novel measure of similarity between workflows. This
evaluation takes place in an instance of the well-known
domain proposed by Berners-Lee, Hendler, and Lassila
(Berners-Lee, Hendler, & Lassila 2001) in which ac-
tions correspond to accessing web services.

Introduction

It is much easier to get human experts to provide example
action sequences than declarative representations of either
the semantics of the atomic actions in the sequences (i.e.,
their preconditions and effects) or the workflow used to gen-
erate the sequences. Yet having such declarative represen-
tations can enable, among other things, tools for workflow
automation. For example, a recent National Science Foun-
dation workshop on the Challenges of Scientific Workflows
concluded that “significant scientific advances are increas-
ingly achieved through complex sets of computations and
data analysis ... [that are] ... often represented as work-
flows of executable jobs and associated data flows”, and that
“domain scientists consider workflow as a crucial and un-
derrepresented ingredient in Cyberinfrastructure”. There is
a need in this important domain, and a wide variety of oth-
ers, for methods and allow workflows to be extracted from
action sequences with minimal knowledge engineering.

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

46

To address this particular instance of the knowledge ac-
quisition bottleneck, this paper describes an algorithm called
Workflow Inference from Traces (WIT) that learns work-
flows from a single action sequence (trace) without the need
for action semantics. WIT borrows techniques from the
grammatical inference (GI) literature. In particular, it is
based on model merging algorithms. WIT begins with a
workflow that generates a single trace, the one observed.
It then iteratively chooses states in the workflow to merge,
thereby generalizing and producing a workflow that can gen-
erate increasingly varied traces.

Whereas the input to most GI algorithms is an alphabet
(set of tokens) and a set of strings over the alphabet that
are known to be positive (in the target language) or negative
examples, the input to WIT is a sequence of actions that take
inputs and produce outputs. WIT constructs sets of actions
that are similar according to their input/output behavior in
the trace, replaces each action in the trace with the identifier
of its corresponding set, merges the resulting automaton, and
extracts a workflow which includes the structure (a graph)
and a set of constraints on inputs and outputs.

The WIT algorithm was tested on a web service domain
first described in the seminal semantic web paper (Berners-
Lee, Hendler, & Lassila 2001), which has been implemented
and used by many other researchers. Results with a novel
similarity metric for comparing workflows show that WIT
performs well at capturing the target workflow.

The remainder of this paper is organized as follows. The
next section defines the workflow inference problem for-
mally and gives some of the terminology used in the paper.
Following that the WIT algorithm is described, a workflow
similarity metric is presented, and the empirical evaluation
is described. Finally, we conclude and point to future work.

The Workflow Inference Problem

We assume the existence of three finite sets of symbols de-
noted A, D, and N that represent action names, data types,
and variable names respectively. A variable definition is a
tuple of the form (z, d) or (x, [d]) where x € N and d € D.
In the former case z is of type d, and in the latter case x is a
set whose elements are of type d.

Next we define actions and action instances that are the
building blocks of workflows and traces respectively.

An action is a triple A = (a,I,0) where a € A, and

and O are sets variable declarations. Informally, an action
is represented by an action name and a list of typed input
() and output (O) parameters. We will use Inputs(A)
and Outputs(A) to denote the set of variables in I and O,
respectively, and Action(A) to denote the type of action
A, ie., Action(A) = a. For example getGeneric =
(generic, {{RxIn, Medicine)}, {{RxOut, Medicine)})
is an action that takes a medicine name as input and outputs
the generic name of the input medicine.

Given a set of variables X = {x1,...x,} an assignment
M = {(xz1,v1) ... (xn,vy)} for X maps every z € X to a
value v.

An action call is triple AC = (A,I,0) where A
is an action, I is an assignment for Imputs(A4), and
O is an assignment for Outputs(A). Intuitively,
an action call is an action with an assignment to
all of its input and output parameters. For example
(getGeneric, {(RxIn, Advil)}, {(RxOut, Ibuprufen)})
is an action call where the action getGeneric takes Advil
as input and outputs the generic name Ibupru fen.

A trace is a list of action calls [acy, aca, ..., ac,]. The
actions in the trace are totally ordered corresponding to the
order in which they were observed.

