
Hierarchical Strategy Learning with Hybrid Representations

Sungwook Yoon
Computer Science & Engineering

Arizona State University
Tempe, AZ 85281

Sungwook.Yoon@asu.edu

Subbarao Kambhampati
Computer Science & Engineering

Arizona State University
Tempe, AZ 85281

rao@asu.edu

Abstract

Good problem solving knowledge for real life domains is
hard to define in a single representation. In some situations,
a direct policy is a better choice while in others, value func-
tion is better. Typically, direct policy representation is better
suited to strategic level plans, while value function represen-
tation is better suited to tactical level plans. We propose a
hybrid hierarchical representation machine (HHRM) where
direct policy representation and value function based repre-
sentation can co-exist in a level-wise fashion. We provide
simple learning and planning algorithms with our new rep-
resentation and discuss their application to Airspace Decon-
fliction domain. In our experiments, we provided our sys-
tem LSP with two level HHRM for the domain. LSP could
successfully learn from limited number of experts’ solution
traces and show superior performance compared to average
of human novice learners.

Introduction
Many real life problems can be most compactly described
with hierarchical representation (Erol, Hendler, & Nau
1996; Dietterich 2000; Parr & Russell 1997). Often, com-
pact strategies for each level in the hierarchy can be repre-
sented in a different form. Consider riding a bike to some
local grocery. At the top level, the solution strategy can
be symbolically represented as “bike to the crossroad” and
“turn left”. At the bottom level, the solution must describe
all the physical movement that can be applied to the envi-
ronment. Bottom level actions look like, “tilt the wheel 5
degrees to the right, set the pedal RPM at 60 for 2 seconds,
tilt the wheel 2.5 degrees to the left etc.,”. Such actions can
be more compactly represented as “maximize the stability
of the bike, en-route to the crossroad”. The latter solution
strategy takes the form of value function, and the former top
level solution strategy has direct policy representation.

A compact solution strategy for Airspace Deconfliction
problem can also be represented as “hybrid” representations
in the hierarchy. Airspace deconfliction problem is placing
airspaces in 4-D space, or temporal and spatial space. An
airspace is defined by its occupancy in 4-D space, where it
happens in latitude, longitude and altitude space and when
it happens in the time space. Before an operation of any
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task that needs some airspaces, the person in charge of the
operation should ask Airspace Authority and get the permis-
sion. Airspace requests can overload some portion of the
4-D space and Airspace Authority needs to do deconfliction
operation. Airspace Authority deconflicts the airspace by
changing the requested airspaces in 4-D space. The changes
should minimally affect the original objective of the airspace
requests and accommodate as many airspace requests as
possible. Airspace deconfliction domain will be our ongoing
example as well as target experiments domain.

Experts on Airspace Deconfliction problem use “hybrid”
strategy during deconfliction. First, experts choose the
top level solution strategy by looking at the usage of the
airspaces. For example, if the use of the airspace is “fighter”,
they choose to raise the altitude of the airspace. If the use
of the airspace is “missile”, experts choose to delay the
airspace. Second, the detailed altitude or time is decided
by considering the minimal movement that guarantees the
deconfliction. The latter strategy can be most compactly
represented as a form of cost function, that the experts min-
imize. Thus, the best solution strategy can be represented
and learned with hybrid hierarchy representation.

We propose to study hybrid hierarchical representation
machine (HHRM). In our study, we assume that the hier-
archy structure of the target domain is given to our algo-
rithm. We also assume that sample solution trajectories are
given to our system. We then attempt to extract hybrid hier-
archical strategy (HHS) from the training trajectories. The
learned HHS is then tested against unseen problems. Ide-
ally, we would expect that the sample solutions are derived
from representative problems of the target domain. In what
follows, we describe our representation scheme and learning
algorithms.

