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Abstract
Constraint based configuration challenges symmetry elimina-
tion methods known to the constraint solving community by
introducing dynamics. We present here a significant improve-
ment of an algorithm for generating canonical configurations.
The new version fully exploits the incremental generation of
canonical solutions both at the level of the canonicity test and
in the tree ordering function, which turns the cost of canon-
icity testing down from O(Nlog(N)) to O(N). Filtering addi-
tionally provides the possibility to proactively discard fail-
ure situations. Experimental results provide evidence of the
significance of this approach, on test problems and known
benchmarks.

Introduction
Constraint based configuration (Barker et al. 1989; Mittal &
Falkenhainer 1990; Amilhastre, Fargier, & Marquis 2002;
Sabin & Freuder 1996; Soininen et al. 2001; Stumpt-
ner 1997; Mailharro 1998) challenges symmetry elimina-
tion methods known to the constraint solving community
by introducing dynamics. Because the size of solutions to
configuration problems is potentially infinite, the configu-
ration problem is semi decidable, which calls for specific
approaches to tackle the isomorphism problem at the struc-
ture level. Then, once the structure of a configuration is
known, the remainder of the search amounts to a standard
CSP search, where all CSP variables are known , hence to
standard CSP symmetry elimination strategies.

The contribution of this paper is a significant enhance-
ment to the work in (Henocque & Prcovic 2004). Canon-
icity testing can be greatly simplified by exploiting further
the properties of the canonicity definition. The main idea
amounts to exploiting the fact that when canonical extension
occurs, only a limited number of operations are required to
test for canonicity, because the extended tree remains to a
large extent sorted in a predictive manner. The presented re-
sults hence reduce the overhead incurred by canonicity test-
ing further than was expected, and also allow for filtering
to take place. We also further extend the range of experi-
ments both by addressing known benchmarks as the “Rack”
or “Vellino” problems(Hentenryck et al. 1999) in addition
to the test problems studied in (Henocque & Prcovic 2004) .
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To the best of our knowledge, filtering has never been ap-
plied to canonical enumeration.

Plan of the article
Section 1 “Definitions” introduces necessary definitions,
concepts and minimal background. Section 2 “Isomorph
free structure generation” presents the fundamental assump-
tions and theorems relevant to the subject. Section 3 “Im-
proved Canonicity Testing” presents a new function for fil-
tering and incrementally testing the canonicity of configura-
tion trees and proves that it is linear in the tree size. Section
4 “Experimental Results” provides experimental results on a
range of problems and Section 5 concludes.

Definitions
A configuration problem (or model) describes a generic
product, in the form of declarative statements (rules or ax-
ioms) about product well-formedness. A configuration is
a valid problem instance. As an example1, we configure a
building having at most F floors, each floor owning one to
R rooms, each room having one to three doors and at most
four windows (illustrated in Figure 1). We ignore here the
additional attributes and constraints that exist in most prob-
lems to focus on structural constraints alone. Indeed, once a
structure has been chosen for a configuration problem, what
remains amounts to a classical CSP, to which any CSP sym-
metry breaking procedures applies. Configurations involve

Figure 1: A simplified multi story building model

1Later used in the experiments.
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interconnected objects, as illustrated in Figure 2, where the
existence of structural isomorphisms is obvious.

Figure 2: Two isomorphic configuration trees

Structural (sub) problems
From general configuration problems, we isolate sub-
problems called structural problems obtained by abstract-
ing away everything but binary composite relations, the
related types and structural constraints. A formalization
follows. We consider a totally ordered set O of objects
(O = {1, 2, . . .}), a totally ordered set TC of type symbols
(unary relations) and a totally ordered set RC of binary rela-
tion symbols such that:

∀R1, R2 ∈ RC ,∀o1, o2, o3 ∈ O,R1(o1, o2)⇒ ¬R2(o1, o3)

The above condition forbids that an object occurs twice in
a structural configuration, which hence is a tree2. By ≺O,
≺TC

and ≺RC
we denote the corresponding total orders.

Definition 1 (syntax) A structural problem, is a tuple
(t, TC , RC , C), where t ∈ TC is the root configuration type,
and C is a set of structural constraints applied to the ele-
ments of TC and RC .