A workflow defines valid sequences of action calls to
achieve a certain task. It has two components, a graph and
a set of input/output constraints. In the following definition
we will assume the existence of two special actions, start
and stop, that have no inputs or outputs. We will use start
and stop actions in a similar way to the start and end states
of a finite state machine.

Definition 1 Given a set of actions A containing the start
and stop actions, a workflow W is a tuple (G, C') where G
is a directed graph and C'is a set of binding constraints such
that

e Every node n in G is associated with an action a,, € A,

denoted Action(n) = ap,.

e There is a unique node v in G with 0 in-degree and
Action(i) = start.

e There is a unique node f in G with 0 out-degree and
Action(f) = stop.

e Every constraint ¢ € C is of the form n.i = n'.o where n
and n’ are nodes in G such that there is a path from n' to
n and i € Inputs(ay,) and o € Outputs(ay).

Furthermore the nodes i and f are the start and stop node

of W, denoted start(W) and stop(W), respectively.

Example 1 In addition to the getGeneric action de-
scribed earlier, suppose we have the following action
that orders the input medicine from an online phar-
macy and returns the receipt as output : order =
(order Medicine, {(RxIn, Medicine), (pharmacy,
StoreName)}, {(receipt,ID)}). Using these two actions
we can define the workflows (G1,C1), (Gz2,C2) and
(G3,C3) where G; and C; are shown in Figure 1.

A workflow is consistent with a trace if it can generate the
sequence of action calls in the trace. More formally:

Definition2 A workflow W = (G,C) is consis-
tent with a trace [acy,...,ack] iff there is a path
[start(W),nq,...,ng, stop(W)] in G such that for every

47

getGeneric order getGeneric order

G @ w0

stop

C,={n2.RxIn=n1.Rx0ut
n4.RxIn=n3.RxCut},

getGeneric order

o By

getGeneric order
G @.@ ny
start stop

Figure 1: Example workflows to order one or more drugs in
generic form.

C,= {n2.RxIn=n1.Rx0ut}

C={}

ac;, Action(ac;) = Action(n;) and for every constraint
n;.in = n.out in C there is a j < i such that nj = n and
ac;.in = ac;.out. Furthermore T is a characteristic trace
for W if every edge in G is traversed in P.

Example 2 The frace [{getGeneric,{(RxIn,Advil)},
{(RxOut, Ibuprufen)}), (order Medicine, {(RzIn,
Ibuprufen), (pharmacy, CVS)},{(receipt, RO1)})] is
consistent with the workflows (G2, Cs) and (Gs,Cs) but
not (G1,Cy) shown in Figure 1.

Given a trace 7" there are multiple workflows that are con-
sistent with 7", some more informative than the others. For
example there is a trivial workflow that has a fully connected
graph containing a node per action type and an empty set of
binding constraints that can produce any trace. Another ex-
treme workflow would be a chain of the same length as T'
that would produce just 7. Intuitively we are interested in
a minimal workflow which is as small as possible and has
captured as much data flow as possible. The following defi-
nition formally presents the minimal workflow.

Definition 3 A workflow W, = (G, C4) is more specific
then a workflow Wy = (Go,Cs) iff |C1|/Vars(Wy) >
|Ca|/Vars(Wa) where Var(Wy) and Var(Ws) are the to-
tal number of inputs in actions of W1 and Wy, respectively.

Let W = (G, C) be a workflow and T be a characteristic
trace for W. W is a minimal workflow w.r.t. T iff there is no
workflow W' = (G',C"Y such that 1) T is a characteristic
trace for W' and 2) W' is more specific then W and 3) G’
has less number of nodes then G

Example 3 In Figure 1 , the workflow (G1,C:) and
(G, C3) are more specific then (G3,C3). Let T be a trace
that is a repetition of the trace in Example 2 then (G2 C3)
is a minimal workflow w.r.t. T.

We are now ready to define the workflow inference problem
and its solution, which is finding the minimal workflow that
is consistent with a given trace.

Definition 4 A workflow inference problem (WIP) is a tuple
(AD,T) where AD is a set of actions and T is a trace. A
workflow W is a solution to {AD,T) if W is minimal w.r.t.
T.