Representation and Learning Algorithm
We represent actions in a hierarchy. Actions other than
the most bottom level actions are abstract actions. Only
the bottom level actions are physically realizable actions.
We consider simple hybrid hierarchical action representa-
tion scheme. In our representation, direct policy or value
function based representations are mixed. Each level is rep-
resented in a single representation. That is, if an action in the
top level is represented in a direct policy, all the actions in
the top level are represented in direct policy representation.
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At any level of the hierarchy, an action is represented in one
of the following form,

A =
{

R(x1, . . . , xn)
minA′ FA′(x1, . . . , xn) (1)

First, there is a relational abstract action or symbolic ac-
tion. This is ideally suited for direct policy representa-
tion. For example, raise-altitude(Fighter) and
set-minimum-altitude(Fighter 34000ft) are
symbolic actions for airspace deconfliction domain. The
latter action corresponds to bottom level action and can be
physically realized. Second, there is a minimization (or
maximization) action. This action describes which func-
tions are to be minimized with a predefined set of actions in
the lower level. For example, min F = cost of higher
altitude flying is such an action. Let the min F be at
level l and min F ∈ Al. The actions Al+1 in the right below
the level of the current level l that minimize the value of F
are sought for min F.

Next, we define HHRM by giving the description of the
relation between two consecutive levels of actions and the
top level actions. This is similar to typical inductive defini-
tion.

Al : {a ∈ Al+1} (2)
Equation 2 shows how we define two consecutive levels of
actions. The definition provides the set of lower level actions
Al+1 that belong to the current level action Al.

raise-altitude(x) :
{minx,a(altitude-change-cost(x, a)+
altitude-conflict-cost(x, a))}

(3)

For example, Equation 3 shows a hierarchy definition for
Airspace Deconfliction Domain. This hierarchy defines the
relation between a top level action raise-altitude(x)
with the lower level action, which minimizes the cost of
changing altitude and conflict.

The top level actions are defined by the set of action tem-
plates for the top level.

raise-altitude(x)
lower-altitude(x)
move(x)
delay(x)
advance(x)
add-point(x)
delete-point(x)
shrink-radius(x)

(4)

Equation 4 shows the set of top level action definition for
Airspace Deconfliction Domain.

One interesting aspect of our action hierarchy is
that the representations can be nested each other.
Symbolic action can occur inside the minimization
action, or vice versa. For example, in the Airspace
Deconfliction problem, the top level action can be
minimizing global cost function min G. min G : {
raise-altitude(x), lower-altitude(x),
move(x), delay(x), advance(x),
add-point(x), delete-point(x) } defines

Learn-Abstract-Actions (J, H)

// experts’ trajectories J, Action Hierarchy Definition H
B ← {} // initialize variable binding
FOR each level l in H

IF l is SYMBOLICABSTRACTACTION
Learn-Action-Selection-Rules ,ג) H , l,B)

IF l is COSTMINIMIZATION
Learn-Cost-Minimization-Weight(ג, H , l, B)

update-binding(B)

Figure 1: Pseudo-code for learning hybrid hierarchy actions

the relation between the top level action and the level below.
In this representation example, the top level action is in
value function representation and the level below is in direct
policy representation.

Available actions in the lower hierarchy is limited by the
actions in the hierarchy. The variable binding from the upper
level hierarchy limits some of the variable binding of the
lower level actions. In the above example of Equation 3,
when action raise-altitude(Fighter) is selected,
the variable x in the lower level actions are bound to Fighter.
The idea of limiting the scope of the actions in the lower
hierarchy is similar to previous studies in (Andre & Russell
2000; Erol, Hendler, & Nau 1996)

Unlike HTN studies, our hierarchy representation does
not have the “precondition” for each task in the hierarchy.
Due to this fact, it is hard for planners to directly use our
representation as solution strategy. Next, we describe our
learning algorithm for HHRM.

Learning Algorithm
In this work, we do not aim to solve problems di-
rectly with the definition of the hierarchy, rather we
rely on expert’s guidance to extract useful strategy.
In the experts’ guidance, we have the tags for hier-
archy information. For example, experts’ action se-
quence consists of ordered bottom level actions, e.g.,
set-minimum-altitude(Fighter 34000ft).

Our learner has the access to the hierarchy informa-
tion for the sequence, “raise-altitude(Fighter):” “minimize
the cost of altitude chage:” “set-minimum-altitude(Fighter
34000ft)”, “set-maximum-altitude(Fighter 38000ft)”. Cur-
rently, the human tags the abstract action information. To re-
move the human tagging help, we are planning to use Viterbi
algorithm or more advanced plan recognition algorithms for
finding the unseen hierarchy information.

