
Configuring Collaboration of Software Modules at Runtime

Willibald Krenn and Franz Wotawa
Graz University of Technology, Institute for Software Technology

Inffeldgasse 16B/II
A–8010 Graz, Austria

wkrenn, fwotawa @ist.tugraz.at

Abstract
We present an approach for (re-)configuring the collabora-
tion of software modules on board an autonomous device.
The proposed methodology largely is based on principles of
logics: Different configurations are evaluated on the fly be-
fore one configuration is chosen and applied to the system.
Each configuration has its own semantical meaning that is
also included in the decision process. The set of all possible
configurations is stored in a knowledge base that is queried
before choosing a configuration. The presented approach al-
lows to specify preferred configurations. We present first re-
sults obtained by running a prototype implementation of the
presented methodology at the end of the paper.

Introduction1

In order to increase the over all durability of autonomous
systems, these systems are often fitted with additional func-
tional redundancy. This includes - whenever the device has
some portion of control software - some set of software
modules that control one particular part of the redundant
functionality. In the simplest case, switching the software
module configuration is done when some fault has been de-
tected in one primary function and some redundant backup
is needed in order to continue operation. In a more gen-
eral approach, however, the system might be equipped with
sensors, acquiring information about the environmental con-
ditions the device has to operate in and the running configu-
ration is selected depending on the union of detected faults
and current environmental conditions. Of course, in order
for this to be feasible, the device has to have knowledge
about the configurations (whether they are pursuing similar
goals, etc.) and there also has to be knowledge on how to
interpret external sensor readings. In this paper we assume
the system was given the knowledge about all valid config-
urations, on how to interpret sensor readings, and about the
semantics of each configuration. We present a control al-
gorithm that dynamically selects the best matching software
configuration based on a history of past events, current (en-
vironmental) conditions, and preferences as specified by the
system developer.

1This work has been supported by the FIT-IT research project
Self Properties in Autonomous Systems (SEPIAS) which is funded
by the Austrian Federal Ministry of Transport, Innovation and
Technology, and the FFG.

As motivating example we present a container tracking
unit with the duty to periodically transmit position data. The
data transmission and the position acquisition functional-
ity is available in several, different configurations reflecting
the hardware redundancy. Although multiple configurations
provide the same basic functionality, each of these config-
urations often has its own limitations regarding, e.g., preci-
sion of measurement, energy consumption, and others.

In the next section we present the motivating example and
sketch our solution. Based upon insights derived from the
example, we then compare the (informal) problem to solu-
tions found by evolution. After these preliminaries, we for-
malize the problem and present our solution including some
first results derived from a simple case study. After mention-
ing related research, we conclude.

Motivating Example
As already mentioned in the introduction, we use a container
tracking unit (CTU) as our motivational example. The CTU
thereby stands representatively for any autonomous device
that features at least some hardware and software redun-
dancy. In our case, the tracking unit has two different com-
munication channels at its disposal: One GSM channel that
is supposed to work most of the time, and one near-field
channel that only works if there is another CTU in the neigh-
borhood providing relay services, or some other terminating
station that does the same. Apart from two different com-
munication channels, the device has mainly two redundant
ways of acquiring position information: The obvious one is
by using the GPS service, another one is by identification of
the GSM cell-ids and translating them to some geographical
position. Of course, it may also be possible to ask another
CTU in the neighborhood for help, using the GPS position
of that device. Energy is provided by rechargeable batter-
ies and a solar panel. The system is able to infer how much
energy is available.

Each of the described hardware capabilities needs some
piece of software on the main controller in order to be com-
plete and functional. The problem we are facing now is that
we have to select a configuration at run time that implements
some intended functionality and considers the situation the
device is in.
Example 1. We give a textual example of a set of meaning-
ful configurations for a CTU:

19

Configuration 1: Send position information acquired by
GPS with GSM.
Configuration 2: Send position information acquired by
GPS with the near-field communication link (NF).
Configuration 3: Put the system into a low energy mode un-
der certain conditions.

