
Preference-based earch for Configurable Catalogs

Paolo Viappiani, Boi Faltings
Artificial Intelligence Laboratory (LIA)

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

paolo.viappiani@epfl.ch

Abstract

We consider the problem of preference-based search for con-
figurable products. We focus on example-based tools that in-
teractively show both candidates (best options given current
preferences) and suggestions to stimulate preference expres-
sion. Suggestions are generated to maximize the chance of
eliciting further preferences using our lookahead principle.
We present Probabilistic Constraint Optimization problems
(ProbCOPs) that allow to reason about the uncertainty of the
preference models and show how the generation of sugges-
tions can be formulated as a single optimization problem.

Introduction
Preference-based search is an interactive process that helps
users identify the most preferred option, called the target
option, based on a set of preferences that they have stated on
the attributes of the target.

An interesting technique for letting users volunteer their
preferences is an interaction where the system shows pro-
posed options and lets users express their preferences as
critiques stimulated by these examples. This technique is
called example or candidate critiquing, and has been ex-
plored by several authors (Linden, Hanks, & Lesh 1997;
Smyth & McGinty 2003; Shimazu 2001).

The advantage of this kind of system is that the preference
model is acquired interactively, and preferences are more
likely to be correct if the user sees concrete examples.

In fact, psychological studies have shown that people con-
struct their preferences (Payne, Bettman, & Johnson 1993)
while learning about the available choices. When users are
questioned about their preferences, they are likely to give
incorrect answers, based on means-objective (Keeney 1992)
that distract from the true target choice. In a user study (Vi-
appiani, Faltings, & Pu 2006a) example-critiquing achieved
higher accuracy than a traditional tool like the form-filling
(where the user is asked to answer a set of questions), accu-
racy increases from 25% to 70%.

Example critiquing achieves higher decision accuracy
when the displayed options are complemented with sugges-
tions chosen to inform users about available choices (Pu, Vi-
appiani, & Faltings 2006). The cognitive effort is compara-

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Intuitively the best suggestions are options that can be-
come optimal if a new preference is stated. Model-based sugges-
tions are computed by evaluating a given object with a set of dom-
inators. In the original formulation (a) these are all the currently
better options; in an approximation (b) possible suggestions are
considered only in a subset of the space; the top-escape strat-
egy (c) compare each option with few current best ones.

ble to simple interfaces such as a ranked list (Pu & Kumar
2004).

Example critiquing with suggestions
We consider and example-critiquing framework in which

1. Preferences are stated as reactions to displayed options (as
“The price should be less than 600”). Such critiques are
user-motivated.

2. These critiques are used as feedback in the next interac-
tion cycle to generate a new set of displayed items.

If certain preferences are missing from the current model
of the user, the system may provide solutions that do not
satisfy those unknown preferences. If the user is aware of
all of her preferences, she can realize the necessity to state
them to the system. However this is not usually the case,
because the user might not know all the available options.

Moreover, stating a preference costs some user effort and
she would make that effort only if she perceives this as ben-
eficial.

The influence of current examples is known as the anchor-
ing effect (Tversky 1974).

To enable the user to refocus the search in another direc-
tion, many researchers have suggested to display alternatives

S

31



or diverse examples, in addition to the best options (candi-
dates).

In fact, in one user study it was observed that the major-
ity of critiques (79%) were a reaction to seeing an additional
opportunity rather than seeing unsatisfactory examples (Vi-
appiani, Faltings, & Pu 2006b).

Different strategies for suggestions have been proposed
in the literature. Linden (Linden, Hanks, & Lesh 1997) used
extreme examples, where some attribute takes an extreme
value. Others use diverse examples as suggestions (Smyth
& McClave 2001; Smyth & McGinty 2003; Shimazu 2001).

However, an extreme example might often be an unrea-
sonable choice: it could be a cheap flight that leaves in the
early morning, a student accommodation where the student
has to work for the family, an apartment extremely far from
the city. Moreover, in problems with many attributes, there
will be too many extreme or diverse examples to choose
from, while we have to limit the display of examples to few
of them.