Algorithm

Our Workflow Inference from Traces (WIP) algorithm bor-
rows techniques from the field of grammar induction. Be-
fore describing the WIT algorithm, we summarize the differ-
ences between the workflow inference problem (WIT) and

the grammar induction (GI) problem. In general, the inputs
to a GI algorithm (Oates, Desai, & Bhat 2002) are an alpha-
bet (i.e., the set of terminals in the language of the target
grammar) and a set of strings accepted by the target gram-
mar. In some cases a set of negative examples, i.e., strings
that are not in the language of the target grammar, is also
provided. Instead of an alphabet, the input to a WIP algo-
rithm has a set of action schemata, i.e., the names of the
actions and a list of their inputs and outputs along with their
types. Also the WIP is defined with respect to a single trace
as opposed to a set of traces. Note that WIT does not re-
quire any information about action semantics, such as their
preconditions or effects.

One general technique for solving GI problems when the
target grammar is known to be regular is to create a deter-
ministic finite state automaton (DFA) that accepts just the
positive examples where the edges are labeled with termi-
nals. The next step is to merge states with common prefixes
while verifying that none of the negative examples are ac-
cepted by DFA after the merge. As a result, the final DFA
is more general than the initial one and the grammar repre-
sented by the final DFA accepts more than just the positive
examples. We cannot directly apply this technique to the
WIP because there is no alphabet of constant terms. Second,
since we have only one positive example our initial DFA
is simply a chain, forcing us to use a different criterion to
find mergable states. The WIT algorithm has 3 steps, alpha-
bet generation, step generalization and workflow extraction.
The following subsections explain each step in detail, and
then we present the algorithm.

Alphabet Generation

The aim of this step is to group instances of the same action
based on input bindings. Given a trace T', we identify for
every input ¢ of every action call ¢ the producers, i.e., an
action call p in T before c such that one of the outputs of p,
say o, matches the value of 7. Here matches is defined as:

e if 0 is a simple type then it is the same type as ¢ and has
the same value

e if 0 is a set then one of the elements in o matches ¢

In this case we denote the match as c.i = p.o and we say
that p.o is a producer of c.i. If there is more than one pro-
ducer for c.i we select one of them based on a list of domain
independent preference rules, e.g. prefer the producer that
is closer to c in the trace'. Note that for some action calls
some of the inputs won’t have any producers. In that case,
we just assume the value of that input is constant or given.

Next, we classify the action calls based on the similarity
of their producers and action types. Two action calls a; and
ao are similar if

e Action(ay) and Action(az) are the same type of action
A and for every input i € Inputs(A)) the producers are
the same, i.e., a;1.¢ = p.o and as.t = p.o, or

"More complex selection preferences are encoded in WIT that
can handle not only simple types but also composite types for
which the matching criteria is extended to allow the fields of an
object as a producer for a simple data type.

48

Action Inputs Outputs

getGeneric | RxIn=Advil RxOut=Ibuprufen

order RxIn=Ibuprufen receipt="RO1’
pharmacy=CVS

getGeneric | RxIn=Tylenol RxOut=Paracetamol

order RxIn=Paracetamol | receipt="R02’
pharmacy=CVS

Table 1: Action Calls in Example 4

e Action(aq) and Action(as) are the same type of action
A and for every input i € Inputs(A) the producers are
similar, i.e., a1.7 = py.0 and as.t = ps.o where p; and ps
are similar.

Finally we create a term for each action call in the trace
such that similar action calls are associated with the same
term. The the set of terms associated with the action calls
is our alphabet. The term an action call a is mapped to is
denoted by term(a).

Example 4 Suppose T = [a1, az, a3, a4] is a trace and a;’s
are as given in Table 1. The only matches we have are
as.RxIn = a1.RxOut and ay.RxIn = as.RxOut. The
first item in definition of similarity says that a1 and as are
similar — because there is no producer for their inputs. Then
by the second rule we find that as and a4 are similar be-
cause az.RxIn and ay.RxIn have similar producers. Thus
A = {g, o} is the alphabet for this trace and term(ay) = g,
term(az) = o, term(as) = g, term(aq) = o.