As can be seen, each of these configurations provide
meaningful functionality when selected and applied to the
system. Configuration one and two both send position in-
formation and differ only in the communication channels
used. Thus, these configurations provide the same high-level
functionality (attain the same goal) and are needed to im-
plement found hardware redundancy. Configuration three,
which puts the system into a low energy mode, may set the
system in a state where configurations one and two are not
applicable anymore, thus a configuration that reverses the
effects from configuration three may be needed. The problem
we face is to select configurations that best fit to changing
environmental and internal conditions.

We give a more precise formulation of the problem later
in the paper. In this section, we sketch how we intend solve
the problem. Basically, we give the CTU a complete de-
scription of all valid configurations in form of a knowledge
base. Note that we do not enumerate all configurations but
instead describe in a high-level fashion how some configu-
ration can be achieved. The device has to infer from this
knowledge base all preconditions, postconditions and a se-
quence of software modules in order to build a valid con-
figuration. It goes without saying that we also include the
knowledge about what functionality the device shall go for
inside this knowledge base. Apart from this pre-defined in-
formation, the device uses the knowledge base to rate each
configuration according to some criterion. In our case the
criterion will be fault absence. In other words, we let the
system monitor (unexpected) faults that lead to not-working
configuration instances. Not-working configurations are pe-
nalized in future searches of the knowledge base. However,
because the autonomous system is under the influence of
ever-changing environmental conditions, we allow the sys-
tem to re-evaluate once found not-working configurations
in order to check whether some blocking external event has
disappeared over time.

The problem of selecting configurations, evaluating them,
and applying them is quite common. It too can be found in
bacteria that have to switch configurations, e.g., when they
find food in order to start utilizing the food. When no food
is present, the configuration has to switch again in order to
turn off the production of chemicals that are used to "stom-
ach" the food. It is an interesting fact that bacteria use some
sort of knowledge base in combination with a sophisticated
control mechanism to successfully solve the problem of se-
lecting configurations. The employed control mechanism
not only allows selecting a configuration but also controls
the intensity of the reaction. This is similar to what we’re
searching for when we want to provide the user of our CTU
(and the CTU itself) the freedom of specifying how often a
configuration should be chosen over time.

The next section gives a short introduction to cell biol-
ogy so we see how these configuration changes are made in

cells. Thereafter, we formalize the problem and present an
algorithm that draws upon concepts introduced in the next
section.

Similar Systems in Nature 2

"As researchers untangled the genetic code and the
structure of genes in the 1950s and 60s, they began to
see genes as a collection of plans, one plan for each
protein. But genes do not produce their proteins all the
time, suggesting that organisms can regulate gene ex-
pressions." (dnaftb.org)

In the following, we sketch the processes involved when
producing proteins within a cell. At first some area of the
DNA - some gene - is exprimed which means that the double
helix is locally unwinded and separated. Inside this "bubble"
of separated DNA, the DNA gets transcribed to RNA while
the "bubble" wanders along the gene. At the end of the gene
and after releasing the transcribed RNA, the "bubble" closes.
The produced RNA is then used by some ribosome as plan
for constructing a certain protein. Of course, and as already
stated in the quotation at the beginning of this section, not all
genes are always active. There exists some regulatory mech-
anism inside the cell that employs different mechanisms in
order activate and/or deactivate a certain gene. A so called
promoter (Wray et al. 2003) is used for activation or repres-
sion purposes. Found upstream the gene it controls,

"the promoter contains specific sequences that are rec-
ognized by proteins known as transcription factors.
These factors bind to the promoter DNA sequences and
the end result is the recruitment of RNA polymerase,
the enzyme that synthesizes the RNA from the coding
region of the gene. [...] Promoters represent critical el-
ements that can work in concert with other regulatory
regions (enhancers, silencers, [...]) to direct the level of
transcription of a given gene." (wikipedia.org)

Without going into further details – we just want to men-
tion that about 30 000 genes are apparently enough to "run"
a human being while it needs 20 000 for a simple round-
worm (ornl.gov) – we observe the following: DNA (the
knowledge base, so to say) consists of genes. One gene en-
codes one bio-active entity, namely a protein. Gene activity
is controlled by concentrations of certain proteins. A pro-
tein may influence the transcription of the gene that encodes
itself. Each cell comprises a mechanism to transcribe the
DNA and build up proteins.