Definition 2 (semantics) An instance of a structural prob-
lem (t, TC , RC , C) is an interpretation I of t and of the
elements of TC and RC , over the set O of objects. If an
interpretation satisfies the constraints in C, it is a configu-
ration (solution) of the structural problem.

In the general case, a configuration can be represented using
a vertex-colored directed acyclic graph (DAG) G=(t,X,E,L)
with X ⊂ O, E ⊂ O ×O and L ⊂ O × TC where t denotes
the root type3, X the vertex set, E the edge set and L is the
function which maps each vertex to a type, as illustrated in
Figure 2. But thanks to the above assumptions, we only deal
with trees here. Because they are trees, configurations can
be equivalently represented using vertex colored trees called
T-trees (Figure 3). To ease comparisons, we use the same
definitions and notations as in (Henocque & Prcovic 2004),
some of them being recalled here for self contained-ness.
Definition 3 (T-tree) A T-tree is a finite and non empty tree
where nodes are labeled by TC . We note (T, 〈c1, . . . ck〉) the
T-tree with sub-trees c1, . . . ck and root label T .

2This condition is strong but met by a significant structural ker-
nel of most configuration problems. The choice of RC is easy.

3The root type is the type of objects that occur at the root of the
configuration.

Isomorphisms
Testing whether two graphs are isomorphic is an NP prob-
lem until today unclassified as either NP-complete or poly-
nomial. For several categories of graphs, like the trees but
also graphs having a bounded vertex degree, this isomor-
phism test is polynomial (Luks 1982). Configuration trees
and T-trees being trees, they are isomorphic, equal, super-
posable, under the same assumptions as standard trees. An
isomorphism class represents a set of isomorphic graphs.
should ideally generate only one canonical representative
per class. Strong arguments in (Henocque & Prcovic 2004)
show that having an efficient canonicity test is not enough to
address structural symmetry in configurations. The canon-
icity definition impacts on the possibility to use canonicity
to trigger backtrack within search procedures: each canoni-
cal configuration must extend another one by unit extension
(defined in the next section). An example of such a search
procedure is given in (Henocque, Kleiner, & Prcovic 2005)

Related work in CSP and configuration
Symmetries in classical CSPs are bijections over the set of
literals (a literal is a variable (’x’) assignment to a value ’v’
:“x=v”) that preserve solutions (Cohen et al. 2006). They
naturally involve two subcategories: variable and/or value
symmetries. In a classical CSP, all values, variables and con-
straints are known beforehand, hence the set of symmetries
(the automorphism group) is known before the search be-
gins. Of course, some approaches deal with the changes in
the automorphism group that occur during search (when sev-
eral variables are assigned and we face a subproblem), but
nothing corresponds to the kind of changes that may arise in
configuration.

Symmetry in configuration adds the dimension of decid-
ing whether the choice of adding a component, and also the
set of its node attribute variables, must or not be performed
in order to avoid generating isomorphic structures. Deal-
ing with structural symmetries significantly differs in nature
from its counterpart in variable assignments. In the latter
case, we use the automorphism group of the current struc-
ture (its “internal” symmetries) to prevent from redundant
assignments. In the former case, we use the isomorphism
group of the current structure (its “external” symmetries) to
prevent from generating redundant structures.

If one accepts to bound the target size of the solutions of
a configuration problem, it can obviously be solved using
standard CSP techniques after a translation phase. Then of
course, dealing with symmetry can be achieved using known
techniques from the CSP area (Backofen & Will 1999;
Crawford et al. 1996; Gent & . 2000; Gent, Harvey, &
Kelsey 2002; cois Puget 2006). Using such translations can
be extremely and needlessly resource consuming. For in-
stance, if “a building has at most 50 stories with at most 20
rooms and at most 5 windows and 3 doors with a size”, we
must deal with a CSP having at least 8000 variables, not to
mention the growth of the constraint set in the SBDD, SBDS
or DLC cases. However, the problem constraints may re-
sult in the fact that much less than 8000 windows and doors
occur in solutions. This is why configuration problems are
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usually solved using variations of the CSP formalism. Com-
posite CSP for instance (Sabin & Freuder 1996) tackle dy-
namicity by dynamically introducing CSP fragments during
search. Dynamic CSP or conditional CSP (Soininen et al.
2001; Gelle & Faltings 2003) exploit “active” variables and
“activation” rules to control how the construction of the con-
figuration structure introduces new elements. The symmetry
elimination technique that we are proposing precisely aims
at preventing undue extensions of the solution.