Figure 1 shows our algorithm for learning. The algo-
rithm iterates through action hierarchy to learn abstract ac-
tions. Learn-Action-Selection-Rules is used for learning
symbolic abstract actions. In our initial implementation, we
have used relational rule learning program based on PRISM
algorithm (Cendrowska 1987). Learn-Cost-Minimization-
Weight is used for learning cost-minimization abstract ac-
tions. We implicitly assume that the cost function is repre-
sented as a weighted combination of input features. More
specifically, we assume that the combination of the fea-
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tures is linear. Note that only at the top level actions
are learned with global scope, while the lower level ac-
tions are learned with local scope, limited by variable bind-
ings of the higher level actions. For example, to learn
cost-minimization action for F = ‘‘cost of higher
altitude flying’’ action, the cost is limited to cost
functions that involves ‘‘Fighter’’, if the top level ac-
tion is tagged with raise-altitude(Fighter).

Airspace Deconfliction Experiments
We have tested our ideas on Airspace Deconfliction domain
and have obtained positive results. In our experiments, our
learning system called LSP observes the experts’ actions
for the training deconfliction problem. Then LSP performs
against unseen problem for testing purpose.

For this domain, we defined a three level hierarchy.
The top level consists of symbolic actions that move the
airspaces in horizontal, vertical or temporal directions, as
shown in previous section. The middle level actions are
cost minimization functions, that minimize the predefined
cost functions for each of the top level actions. The bot-
tom level actions are physically realizable actions that set
constant values to attributes of the airspaces. In our test-
ing, we focused on learning the top level actions. For the
middle level cost minimization functions, we used “minimal
displacement” function, which will be described in detail in
the following subsections. We expect that the weight for the
cost functions can be easily learned with perceptron variants
of algorithms.

In the following, we describe detailed experimental en-
vironment. We start with how we generate relational fea-
tures. Then we give the skewed data problem and the ap-
proach we took to resolve the problem. We conclude with
the learned abstract rules and performance analysis on the
target domain.

Feature Generation
We describe the target problem with relational represen-
tation, a set of true ground facts of first order logic.
For example, a relation set { (use ACM-B-1 smss),
(conflict ACM-B-1 ACM-A-1), . . . } describes
some part of the Airspace Deconfliction problem. The de-
scription expresses that the use of airspace “ACM-B-1” is
“smss” and it is in conflict with “ACM-A-1”.

We generate binary features for symbolic actions in the
target domain. We describe the properties of arguments of
the actions. Each description of the argument of an action
type is a binary feature. In what follows, we formally define
our feature set. It will be obvious and straightforward that
the feature set can be automatically enumerated.

We used Taxonomic syntax (McAllester & Givan 1993)
for the description of properties of arguments of symbolic
actions. Variable free taxonomic syntax is a convenient tool
for relational representation as has been studied (Yoon, Fern,
& Givan 2002). The syntax describes objects with some
property. Taxonomic Expression is defined as follows.

C = (R, i, C1, . . . , Ci−1, Ci+1, . . . , Cn(R)) (5)

R is the relational symbol. For example, “use” in (use ACM-
B-1 smss) is an R. n(R) is the arity function for the rela-
tional symbol R. i is the set of objects that the expression
C in Equation 5 describes. We interpret the equation as fol-
lows, the set of objects that satisfy the predicate R at the
position of i, when all the other argument positions k are in
Ck. In other words, the equation describes the set of objects,
that make the relation R true at position i, once other posi-
tions are in corresponding class expressions. For example, a
taxonomic expression C = (use 0 smss), is ACM-B-1 in our
on-going example, since ACM-B-1 makes (use ∗ smss) true
when it is in the 0th position. For a more detailed descrip-
tion of taxonomic syntax, please refer (Yoon, Fern, & Givan
2002). Note that a limited set of taxonomic expressions can
easily be enumerated from the domain definition.

We can now describe the arguments of the actions with
taxonomic representation.