What makes our approach similar to the working mecha-
nism found in cells is the fact that we also have a knowledge
base of all possible, good, configurations that attain certain
goals. We also need an interpreter to read that knowledge
base, extracting usable configurations. Lastly, we also face
the challenge to regulate active configurations.

After presenting the preliminaries, we formalize the prob-
lem of configuration selection and present an algorithm that
leans against ideas taken from transcriptional regulation.

2This section contains simplifications to some very high extend.

20

Formalization
Until now we have informally referred to configurations.
The following definition introduces configurations formally.

Definition 1 (Configuration). A configuration is a tuple
(A,C, γ,G, activity, damping) where

• A is a sequence of literals describing software modules
• C is a sequence of sets of (pre-) conditions and |C| = |A|.
• γ : R 7→ R is a function mapping a real number to a real

number. This function specifies an activity profile for the
configuration and is used when calculating the weight of
a configuration.

• G is a literal describing the goal of the configuration
• activity ∈ R is a real number describing the activity of

the configuration
• damping ∈ R is a real number specifying a damping

factor.

In addition there exists an acceptance criterion for each
configuration, which we assume is the same for all config-
urations within the system. Each configuration fulfills one
particular goal when applied to the system. Software mod-
ules of a configuration may, of course, influence the weight
of any configuration. In difference to a cell, that may ex-
prime several genes at once, we sequentially select config-
urations and apply them because we manually have to in-
voke every software module. Therefore, we define a hyper-
configuration.

Definition 2 (Hyper-Configuration). A hyper-configuration
is created by applying a sequence of distinct configurations
repeatedly to a system. Each configuration thereby is ap-
plied as long as it needs to (a) attain its goal or (b) to violate
its acceptance criterion.

Depending on the system, we have to find a sequence of
hyper-configurations that best fit the current environmen-
tal and internal conditions. Without specifying the weight
calculation yet, Algorithm 1 shows how we calculate a se-
quence of hyper-configurations. Seen over time, the sys-
tem configures software modules in a way that a maximum
amount of goals can be fulfilled.

The algorithm comprises four main parts: (1) At first in-
ternal values used for weight calculation are updated ac-
cording to applied configurations. During this step, activity
counters are aged, e.g., divided by two. Then, (2), weights
are calculated and configurations are sorted according to that
weight. Next, (3), all configurations that were applied too
often (according to the weight), all configurations where
the conditions are not fulfilled, and configurations where a
higher rated alternative exists in the list of valid configura-
tions are removed. (4) All remaining configurations are said
to be valid ones and candidates to be applied. Therefore the
system now loops through them, beginning at the most im-
portant one, applying each. After some amount of time the
system has stayed in a configuration, the next one from the
list is applied. In case a configuration does not satisfy the
acceptance criterion, the damping factor is increased. Oth-
erwise, the system will decrease the damping factor if not

Algorithm 1 ApplyConfigurations
for all times do

UpdateActivityAndDampingFactors();
CalculateWeights();
SortConfigurations();
RemoveConfigurationsAppliedTooOften();
for all configurations do

while Conditions are not satisfiable do
RemoveConfigurationFromList();
SearchForHighestRatedAlternative();

end while
RemoveConfigurationFromList();
RemoveAlternatives();
ApplyConfigurationOnce();
CheckAcceptance();

end for
end for

equal to zero. There are different ways the system may han-
dle the activity counter: Two of them being incrementing
the counter every time a configuration is applied, or, alterna-
tively, incrementing the counter every time a configuration
is applied and passes the acceptance test.