The user should be motivated to state new preferences
by options that are reasonable choices (given the previously
stated preferences) and have a potential of optimality (a new
preference is required to make them optimal).

This was expressed in the lookahead principle (Pu, Viap-
piani, & Faltings 2006):

Suggestions should not be optimal under the current
preference model, but should provide a high likelihood
of optimality when an additional preference is added.

Model-based suggestions are calculated based on that
principle. Results show that such suggestions are highly
attractive to users and can stimulate them to express more
preferences to improve the chance of identifying their most
preferred item by up to 78% (Viappiani, Faltings, & Pu
2006c).

The lookahead principle was implemented by consider-
ing Pareto-optimality: suggestions are evaluated according
to their probability of becoming Pareto-optimal. The ad-
vantage of this method is that it is qualitative, in the sense
it does not rely on any particular parametrization: an op-
tion is Pareto-optimal if there is no other option that is better
or equally preferred with respect to all the preferences and
strictly better for at least one preference.

To become Pareto-optimal, the new preference has to
make the current solution escape the dominance with bet-
ter solutions (the “dominators”), as shown in Figure 1a.
The computation of suggestions with this strategy requires a
preliminary analysis of the available options to identify the
dominators and then to make, for each of the options in the
database, a series of checks to evaluate the chance that the
option will become Pareto-optimal. This strategy has worst
case complexity O(n2).

For large databases, an approximation (Viappiani & Falt-
ings 2006) has been proposed, that considers possible sug-
gestions only in a subset of options (Figure 1b). This strat-
egy is based on the observation that suggestions retrieved
with the look-ahead principle are not evenly distributed: in
more than 60% of the cases, they are among the 25% top
ranked options with respect to the current preferences (this

is not surprising: since suggestions are options that should
be reasonable, we will expect them to be not too far in the
ranking from the current best options). This method can be
used for reducing the computation time in large catalogs.

However such an approximation might not be enough for
configurable catalogs, as they can be extremely large (the
number of options is in general exponential in the number
of attributes).

In this paper we consider the top-escape strategy that
looks for the options that have the highest possibility of be-
ing better (thus escaping dominance) than the current best
options displayed as candidates (Figure 1c). This method
can be efficiently implemented in an single optimization
problem and it is therefore suitable for configurable cata-
logs.

In the next section we introduce the notation and termi-
nology for configurable catalogs.

Configurable Catalogs
Electronic catalogs often have the form of configuration sys-
tems where options are the many possible feasible solutions
that satisfy the requirements. These configurable catalogs
can be model as Constraint Satisfaction Problems (CSP).

An option or product is defined over a set of attributes
that are the variables of the CSP. Given the variables V =
{v1, .., vn}, each variable vi can take values in a particular
domain Di = {d1

i , .., d
m
i }, m being the number of values

in that domain. An assignment a is the binding between
variables and domain values. If each variable is assigned to
a value in its domain, the assignment is total.

Assignments are written as a = (v1 = d̂1, v2 = d̂2, ..) or
shortly as vectors (d̂1, d̂2, ..). We use vi(a) to identify the
value that an assignment associates with one variable.

Electronic configurable catalogs pose restrictions to the
feasible combinations, that are usually the same for every
user. These are represented by a set of hard constraints HC;
they can be unary or binary.

A unary constraint ci on variable vi is a function from Di

to Bool, stating that a given value in Di can be assigned to
variable vi; a binary constraint ci,j between variables vi and
vj is a function from Di×Dj to Bool, asserting that a given
combination of values can be assigned to vi and vj .

A total assignment that satisfies all hard-constraintsHC is
called a solution. As we use CSPs to represent electronic
catalogs, a solution corresponds to an option.