Step Generalization and Workflow Extraction

Given the alphabet, we build a finite state machine F’ rep-
resenting the input trace T = [ajas . ..ag]. F contains the
states sgp S1 Sz ..., and for every 0 < ¢ < k there is a
transition between s;_1 and s; with the label term(a;). The
start state and end state of F' will be sg and sj, respectively.
Next we iteratively merge the states s; and s; iff they both
have an incoming edge with the same label. If any of the
merged states is a final state then the resulting state will be a
final state. The order of the merges does not matter. The in-
tuition behind this is that actions with similar input bindings
lead to similar states in a workflow. The resulting finite state
machine (not necessarily deterministic) will contain exactly
one sink node per term in the alphabet.

Given the trace T, the alphabet A, and the finite state ma-
chine F produced at the previous step we can build a work-
flow W = (G,C). Note that in F” for any state all the
incoming edges have the same label and every label corre-
sponds to a set of action calls with the same action type (en-
sured by the similarity definition). Thus G will be very sim-
ilar to F” with the main difference being edge labels will be
removed and nodes will be associated with the action types
corresponding to the incoming edge labels in F”. The bind-
ing constraints C' will contain all the matches used for gener-
ating the alphabet but the action calls in a match expression
will be replaced by the node they correspond to.

Example 5 Let T be the trace and A = {g, 0} be the alpha-
bet in the Example 4. Then step generalization will start with

FaO—Q—Q—(’»O—g»Q—O—O Alphabet={g,0}
1
term(a,)=g, term(as)=o,
Fz% term (az)=g, term (ay)=0
getGeneric order
G (g——0)—)}—0) c={n2.RxIn=n1.RxOut}
stal - stop

Figure 2: Step generalization and workflow extraction for
the trace in Example 4

F in Figure 2 and conclude with Fs. Then the workflow ex-
tracted will be (G, C) where G and C are as in Figure 2.

WIT algorithm

Algorithm 1 is the pseudo code of the WIT algorithm
which presents the computation of the three stages explained
above. Even though WIT is not guaranteed to find a mini-
mal workflow, it always produces a workflow for which the
input trace is characteristic.

Theorem 1 Suppose A is a set of actions, T is trace, and
W = WIT(A,T) is a workflow produced by WIT. Then T
is a characteristic trace for W.

Algorithm 1 WIT(A,T)

Inputs: A is aset of actions, T = {ay ...ay} is a trace
for all a wherea € T' do
Match(a) =0
for all a.i where a € T and i € Inputs(a) do
Select a producer p.o for a.i and add to Match(a)
M = {(al, tl) . (ak’ tk)} where ti:tj if
Action(a;)=Action(a;) and Match(a;) = Match(a;)
repeat
if 3(a,t),(d,t') € M such that ¢ # ¢’ and
SIMILAR(a,a’, Match(a), Match(a'), M) is true
then
M =Mu{(d,t)} - {(d,)}
until M not changed
Let A be the set of all ¢ such that (a, t) € M
Let F' be an FSM with states sg . . . si
forall 0 <i<m do
Let ¢ be the symbol such that (a;,t) € M
Add a transition in F' from state s;_1 to s; with label ¢
while 3 s;, s; in F' with the same incoming transition do
Merge s;, s;
Let G be a graph that has a node n; for every ¢ € A and
cC=0
for all nodes n; € G do
Arbitrarily pick an action call a such that (a,t) € M
C = CU{ngin = nyp.outlag.in = b.out €
Match(a) A (b, t') € M}
for all Pairs of n; and n;s do
Let s; and s} be the states in F’ with the incoming tran-
sitions labeled ¢ and ¢’
if There is an edge from s; to s; then
Add an arc from n; and ny in G
return The workflow (G, C)

49

Comparing workflows

In this section we propose a novel similarity metric to com-
pare two workflows. We will compare the workflows based
on the languages they represent. The novelty of our ap-
proach comes form the fact that we can apply language com-
parison to workflows with data binding constraints. In the
first step we compute the shared alphabet of the workflows
based on binding constraints and node types. Then we rep-
resent the two workflows as FSMs utilizing the shared al-
phabet. However, since FSMs with cycles have infinite lan-
guages we cannot simply generate all possible strings and
then compare the languages. Thus we need to approximate
the language of an FSM. To this end we utilize 'n-grams’
(Mahleko, Wombacher, & Fankhauser 2005) (i.e., sequences
of length n leading to a given state) of the FSM because a
combination of n-grams can be used to construct all possible
execution sequences of a single automaton.