For the presented motivational example, it makes most
sense to take fault-absence during the run of each software
module as acceptance criterion. The check can be imple-
mented by some monitoring function that informs about dis-
crepancies between expected result values (no error code, no
timeout) and observed ones (error code, timeout).

After laying out the principal idea, we describe our algo-
rithm in the following section.

Algorithm
While the sketched algorithm in the previous section very
nicely shows the basic idea, it needs to have an enumeration
of configurations as a working basis. Depending on how
much different valid configurations exist, enumerating all of
them may lead to a large amount of data with lots of un-
wanted duplication. Therefore, our implementation works
on the basis of a knowledge base that stores all configura-
tions in an implicit form. Informally, common subsequences
of software modules within configurations are merged and
stored only once. "Or" operators are used to separate con-
figurations after common subsequences again and weights
are used to guide the selection process.

Example 2. Suppose C1 = a, b, c and C2 = a, b, d are
two configurations attaining the same goal with a,b,c,d be-
ing software modules. We then can write all possible con-
figurations as (a∧ b∧ c)∨ (a∧ b∧ d) which simplifies to
a∧ b∧ (c∨ d).

We use a language based on horn clauses to describe con-
figurations inside our knowledge base:

Definition 3 (Configuration Knowledge Base). A configura-
tion knowledge base contains all valid configurations for the
device. The knowledge base is a tuple (P,R, G, γ) where

• P is a set of propositions.

21

• R is a set of horn-clauses of the form x1 ∧ . . . ∧xn →
y where x1, . . . , xn, y ∈ P . x1 ∧ . . . ∧xn is the an-
tecedence and y is the consequent.

• G ⊆ P is a set of goals.
• γ : P ×R 7→ R is a function mapping a real number to

a real number for one consequent in P .

We omitted the functions returning activity and damping
factors in the definition. Set P contains all conditions used
by the configurations. The set R contains all configurations
rewritten in form of rules. We also defined goals as subset
of the conditions so rules can argue about goals. Note that
function γ takes one more argument describing a rule con-
sequence of a configuration.

The selection process of configurations as presented in
the previous section works with a "globally best" strategy.
Because of the merging of common software module se-
quences, we now use the strategy "locally best": Extract-
ing one particular configuration from the knowledge base
involves a guided search (starting by the highest rated goal)
that uses backtracking techniques. The weights that we have
introduced act as guidance when the system has to select be-
tween different branches in or-connected clauses. Therefore,
the weight of one complete configuration as presented in the
last section is broken down on rule level: Each consequent
of a rule has to be connected to some weight. This changes
the semantics of configuration selection, as we are searching
for a local-best (at each or-decision) alternative now, instead
of a global best as described in the last section. The ad-
vantage of this approach apart from saving CPU cycles is
that similar configurations that share a common sequence of
software modules will be rated similarly, regardless which
of the configurations sharing the common sequence was ap-
plied. To put it differently, if two configurations share an se-
quence and one of them gets applied but fails to satisfy the
acceptance criterion because of a fault, both configurations
will be penalized.

The employed backtracking search algorithm excludes all
configurations of one goal that are not satisfying the con-
figuration conditions or that have been run too often. After
finding a valid configuration and applying it, a new search
is started in order to find a configuration satisfying another
goal until all goals were processed. In the worst case – if
no configuration satisfies its conditions – the proposed algo-
rithm of course has to look at all stored configurations.

Weight Calculation
The central issue we yet have to present is the calculation of
the weight. Weight has to reflect several things at once: (A)
It has to indicate how successful it is to apply a configura-
tion. (B) It has to reflect how often a particular configuration
has already been applied. (C) It also needs to reflect prefer-
ence criteria supplied by the system developer. We therefore
propose a system that depends on activity profile functions
that are supplied to the system. In addition two values are
tracked by the system, namely activity and damping factors.
Figure 1 sketches the idea behind. In our proposed system,
weight is calculated as S(a) ∗L(a) ∗ (1−D) where S(a) is
the slope of the supplied activity profile function (γ) at the

Figure 1: Calculating γ-based Weight = S ∗ L ∗ (1−D)

point of the current activity, L(a) is the distance of the point
of current activity to the next local maximum of γ, and D
is a damping factor that is tracked by the system and cor-
responds to the number of times a configuration has been
applied but failed to achieve the acceptance criterion due to,
e.g., unforeseen faults. The two values tracked by the sys-
tem for each rule consequence are the activity factor which
counts the number of times a certain configuration has been
applied, and the damping factor (D) that counts the number
of times the configuration was applied but did not achieve
acceptance.