COPs or SoftCSPs are an extension of CSPs that consider
constraints that can be partially satisfied. Such constraints
are called soft (in opposition to standard crisp constraints)
and are functions from combinations of domain values to
numeric weights.

Definition 1 A soft constraint (unary and binary) associates
a weight to a combination of value assignments to one or
more variables.

• A soft unary constraint ϕi on variable vi is a function
from Di to [0, 1], expressing the weight of each value Di

that can be assigned to variable vi

32



• A soft binary constraint ϕi,j between variables vi and vj

is a function from Di×Dj to [0, 1], expressing the weight
of a given combination of values that can be assigned to
vi and vj

Since a given soft constraints always applies to the same
variables, with a little abuse of notation we will write
ϕi,j(s1) instead ϕi,j(vi(s1), vj(s1)).

It is natural to use soft constraints to represent the prefer-
ences of the user. In this paper we deal with preferences that
involve only one variable, thus are unary soft constraints.

Definition 2 A COP (Constraint Optimization Problem) is
a tuple (V,D,HC,SC,+,Min) where

• V = {v1, .., vn} is a set of variables,
• D = {D1, .., Dn} is a set of domains,
• HC a set of hard constraints,
• SC a set of soft constraints
• + is an aggregating operator
• Min is a selection function

The operation + is used to aggregate individual soft con-
straints into an overall score W :

W(s) =
∑

ϕ∈SC
ϕ(s) (1)

The optimal solution so of the COP (V ,D,HC,SC,+,Min)
is the solution of the CSP defined by (V ,D,HC) such that
W(so) = Mins[W(s)]. A COP that uses the standard +
and Min is also called WeightedCSP.

In this paper, we will use COP in two circumstances.
Firstly, we will use COP to directly represent a preference-
based search task, in which SC models the current prefer-
ences, that are known to the system. The optimal solution
corresponds to the best option given the current user pref-
erences (the candidates). The formulation is isomorphic to
generalized additive utility models. However, since the soft
constraints will necessarily be a inaccurate representation of
the preferences, we compensate by showing not just one, but
a set of k best candidate solutions.

Secondly, in the context of generating suggestions ac-
cording to the top-escape strategy, we will instantiate
a COP in which the weights represent the individual con-
tribution of combinations of values to the quality of the sug-
gestion. The quality of a suggestion is evaluated by the prob-
ability of optimality considering the uncertainty of possibly
missing (unstated) preferences. We assume independence
between the probabilities of having preference on different
attributes, so that they can be combined by a standard sum.

Top-escape strategy for suggestions
In the original formulation of the look-ahead principle, each
potential suggestion is evaluated by the probability of be-
coming Pareto-optimal when a new preference is consid-
ered. For this to happen the option has be strictly better than
any dominating option with respect to this new preference.

The top-escape strategy reformulates the look-ahead
principle by considering as suggestions the solutions that

have the highest probability of being better (escape domi-
nance) than the set of top options Stop.

The generation of suggestions according to this strategy
can be made by solving a single optimization problem; it is
therefore feasible even for very large configuration catalogs.
We need to solve an auxiliary optimization problem in which
each possible value di of the variable vi is weighted by the
probability that di is better than the value of the options in
Stop.

The idea is similar to (Hebrard et al. 2005), where a prob-
lem called MostDistant, consisting in finding the most
diverse solution of a CSP with respect to a set of previously
retrieved solutions, is solved as an auxiliary constraint prob-
lem.

The uncertainty about possibly missing preferences is rep-
resented by prior distribution that can represent previous use
of the interface, as in the original formulation of model-
based suggestions. A precise knowledge of the prior might
be not necessary, as model-based suggestions give a large
increase of decision accuracy even when the distribution is
assumed to be uniform (Viappiani, Faltings, & Pu 2006c).

Uncertainty in the preference model
We are dealing with an interactive process in which prefer-
ences are iteratively revealed. Initially we have an empty set
of known preferences and all that we know is the probability
distribution of the possible preferences. The interaction is
mixed-initiative and the user can state a preference on any
of the attributes at any given point. As the interaction goes
on, more preferences become known to the system and the
number of variables with uncertain preferences decreases.