Computation of the shared alphabet of the two workflows
is very similar to the alphabet generation step in WIT. The
major difference being we don’t have to guess the producers
of the action inputs as they are already declared in the bind-
ing constraints of the workflows. We also need to rename
the nodes so that the set of nodes in the workflows will be
disjoint. We will say two nodes in any of the workflows
are similar iff they have the same action types and they ei-
ther have the same binding constraints or all the producers
in their binding constraints are similar. Finally we assign a
term to each node such that two nodes are assigned to the
same symbol iff they are similar. Let this mapping be M.

Given the mapping M from nodes of the workflows to the
shared alphabet, the induced FSM F for a workflow (G, C)
is defined as:1) For every node n in G there is a state s,, in F’
2) There is an edge (s, $,,) in F iff there is an edge (n, m)
in G 3) Every incoming edge to s,, is labeled as M (n).

The set of n-grams of a state s in an FSM is the transition
sequences of length n leading into s. The set of n-grams
of an FSM F is denoted by Lang(F,n) and it contains the
n-gram sets of every state in F'.

Definition 5 Let W1 and W5 be two workflows and F and
Fy be their induced FSMs. Then S(W1,Wa, k) is the k-
similarity of W1 and Wy and it is equal to |Lang(F1,k) N
Lang(F27 k)‘/lLang(Fh k) U Lang(FQa k)|

Experiments

In this section we empirically evaluate the performance of
WIT using the measure of similarity between workflows.
We use the medical scheduling planning domain used in
(Sirin et al. 2004) and which is based on the scenario that
was originally described in (Berners-Lee, Hendler, & Las-
sila 2001). The scenario is as follows: Pete and Lucy need
to buy a list of prescriptions for their mother’s treatment
and then try to schedule appointments for a list of diagnos-
tic tests to be performed. Since their mother is ill one of
them will be driving her to the treatment center so they need
to take into account their schedules as well as the hospitals
and pharmacies that accept their mother’s health insurance.
All the actions in this domain are described as Web Services

orderRx

’ lookupPharmacy
lookupPharmacy

getDrivers
getMedicalPlan

stop

~ updateSchedule
) makeAppointment
getAvailableTimes

v~ 9etTCPref

lookupTC

Figure 3: The target workflow in the experiments.

some of which gather information, e.g. learn available ap-
pointment times, and some alter the world, e.g. schedule an
appointment.

Our test domain contains 14 actions. The graph in Figure
3 shows the acceptable sequence of actions for achieving
the tasks Pete and Lucy have. Basically the workflow has
the following steps: 1) Retrieve the list of medicines and
tests, 2) Lookup for the pharmacy plan and the pharmacy
preference filter (which is a radius), 3) For every medicine
in the list lookup the generic medicine name 3.1) If there
is a generic medicine available then lookup a pharmacy that
is within the preferred distance, accepts the pharmacy plan
and carries the generic medicine. If one exists then order
the generic medicine, 3.2) Otherwise find a pharmacy that
satisfies the same constraints but carries the original brand
medicine and order the medicine 4) Get a list of available
drivers (for this case it is just Lucy and Pete) 5) Get the med-
ical plan info and treatment center preference 6) Lookup the
treatment centers that offer the tests in the list and accepts
the plan and are within the preferred distance 7) Try every
treatment center for an appointment time for all treatments
until one that does not conflict with one of the drivers is
found 8) Update the designated driver’s schedule with the
appointments. For the rest of this section we will call the
workflow consistent with these steps (and with figure 3) the
« workflow. In a variation of the o workflow which we call
the 8 workflow step 5 is be performed just after step 2.

We have performed two sets of experiments. In the first
one « is the target workflow and we investigate the quality
of the output workflow when the alphabet generation step
correctly alphabetizes the input trace, i.e. choses the cor-
rect producers for every input. Note that, in any trace that is
consistent with «, the correct producer of any input value is
always the latest producer. The second set of experiments
uses (0 as the target workflow. This time the latest pro-
duced value is not necessarily the correct one. For example
if in a trace consistent with 3 the action calls getT'Cpref
and get PharmacyPref output the same radius value then
the producers of the lookupPharmacy action calls will be
getT'Cpref, which is not intended. In the second set of ex-
periments we investigate how similar the WIT output and
the 8 workflow when the generated alphabet is incorrect.