The sole information the developer has to supply is the
activity profile function γ. Depending on the needs of the
system engineer, γ will look very different. In the easiest
case, the function may degenerate to some straight line, in
more complex cases, a function having more than one max-
imum may be supplied. In any case, it is possible for any
software module to change γ at runtime, adding flexibility
to the system by changing the preference criteria of config-
urations. The calculated weight is similar to a gradient, be-
cause the closer the activity of one configuration gets to the
local maximum, the smaller the weight will be. In effect, the
weight calculation function is constructed such that the ac-
tivity of a configuration is brought to and held at some local
maximum.

This ends the presentation of our algorithm. As already
mentioned, we now give an example (created by hand) that
demonstrates the workings of the presented algorithm.

Example 3. Figure 2 shows a graphical representation
of following three configurations inside the knowledge
base. For the sake of clarity, we omit everything but the
sequence of software modules and goals and assume that all
conditions for each configuration are always fulfilled.

C1: Goal: p; Sequence: ..., SendGSM, StoreTime
C2: Goal: p; Sequence: ..., SendNF, StoreTime
C3: Goal: p; Sequence: ..., Sleep

We use δ to denote a function that computes the weight
by S(a) ∗ L(a) ∗ (1 −D) where S calculates a normalized
slope. The three configurations can be represented by fol-

22

Figure 2: Sketch of rule set.

lowing rules, that match Figure 2.
(r1) n← . . . ∧module(SendGSM)
(r2) n← . . . ∧module(SendNF)
(r3) p← n∧module(StoreTime)
(r4) p← . . . ∧module(Sleep)
Rule four does not do anything meaningful in this exam-
ple, except initiating a resting phase. It is mainly used to
demonstrate that all configurations are selected by the sys-
tem over time. The intention of the knowledge engineer is to
slightly prefer configuration number one. Furthermore, the
knowledge engineer has determined S for each rule, the de-
cay value for the system, and increment values for damping
and activity factors:
γmax = 1, γ(P, 0)′

n = 0.5, γ(P, 0.25)′
n = 0.25,

γ(P, 0.5)′
n = 0.5, γ(P, 0.75)′

n = 0.3,
γ(P, 0.875)′

n = 0.2
activityincr = 1, dampingincr = 0.2
Dr1 = 0, Dr2 = 0.2, Dr3 = 0, Dr4 = 0.9

We now calculate the weights of all configurations and
show which of the configurations will be chosen by the sys-
tem. Note that we increment the activity factor whenever
a rule was selected. Alternatively, we could be more re-
strict and only increment activity factors from rules that led
to working configurations. As all configurations have the
same goal, the calculated hyper-configuration only consists
of one entry.

1.

δr1(0.5, 1.0, 0.0) = 0.50
δr2(0.5, 1.0, 0.2) = 0.40
δr3(0.5, 1.0, 0.0) = 0.50
δr4(0.5, 1.0, 0.9) = 0.05

→ config. 1 : 〈r3, r1〉 sel.

We assume the configuration passes the acceptance
criterion. The values of the activity factors are
activityr3 = 0.5, activityr1 = 0.5.
Following damping factors are not equal to zero:
Dr2 = 0.2, Dr4 = 0.9

2.

δr1(0.5, 0.5, 0.0) = 0.25
δr2(0.5, 1.0, 0.2) = 0.40
δr3(0.5, 0.5, 0.0) = 0.25
δr4(0.5, 1.0, 0.9) = 0.05

→ config. 2 : 〈r3, r2〉 sel.