At any given point, the set of attributes can be partitioned
in two parts: Vk are attributes in which the preference is
known, while Vu the set of attributes for which the prefer-
ence is unknown. For each attribute in Vu we consider the
set of possible preferences and the relative distribution.

Preferences are represented by soft constraints, whose
weight can be interpreted by the degree of preference. We
suppose that the system knows that each user has preference
value functions in a known parameterized family. Here we
assume a single parameter θ, but the method can be general-
ized to handle cases of multiple parameters.

We indicate with qi(θ, vi(s)) or qi(θ, s) the parameter-
ized value function of preference ri on variable i (we use
the letter r to represent preferences and q to represent value
functions). For any given user and any preference ri, we
assume the system knows the probability distribution pi(θ),
that might be integrating prior beliefs or past experiences
with the present user.

Probabilistic Constraint Optimization
We define probabilistic constraint optimization problems
(ProbCOP). This definition is used to model uncertainty
of preferences in a preference-based search task that takes
place in a configurable scenario.

Definition 3 A Prob-COP is a tuple (V,D,HC,SC,Π),
where

• V is a set of variables,

33



• D is a set of domain values,
• HC a set of hard constraints,
• SC a set of soft constraints, representing the known pref-

erences
• Π a set of probability distribution πi of uncertain soft con-

straints

As said previously we represent the possible preferences
by a set of parameterized cost functions. The probability
distribution πi represents an uncertain preference. It as-
signs a probability pi(θ) to each value of the parameter θ
in qi(θ, vi(s)), the value function of a possible preference
on variable vi.

Note that V and HC combined are a traditional CSP and
V , HC and SC a COP problem.

We use ProbCOP as a formalism for representing the
preference-based search task. At any given moment, Prob-
COP models the information that the system has about the
user: the preferences previously stated (SC), the uncertainty
about possible missing preferences (Π).

How to compute top-escape suggestions
Considering that the ProbCOP (V,D,HC,SC,Π)models
the current preference-based search task, we initially retrieve
a set of top-k solutions (Stop) by solving the COP problem
(V,D,HC,SC,+,Min) underlying the ProbCOP (with-
out considering the uncertain preferences).

The goal is to find s such that the probability pesc that s
escapes Stop (s is preferred to all solutions in Stop according
to the new preference) when a new preference is stated is
maximized. In fact the probability pesc is a weighted sum of
the individual probabilities pesc

i that refer to escaping Stop

in the case of having the new preference on variable vi. This
happens when vi(s) is better than any vi(stop) for stop ∈
Stop, for any vi ∈ Vu.

For each value d in the domain of a variable vi ∈ Vu

let δi(d,E) be the probability that a new (unary) prefer-
ence on variable vi makes d preferred to each of the values
E, where E is the set of values taken by solution in Stop,
E = {vi(s)|s ∈ Stop}. The value of δi(d,E) is found by
integrating over possible θ in the probabilistic distribution
of possible preferences for variable vi, πi. This can be ex-
pressed using the Heavyside step function H(x) ≡ if (x >
0) then 1 else 0:

δi(d,E) =
∫

[
∏

d′∈E

H(qi(θ, d′)− qi(θ, d))]pi(θ)dθ

The suggestions can be found by solving a COP where
δi(d,E) are the weights of the soft constraints.

Definition 4 Given a ProbCOP (V,D,HC,SC,Π)
and a set of solutions Stop, the Top-escape COP
(V,D,HC,SCesc,+,Max), where SCesc is
such that ∀vi ∈ Vu : ϕesc

i (d) = δi(d,E), and
E = {vi(s)|s ∈ Stop}.

The optimal solution of Top-escape COP is a solution
with the highest probability of escaping dominance with a
set of top dominators, when a new preference is added to the

user model. It can be solved with branch and bound tech-
niques.