Our approach addresses structural symmetry elimination
in configuration problems with a specialized algorithm. This
warrants that only exactly the required amount of resources
is used and allows for extremely low overheads. For in-
stance in this framework, symmetries can be predicted, and
not computed. This research significantly improves over
results originally presented in (Henocque & Prcovic 2004)
then generalized in (Henocque, Kleiner, & Prcovic 2005).
The main contribution of this body of work is to exploit
the existence of a definition of tree canonicity whereby each
canonical tree can be reached by unit extension (e.g. adding
one new node) from another canonical tree. Canonicity
is defined using a total ordering over labeled trees. This
work also followed several earlier contributions to symmetry
elimination in configuration problems (as e.g. in (Mailharro
1998) that addressed limited issues: interchangeability of
unused objects, use of cardinalities instead of plain objects
when they remain interchangeable).

Isomorph-free structure generation
As a means of isolating a canonical representative of each
equivalence class of T-trees, we define a total order over T-
trees (illustrated Figure 3) . The relation : 2 is the total order
that generalizes ≺TC

to T-trees.

Definition 4 (The relation 2) Given two T-trees C = (T, L)
and C’ = (T’, L’), 2 is recursively defined as follows : C 2
C’ iff T ≺TC

T’ or T = T’ and L 2lex L’.

Figure 3: T-trees ordered by 2. The index of each 2-
minimal representatives is framed. At most two D can con-
nect to a B, two B may connect to an A and two C may
connect to an A.

We define canonical T-trees recursively as follows (with a
testing algorithm in view):

Definition 5 (Canonicity of a T-tree) A T-tree C = (T, L) is
canonical iff L is empty or if L is 2 -sorted and each c in L
is itself canonical.
It can be shown that, as defined, canonical T-trees are the
2-minimal representatives of their isomorphism class. The
elementary operation used to generate T-trees is called a unit
extension.
Definition 6 (Unit Extension, Canonical Unit Extension)
We call unit extension, the operation of adding a single
terminal node in a T-tree C. If additionally both C and the
result are canonical, the operation is called canonical unit
extension.
The goal of a constructive search procedure is to produce
T-trees starting from (t, 〈〉) (recall that t is the type of the
root object in the configuration) which respect all the prob-
lem constraints (i.e. not only the constraints involved in
the structural problem) using unit extension. Eliminating
isomorphisms requires to generate only canonical solutions.
The chosen definition of canonicity ensures that each canon-
ical T-tree can be reached by canonical unit extension, which
makes canonicity testing a central issue.

Proposition 1 Let C be a T-tree. Let C ′ be a T-tree resulting
from unit extension on C. We have C 2 C ′.

Proof 1 The proof is by induction on T-trees. The proposi-
tion is true for a T-tree with no sub-node. Looking at the re-
cursion in Function “CompareT-Trees” in Figure 4, we see
that if the unit extension was performed on a sub-tree before
index k, by the induction hypothesis, the function will return
GREATER, as well as if the unit extension was obtained by
adding the new node at position k + 1.

We henceforth know according to Proposition 1 that adding
a node may never yield a tree that would be 2-less than its
predecessor. When incrementally checking for canonicity,
this allows to only compare each modified sub-tree with its
successor sibling, not with its predecessor.

function CompareT-Trees(C, C′)

in : C = (T, L) and C′ = (T ′, L′),
out : EQUAL if C = C′,

LESS if C 6= C′ and C 2 C′,
GREATER in the other cases,

if T < T ′ then return LESS
if T ′ < T then return GREATER
if L = 〈〉 and L′ = 〈〉 then return EQUAL
if L = 〈〉 then return LESS
if L′ = 〈〉 then return GREATER
let L = 〈a1, . . . , ak〉,
let L′ = 〈b1, . . . , bl〉,
for i := 1 to k do

if l < i then return GREATER,
result :=CompareT-Trees(ai, bi),
if result 6= equal then
return result,

return EQUAL,

Figure 4: The function CompareT-Trees
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Improved canonicity testing
The simplest algorithm is pseudo linear (O(n log n)) in the
tree size, and straightforwardly exploits the definition of
canonicity using a function for comparing T-tree recalled for
clarity in Figure 4. Basically, the algorithm tests that T-trees
are internally recursively sorted according to the definition.
Each sub-tree at any level is compared to its right neighbor
(if any) to test that it is 2-lower. We can improve this al-
gorithm by exploiting Proposition 1 for filtering and the fact
that T-trees are incrementally built.