We assume the configuration does not satisfy
the acceptance criterion because, e.g., a fault
occurs. The values of the activity factors are

activityr3 = 0.75, activityr1 = 0.25, activityr2 = 0.5.
Following damping factors are not equal to zero:
Dr2 = 0.4, Dr3 = 0.2, Dr4 = 0.9

3.

δr1(0.25, 0.75, 0.0) = 0.19
δr2(0.50, 0.50, 0.4) = 0.15
δr3(0.30, 0.25, 0.2) = 0.06
δr4(0.50, 1.00, 0.9) = 0.05

→ config. 1 : 〈r3, r1〉 sel.

We assume the configuration passes the acceptance crite-
rion. The values of the activity factors are activityr3 =
0.875, activityr1 = 0.625, activityr2 = 0.25. In
addition, following damping factors are not equal to zero:
Dr2 = 0.4, Dr4 = 0.9
Note that r1 was chosen over r2 because of the damping
factor.

4. δr3(0.2, 0.125, 0.0) = 0.025
δr4(0.5, 1.000, 0.9) = 0.050

}
→ config. 3 : 〈r4〉 sel.

Finally, the system chooses configuration three. We
want to emphasize again, that we have assumed that all
conditions for each configuration could be satisfied all
times.

This concludes the presentation of our algorithm. The
next section gives first results obtained by working with a
prototype implementation.

Experimental Results

Step Faults act. factor always inc. act. fact. on success inc. random

1 GSM xC2 xC2 xC2 (1)

2 NF xC4 xC4 C2 (1)

3 NF, GPS C2 (pos. of step 1) xC4 xC4 (2)

4 NF xC4 C2 (pos. of step 1) C2 (1)

5 C2 (pos. of step 4) C2 C4 (2)

6 GPS, GSM xC2 xC2 xC4 (2)

7 GPS, GSM xC4 xC4 xC4 (2)

8 GPS xC2 xC2 xC2 (1)

9 GPS xC4 xC2 xC2 (1)

10 GPS, GSM xC2 xC4 C5 (2)

11 GSM C5 xC3 C5 (2)

12 C3 C5 (pos of step 11) C4 (2)

13 NF xC5 xC5 xC4 (2)

14 NF C3 (pos. of step 13) C3 (pos. of step 13) C2 (1)

15 NF C3 xC5 C2 (1)

16 NF, GPS xC2 C3 (pos. of step 15) xC2 (1)

17 NF, CO, GSM xC4 xC3 xC2 (1)

18 NF, CO C2 (pos. of step 17) C2 C2 (1)

19 NF C2 xC4 xC4 (2)

20 NF C2 C2 (pos. of step 19) C2 (1)

Table 1: Challenging test scenario for test purposes only.

We have implemented a first prototype of the presented
algorithm on a Microchip PIC 18F micro controller. We
have also created different knowledge bases containing
rules for up to seven different goals for first experiments. A

23

Step 1 2 3 4 5 6 7

Fault - - - GSM GSM GSM GSM

incr. always C2 C4 C2 C4 xC2 C4 C4

incr. on reach C2 C4 C2 C4 xC2 C4 C4

Table 2: More Realistic Scenario

knowledge base containing six goals that map to roughly
eight different high-level configurations and 28 rules at
interpretation level was used for the experiments described
in this paper. In particular following configurations are
stored in this knowledge base:

C1: book-keeping work (always part of a hyper-
configuration, but omitted in the tables)
C2: get data by GPS, send it with GSM
C3: get data without using GPS, send it with GSM
C4: get data by GPS, send it with NF
C5: get data without using GPS, send it with NF
C6: disable gps
C7: enable gps
C8: shutdown system on low energy

Because of the limited processing power of the micro con-
troller, we set γ as straight lines and no configuration is
preferred: The maxima of the functions are shifted to the
same value at high activity levels. This implements a strat-
egy of using both configurations equally often. In addition
to the weighted goal selection, we have implemented some
experimental "x-from-y" strategy to decide between config-
urations two and three and between configurations four and
five. From a total of 65536 bytes of program memory ap-
proximately two thirds are used for the search engine, a tiny
operating system and the knowledge base. Besides program
memory, a little bit more than 50% from a total of 3935 bytes
RAM are needed.