In our experiments we have randomly created the lists of

50

W+ Explored(W*,T)
Target Min | Max | Min | Max
o 0.63 | 096 | 1 1
i) 0.40 | 0.55 | 045] 0.71

Table 2: Min and max 2-similarity for « and 3 workflows

prescriptions and medical tests as well as the available phar-
macies and treatment centers. We have also ensured that at
least one of the drivers and treatment centers have a com-
mon available time slot for the tests to be performed. With
a randomly generated initial state, we traversed the target
workflow W™ to create a trace consistent with W*. We ran
WIT with the input traces and compared their similarity to
the target workflows. Table 2 summarizes our results where
« and 3 are the target workflows in the first and second rows.
The first and second columns of Table 2 shows the minimum
and maximum 2-similarity values between a WIT output and
Wx. We also compared the WIT output for a trace 1" with
Explored(W*,T), which is the part of W* that is traversed
to produce T'. The third and forth columns of Table 2 shows
the minimum and maximum 2-similarity values between a
WIT output and Explored(W*,T') for some T'.

Results for target o: WIT can find the work-
flow FExzplored(W*,T) in all cases. Note that
Explored(W*,T) is also the minimal workflow. It is
interesting to see that WIT can never exactly recover the
target workflow, as the maximum 2-similarity value is 0.96.
That is due to the fact that in any trace that is consistent
with « only one incoming edge of node 10 will be explored,
thus WIT has no evidence to produce to second edge. More
generally if the target workflow has a node n with more than
one in or out degree and there is no loop containing n then
WIT can not produce the target workflow. This is a natural
result of learning with a single example trace. Similarly the
minimum 2-similarity is achieved when the input trace has
no evidence of loops, i.e. there is just one medicine and the
first treatment center has available appointments.

Results for target [§: In this case as a result of
wrong alphabet generation, WIT can not find the workflow
Explored(W*,T). 2-similarity with Explored(W*,T) is
minimum when Explored(W™*, T') has all the paths from ns
to ny1g. Naturally the maximum similarity is achieved when
only one path from ns to nyg is in Explored(W*,T). The
2-similarity value for 5 and W IT output is even lower since
(contains all the nodes and have a larger 2-gram set then
the 2-gram set of Explored(W*,T).

Related Work

There is a large body of work in workflow/process mining
(Weijters & van der Aalst 2001; Agrawal, Gunopulos, &
Leymann 1998; Cook & Wolf 1998) in which the goal is
to construct the process that produced an event log. Dif-
ferent representational schemes have been utilized to repre-
sent workflows such as petri-nets (Weijters & van der Aalst
2001) and finite state machines (Cook & Wolf 1998). Some
of the existing work on workflow mining employs grammar
inferencing techniques to find the target workflow. How-
ever in these work the events are uniquely determined by the

event name and they are not parametric, thus the alphabet
is fixed and known. However WIT deals with different in-
stances of the same action and extracts an alphabet based on
the dataflow in the example trace.

Inductive program synthesis (Bauer 1979) and program-
ming by demonstration (Lau & Weld 1999) are other related
research areas that is closely related to our work. For once
these works do not ignore the input output relationships.
While most of them employ inductive logic programming
to recover the target program given the example executions
none applies the grammar inferencing techniques to gener-
alize an example trace as WIT does. More over the example
executions are annotated with the start and end of the loops
and sometimes even the iterations of a loop is identified (Lau
& Weld 1999).

Finally Al planning literature has some work on learning a
domain specific planner from a plan trace (Winner & Veloso
2003; Nejati, Langley, & Konik 2006). Distill (Winner &
Veloso 2003) generalizes the plan trace by using a goal di-
rected approach and produces a domain specific planner that
can solve new problems. Similarly, Nejati et. al (Nejati,
Langley, & Konik 2006) applies a goal directed approach to
extract macro actions in the form of HTN methods. Both
works require the action semantics, i.e. preconditions and
effects of the actions, but in return they produce the possible
action sequences along with the branching conditions, i.e.
when to take a certain branch in the workflow.