Filtering
Proposition 1 naturally yields a filtering algorithm. When
considering all the positions open for unit extension wrt. the
relation cardinalities we see that since the T-trees generated
are canonical, hence internally lexicographically sorted, it is
not possible to perform any unit extension inside a sub-tree
being equal to its successor (since it becomes greater, and
the whole T-tree non canonical). A new search procedure
can take advantage of this by excluding these choices from
search.

It suffices to adapt the function compareT-Trees so
that each time it compares two trees, it memorizes whether
there is strict inequality or not. This is performed in con-
stant time. Later, the same information can be read again in
constant time, allowing an efficient usage of Proposition 1 .
In the case the enumeration procedure would be connected
to a standard CSP system to compute configurations involv-
ing attribute variables or other relations, this filtering allows
to close the port variables representing the relations, hence
resulting in further propagations.

Incremental Canonicity
Now, when we test the canonicity of a newly generated T-
tree we know that only one node and edge were added, to
a tree that originally was canonical (a condition for contin-
uation). The Function in Figure 5 details the algorithm that
can assess the canonicity of the T-tree obtained from unit
extension of a previously canonical T-tree. Only the valid

function IncrementalCanonical(C, N)

in : a T-tree C = (T, L), N a newly inserted node in C
out : TRUE if C is canonical, FALSE if not,

for (n = N ; n 6= C ; n = parent(n)) {
if (CompareT-Trees(n, right(n))==GREATER)

return FALSE
}
return TRUE,

Figure 5: Incremental canonicity testing

placement of the subtrees rooted at an ancestor of the newly
inserted node must be tested. This must be done starting
from the inserted node up to the root. The procedure starts
from the newly inserted node, climbing up the T-tree, and
performs comparisons at each level.

Proposition 2 Let C be a canonical T-tree. Let C ′ be a T-
tree resulting from a unit extension on C. Testing the canon-
icity of C ′ has a cost linear in the size of C ′

Proof 2 In the worst case of a perfectly balanced binary
T-tree of size S and depth d where all pairwise sub-
trees are equal, hence require to be entirely scanned by
calls to compareT-Trees, the cost of canonicity testing is
2Σd

i=0(S/2i), which converges towards 4S when d in-
creases.

Experimental Results
We have performed tests to compare three isomorphism
elimination methods : one that basically tests canonicity
(“no iso”) and the ones introduced here: improved incre-
mental testing (”no iso fast”) and the same with filtering (”no
iso fast + filtering”). We give the result times (obtained by a
Java program running on a Linux 2.4 Ghz PC), the number
of generated T-trees, and the number of calls to the compar-
ison function.

Our first experiments were realized on the floor planning
problem illustrated in figure 1. In order to explore the com-
binatorial properties of the problem, we let vary the follow-
ing parameters: F (counting the max number of floors in a
building) and R (the max count of rooms in a floor). We
have written a configurator in Java which generates all the
possible solutions of the floor planning problem, according
to the parameters F,R.

We do not list any execution result concerning the enu-
meration of all (non canonical inclusive) solutions, because
they are too high. For instance, with F = 1 and R = 3, it
takes 712ms, and with F = 1 and R = 4 it takes 40s.

We observe in Table 1 that improving the canonicity test
reduces by more than one order of magnitude the number of
calls to compareT-Trees and to significantly reduce ex-
ecution times. Filtering reduces the number of T-trees con-
sidered and further improves the execution times. The best
results occur with problems of big size, for which the cu-
mulated impact of both methods divides execution times by
more than 2.