Table 1 shows how our algorithm performs when con-
fronted with a lot of configurations that violate their ac-
ceptance criterion (marked with an attached ’x’ in the ta-
bles). Note that the test was constructed such that steps six
to ten would fail in order to activate the four-in-eight strat-
egy. Note also that the test prefers configuration two, but no
strategy has been added to the knowledge base to reflect that
fact. Steps 11 – 20 represent the most interesting part of the
table. Because step 17 always must fail, our algorithm suc-
ceeds in seven out of nine cases. The random process also is
quite successful but merely out of luck, as it chooses C2 in
quite a long sequence. In reality we assume the faults to be
longer lasting than shown in Table 1 and we assume some
strategy (preference) for configurations in place. This will
further improve the results. Table 2 shows – in that respect
– a more realistic example, as we do not expect faults to pop
up and disappear in high frequency.

Related Research
To our knowledge, the idea of applying principles from tran-
scriptional regulation found in cells to a runtime - configura-

tion problem is new. Other ways of solving this problem in-
clude, e.g., planning algorithms (Ghallab, Nau, & Traverso
2004). A very prominent example of this is the remote agent
experiment (Williams et al. 1998) that was carried out on
board the DeepSpace 1 probe in 1999. It used a planning
system combined with a multi-layer execution engine, do-
main knowledge bases, and heuristics to derive a working
configuration of sensors and actuators of the probe that could
fulfill a given goal. In difference to our approach, the plan-
ner on board DeepSpace 1 did not rely on configurations as
defined in this paper. The runtime configuration problem
can also be solved by using decision trees (Console, Picardi,
& Dupré 2003). While our approach is not as flexible as a
planning system, we argue that it is more flexible than a nor-
mal decision tree approach, because our algorithm implicitly
adds fault tolerance. TR-Programs (Nilsson 1994), like our
approach, also have predefined sets of action sequences. Un-
like the presented algorithm, however, TR-Programs do not
allow dynamic weight changes.

Conclusion
We present the main idea and first results of a new way of
selecting and applying software-module configurations. Be-
cause of the relatively small search space and the freedom
to freely choose the complexity of γ the intended applica-
tion area of the presented algorithm mainly comprises micro
controllers that have low computing power. Except for valid
configurations and preference criteria, the presented algo-
rithm does not need any additional information, e.g., fault
models, complex world models, or other kind of knowledge
which underlines the intended target application.

References
Console, L.; Picardi, C.; and Dupré, D. T. 2003. Tempo-
ral decision trees: Model-based diagnosis of dynamic sys-
tems on-board. Journal of Artificial Intelligence Research
(19):469–512.
dnaftb.org. Dna from the beginning,
slide 33, genes can be turned on and off.
http://www.dnaftb.org/dnaftb/33/concept/index.html.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning - theory and practice. Morgan Kaufmann, Else-
vier.
Nilsson, N. J. 1994. Teleo-reactive programs for agent con-
trol. Journal of Artificial Intelligence Research (1):139–
158.
ornl.gov. Human genome project: How many genes are in
the human genome?
wikipedia.org. Promoter, from wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/wiki/Promoter.
Williams, B. C.; Muscettola, N.; Nayak, P. P.; and Pell, B.
1998. Remote agent: To boldly go where no AI system has
gone before. Artificial Intelligence 103(1–2):5–47.
Wray, G. A.; Hahn, M. W.; Abouheif, E.; Balhoff, J. P.;
Pizer, M.; Rockman, M. V.; and Romano, L. A. 2003.
The evolution of transcriptional regulation in eukaryotes.
Molecular Biology And Evolution 1377–1419.

24