Several similarity metrics have been proposed in the lit-
erature. Some are based on comparing the languages the
workflows represent (Mohri 2003; Mahleko, Wombacher,
& Fankhauser 2005). The basic idea is to measure the
distance between the strings produced by the workflows.
In (Mahleko, Wombacher, & Fankhauser 2005) the use
of n-grams to approximate the infinite language produced
by a workflow has been proposed. Other similarity met-
rics ignore the language aspect and are based on com-
paring the structure (Chartrand, Kubicki, & Schultz 1998;
Messmer & Bunke 1998; Du et al. 2005) only. For example
(Chartrand, Kubicki, & Schultz 1998; Messmer & Bunke
1998) are based on graph and subgraph isomorphism. In
(Du et al. 2005), an alphabet-based approach is proposed,
basically restricting two workflows to a shared alphabet and
revising them with the transformation rues introduced in
(van der Aalst & Basten 2002). Our approach is an amalgam
of both language comparison and structural comparison, as
we first extract the common alphabet and then compare the
languages both workflow produces w.r.t. the shared alpha-
bet. Furthermore our alphabet captures the data flow which
is ignored by all of the previous metrics.

Conclusions

This paper presented the WIT algorithm for inferring work-
flows from action traces without the need for multiple exam-
ples or action semantics. The utility of WIT was validated
empirically in a web services-based domain. Future work
will focus on empirical evaluation in additional domains,
theoretical characterization of the conditions under which
WIT is guaranteed to converge on a minimal workflow and

51

on the effects of noisy action sequences (containing, for ex-
ample, missteps on the part of the expert) and ways of deal-
ing with them.

Acknowledgements

This work is supported by the DARPA Integrated Learning
Program through a sub-contract from BBN.

References

Agrawal, R.; Gunopulos, D.; and Leymann, F. 1998. Min-
ing process models from workflow logs. In 6th Int. Conf.
on Extending Database Tech. (EDBT ’98), 469-483.
Bauer, M. A. 1979. Programming by examples. Artificial
Intelligence 12(1):1-21.

Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web. Scientific American 284(5):34-43.
Chartrand, G.; Kubicki, G.; and Schultz, M. 1998. Graph
similarity and distance in graphs. Aequationes Mathemati-
cae 20(1):129-145.

Cook, J. E., and Wolf, A. L. 1998. Discovering models
of software processes from event-based data. ACM Trans.
Softw. Eng. Methodol. 7(3).

Du, Z.; Huai, J.; Liu, Y.; Hu, C.; and Lei, L. 2005. Ipr:
Automated interaction process reconciliation. In IEEE Int.
Conf. on Web Intelligence (WI'05), 450—456.

Lau, T. A., and Weld, D. S. 1999. Programming by demon-
stration: An inductive learning formulation. In Intelligent
User Interfaces, 145-152.

Mahleko, B.; Wombacher, A.; and Fankhauser, P. 2005. A
grammar-based index for matching business processes. In
IEEE Int. Conf. on Web Services (ICWS 2005, 21-30.
Messmer, B. T., and Bunke, H. 1998. A new algorithm
for error-tolerant subgraph isomorphism detection. /EEE
Trans. on Patt. Analysis and Mach. Intell. 20(5):493-504.
Mohri, M. 2003. Edit-distance of weighted automata: Gen-
eral definitions and algorithms. Int. J. Found. Comput. Sci.
14(6):957-982.

Nejati, N.; Langley, P.; and Konik, T. 2006. Learning
hierarchical task networks by observation. In ICML ’06,
665-672.

Oates, T.; Desai, D.; and Bhat, V. 2002. Learning k-
reversible context-free grammars from positive structural
examples. In ICML, 459-465.

Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004.
HTN planning for web service composition using SHOP2.
Journal of Web Semantics 1(4):377-396.

van der Aalst, W. M. P, and Basten, T. 2002. Inheritance
of workflows: an approach to tackling problems related to
change. Theor. Comput. Sci. 270(1-2):125-203.

Weijters, T., and van der Aalst, W. 2001. Process mining:

Discovering workflow models from event-based data. In
13th Belgium-Netherlands Conf. on AI (BNAIC 01).

Winner, E., and Veloso, M. M. 2003. Distill: Learning
domain-specific planners by example. In 20¢h Int. Conf. on
Machine Learning (ICML 2003), 800-807.