We have also resolved two classical configuration prob-
lems: the “Rack” problem (problem 031 in CSPLib 4) and
the “Vellino” problem (Hentenryck et al. 1999). We added
to our structure generation algorithms the constraint tests
implied by these problems, which are not directly linked to
the structure of the solutions. For the racks: limited number
of available racks, power a rack can supply is greater than
the sum of powers its connected cards require, etc. For the
Vellino’s problem: components compatibility constraints,
maximum number of components contained by each type
of bin, etc. We only implemented a straightforward ap-
proach for those constraints, by testing them after each struc-
ture unit extension. Implementing usual filtering techniques
(Forward Checking (FC),MAC) could help reducing solv-
ing times (with or without isomorphism removal). How-
ever, we were only interested in comparing between iso-
morph aware and classic algorithms. Adding domain filter-
ing would not alter the comparison as those two structures

4http://www.csplib.org/prob/prob031
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no iso no iso fast no iso fast + filtering
(F, R) #sol #trees #calls time #calls time #trees #calls time
(1, 6) 54 103 111 103 2.5 106 0.54s 233 103 0.43s 84 103 180 103 0.34s
(1, 7) 170 103 358 103 9.8 106 1.9s 721 103 1.5s 262 103 541 103 1.1s
(1, 8) 490 103 1.0 106 33 106 5.6s 2.0 106 4.3s 746 103 1.5 106 3.2s
(1, 9) 1.3 106 2.8 106 105 106 16s 5.3 106 11.6s 2.0 106 3.8 106 8.2s

(1, 10) 3.2 106 7.2 106 303 106 42s 13 106 29s 4.9 106 9.3 106 20s
(2,3) 334 103 645 103 15 106 3.2s 3.4 106 2.7s 530 103 3.1 106 2.2s
(2, 4) 7.5 106 15 106 511 106 85s 79 106 63s 12 106 72 106 51s
(2, 5) 120 106 245 106 2.0 109 1459s 1.3 109 1071s 187 106 1.2 109 835s

Table 1: number of solutions, T-trees, calls to compareT-trees and time obtained when varying the values of F and R with and without
incrementality in the canonicity test and with and without filtering.

elimination mechanisms are orthogonal: if the filtering pre-
vents a non canonical structure, it also prevents its canonical
counterpart. Each isomorphism class is either completely
eliminated by filtering, or left as a possible solution candi-
date. The gain factor we have obtained should therefore be
equivalent with the addition of filtering techniques.

To the best of our knowledge, the most recent experimen-
tal results on the rack problem are listed in (Kiziltan & Hnich
2001). The authors connect two dual models of the prob-
lem within a classical CSP approach using channelling con-
straints. They do not solve the problem 4. We have not found
any solution of the instance 4 elsewhere. Here it is : cost =
1150 with one R250 containing one C150 and one C100,
one R300 containing one C100, two C75 and one C50, one
R300 containing three C50, three C40 and one C20, and one
R300 containing three C40 and eight C20.

Figure 6: Rack problem component hierarchy (the arrows
represent composition relations). A problem instance in-
volves up to NbMaxRacks racks of types 1 or 2 needed
to connect cards of differents types. Racks of type 1 can be
connected up to 16 cards, racks of type 2 up to 8 cards.

Conclusion
This work exploits the incremental nature of canonical con-
figuration generation to both introduce filtering and obtain
a significant complexity improvement of the whole proce-
dure. We see that the experimental results here performed
on problems having a limited size already yield significant
speedups, and that the gain grows with tree size and depths.

Additionally, configuration tree generation is meant to be
coupled to a standard configuration search engine, or to a
constraint solver. In that case, filtering allows to exploit the
fact that the possibility of further connecting objects inside a
structure is closed. This can result in added constraint prop-
agation in the rest of the problem. This is ongoing research.

Figure 7: Vellino’s problem component hierarchy. k com-
ponents must be stored in the bins so we know that we need
at most k bins all, and at most k of each kind. The ob-
ject model accounts for some of the constraints : Red bins
can’t contain plastic or steel, Blue bins can’t contain wood
or plastic, Green bins can’t contain steel or glass. Red bins
can contain up to 3 components but at most 1 wooden one.
Blue bins can only contain 1 component. Green bins can
contain up to 4 components but at most 2 wooden ones.
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