F = (A i C) (6)

We define binary features as Equation 6. The feature F de-
scribes that the action type is A and the argument i is in C.
Thus, the feature is a binary feature. The feature is true only
for the actions with the action type A and the ith argument
is in class C.

For example, (delay 0 (use 0 smss)) is a feature in
Airspace Deconfliction domain. The feature is true for ac-
tions with type “delay” and the 0th argument is in class ex-
pression (use 0 smss), which designates airspaces of usage
“smss”. Thus the feature means that “delay when the use of
the airspace is smss”. As taxonomic expressions, the binary
features can be automatically enumerated for the given set
of taxonomic expressions. The whole feature set can thus be
automatically enumerated from domain definition.

Skewed Data
Typically as with fraud detection (Phua, Alahakoon, & Lee
2004), learning from trajectories suffers from skewed data.
For any situation, learning system can only observe one ac-
tion in the trajectory. The rest of the potentially selectable
actions are treated as negative examples. Thus, there are
many negative examples per positive example, and the train-
ing data is unbalanced or skewed. One can use a sampling
based technique to cope with the unbalanced data (Chawla et
al. 2002) or one can use cost based approach (Maloof 2003).
We took the latter approach. We gave higher weight to the
features that classify positive example correctly. This has
been successful for several research studies (Maloof 2003;
Yoon, Fern, & Givan 2005), and was also effective for our
experiment on Airspace Deconfliction domain. Self simu-
lation can also boost the learning performance as studied in
(Fern, Yoon, & Givan 2003)

The other problem in the mimicry study is the “good ac-
tions” in the considered “negative examples”. Though the
expert selected an action A in situation S, and we treat other
potential actions as “bad” actions, there can be some good
actions among the bad actions. They are just not taken by the
expert. This incurs the overfiting problem. (Yoon, Fern, &
Givan 2005) addressed the issue with a novel representation
scheme. In our current study, we allow minimal number of
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negative example coverage. Our approach relieves the over-
fiting problem and our experiments show that our approach
works well.

Learned Rules
Following lists some of the top level symbolic actions
learned with our algorithm. We hand translated the features
to English for readers’ convenience.
• “Raise the altitude” if the use of airspace is ADOA
• “Advance the time” if the airspace conflicts with the use

of “ACSS”
• “Delay the time” if the airspace conflicts with the use of

“ACSS”
• “Delay the time” if the use of the airspace is SMSS
• “Move the airspace horizontally” if the use of the airspace

is CAP
From our observation of the domain expert, the learned

rules seem to make sense for the target domain. The subjec-
tive scoring in the following section corroborates this.

Performance Analysis
We have tested our learning algorithm in the Airspace De-
confliction scenarios. Our implemented module is a part of a
Meta learning system called GILA (general integrated learn-
ing architecture). In the architecture, there are three learn-
ing components and one meta executive, that selects solu-
tions among the proposed ones by each component. Each of
the learning component is called ILR (integrated learner and
reasoner). Our module, called LSP, was one of the ILRs.
In this testing, we did not learn value function. In place of
the value function, we fixed one value function for each ab-
stract (symbolic) action. We used “minimum displacement”
cost function. This function minimizes the displacement of
the original value for each abstract action while removing
the conflict. For example, when “raise altitude” abstract ac-
tion is applied, the corresponding “minimum displacement”
function selects altitude that removes the current conflict and
the change is minimal. There is an obvious pitfall to this
approach, since in some cases maximal change could be re-
quired. In our future study, we will explore the learning of
the cost minimization function and will overcome this obvi-
ous pitfall.

For each learning and testing scenario or episode, single
trajectory of an expert is given to the system. Then each ILR
learns from the trajectory with its own learning algorithms.
After learning is finished, a testing case is given to the whole
system. Each ILR finds solutions and proposes them. MRE
then selects the best solution from its own selection criteria,
mostly favoring the ones that reduce the conflicts most. Fig-
ure 2 shows testing results. Note that the the deconfliction
problems are very complex and hard even for humans.

In Figure 2, each column of C, D, and LSP shows perfor-
mance of each ILR. A scenario consists of a pair of learning
trace and testing problem. The values in C, D, and LSP col-
umn shows how much portion of the solutions have come
from the corresponding ILR and the number is the percent-
age of the solution proposed by the ILR and used in the final

solution. As can be seen in the figure, LSP’s solution has
been selected most frequently. This shows that our approach
of HHRM is well suited for the learning problem. What is
more interesting is the fact that our learning system gener-
ated features automatically without human help. QoS (qual-
ity of solution) columns show the subjective score of each
solution. The score has been made available by a human
referee. The score of GILA is not perfect. However the fact
that average of human novices got less score than our sys-
tem underlines very promising initial experimental results.
One interesting phenomenon here is the correlation of the
LSP’s solution participation and the QoS. The quality of the
solution depends on which kind of action has been used in
which situation. That is what our abstract level action learn-
ing system is targeted for. Thus, not surprisingly but very
encouragingly, as LSP solution participates more the qual-
ity of the solution proportionally increases.

For now, Gila scores above 50% of experts’ performance.
This performance has been achieved with learning from sin-
gle trajectory. We expect that the performance would be
raised as we apply learning algorithms to the cost minimiza-
tion function learning. Other potential improvements in-
clude self-simulation and additional background knowledge.
The latter approach would help our system LSP to generate
complex features which is not easy for blind enumeration.

Related Works
There have been some studies that attempted to incorporate
“hybrid” representation for the planning problems. For ex-
ample, adding continuous variables on top of typical sym-
bolic variables to planning problems (Younes, Musliner, &
Simmons 2003; Kveton, Hauskrecht, & Guestrin 2006) have
been studied. These efforts limited the continuous variables
to a small number of numeric resources or the size of the
domains was also kept very small. It is hard to apply these
techniques directly to any real life problems including de-
confliction. One weakness of these approaches is the igno-
rance of the apparent hierarchical structure in many of the
application domains.

Many hierarchical representation studies (Nau et al. 1999;
Dietterich 2000; Precup & Sutton 1998) stayed within single
representation scheme, direct policy representation or value
function representation. These studies did not investigate the
potential of the hybrid representations in their hierarchy of
strategies.

Our study is somewhat similar to the learning of precon-
dition for HTN (Ilghami, Nau, & oz Avila 2002), though we
don’t specify explicit preconditions for our hierarchy rep-
resentation. Once strategies are learned, our system can
perform against any unseen problems. This is similar to
many mimicry studies in AI (Morales & Sammut 2004;
Abbeel & Ng 2004), but our learning algorithm deals with
much bigger scale domains with novel HHRM.

Conclusion and Future Works
We have proposed a novel hybrid hierarchical representation
machine (HHRM). We tested the idea on Airspace Decon-
fliction domain and our experimental results show that our
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Scenario C D LSP QoS (Average) QoS (Median)
1 8 39 47 61.4 70
2 19 49 27 40 10
3 17 26 52 55.6 70
4 0 23 77 76.7 80
5 6 43 51 65 70
6 0 32 63 83.0 90
7 15 44 35 58.6 80

Figure 2: HHRM performance chart: Tested on 7 scenarios. Each Scenario has one learning trace and one performance trace.
The numbers in other cells represent performance measure against each performance trace in each row, learned with learning
trace in the corresponding row. C,D, LSP are independent learners and our HHRM is LSP. C,D,LSP are independent but an
executive module called MRE selects solutions during solving the Airspace Deconfliction problems. The numbers show what
percentage of solutions each component contributed to the final solution. As can be seen, LSP is selected most frequently. QoS
(Quality of Solution) is scored by a human referee. Here again, as LSP contributes more the Quality of Solution increased in
both Average and Median. This shows that our proposed learning and representation works well on a real life scale domain.

representation scheme can work well on real life sized prob-
lems.

One critical assumption in our study is regarding the
knowledge of the hierarchy and tagging of the higher level
actions in the example trajectory. Our immediate extension
of the current work is developing algorithms that can get by
with the tagged information or hierarchical structural infor-
mation. We expect that we can lift the need of tagging in-
formation, with Viterbi-style algorithms that find the unseen
tags with maximum likelihood.
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