If we want to consider the possibility that the user might
have hidden conditional preferences (as a preference on vari-
able vi conditioned to vj , represented as a binary soft con-
straint), we can define and compute δi,j(di, dj , E) in a sim-
ilar way.

Evaluation

average time
method random CSP laptop CSP

Lookahead strategy 0.82s 6.15s
Top-escape strategy 0.02s 0.16s

Table 1: Execution times for the original look-ahead strategy
and for the top-escape strategy.

We can compare the top-escape suggestions strategy with
the original look-ahead strategy based on Pareto-optimality.

We considered random generated problems and an elec-
tronic catalog of laptop computers. Random CSPs were cre-
ated with a number of variables varying between 3 and 7,
number of values between 2 and 5. The laptop CSP con-
sists in a catalog of computers with 10 variables, that span
between 2 and 15 values, with 528 solutions.

We generated 3 candidates (top options) as Stop for the
top-escape strategy. We generated 3 suggestions with both
methods.

As we can see, the look-ahead strategy need significantly
less computation time.

Variants and Improvements
Lex-Top-Cost strategy
The suggestions generated according to top-escape,
might be actually far from the current best option in the rank-
ing. This means that a top-escape suggestion can be very
good in showing some new interesting opportunities but it
might be poor with respect to the previously stated prefer-
ences.

An improvement is to select, among solutions that have
the same chance of escaping Stop, those that are better given
the current preferences. In other words, this method sorts
solutions in a lexicographic order by the probability of es-
caping top-dominance and the utility of current preferences.
It means that a solution s1 is considered a better suggestion
than s2 if s1 has higher total probability of top-escaping or
if the probability is equal but the current cost is lower.

For this strategy, we define a COP called Lex-Top-Cost.
We have two sets of soft constraints SCesc (representing
the probability of escaping dominance when a new uncer-
tain preference is stated), defined over variables in Vu, and
SCcurrent (representing the satisfaction of current prefer-
ences), defined over variables in Vk. The evaluation function
EvalTop−Cost constructs a vector (p, c), where p represents
the sum of the probabilities and c the sum of the individual
value functions.

34



EvalTop−Cost = (
∑

ϕi∈SCesc

ϕi,
∑

ϕj∈SCcurrent

ϕj) (2)

The selection function is Lex, such that
Lex[(p, c), (p′, c′)] = (p, c) if p > p′ or p = p′ ∧ c < c′.

Definition 5 Given a ProbCOP (V,D,HC,SC,Π)
and a set of solutions Stop, the Lex-Top-Cost COP
(V,D,HC,SCesc ∪ SCcurrent,EvalTop−Cost,Lex),
where SCcurrent = SC and SCesc is such that ∀vi ∈ Vu :
ϕesc

i (d) = δi(d,E), and E = {vi(s)|s ∈ Stop}.

Iterative strategy
Escaping dominance with the top-ranked solutions is often
not enough to become Pareto-optimal, as there might be
other solutions that also dominate. In the iterative strat-
egy, we also try to find a most representative sets of top op-
tions so that breaking dominance is likely to ensure Pareto-
optimality.

We observe that the probability pesc
i of escaping top-

domination with option stop (the current best option) when
a missing preference is present on variable vi is an upper
bound for the probability of Pareto-optimality (ppo

i ).

pesc
i (s1, stop) = p[ϕi(s1) < ϕi(stop)] (3)

If we consider three options, say stop , s1 and s∗, where
s1 is dominated both by stop and s∗, s1 will become Pareto-
optimal only if it escapes both dominance relations. In prac-
tice, we have to subtract from pesc

i all the cases in which s∗
still dominates s1.

In general, the current option s1 will be dominated by
many solutions. Given the set S∗ of dominators of s1, the
probability of escaping dominance with Stop but not becom-
ing Pareto-optimal is the probability of having at least one
dominator s∗ that is better or equal to s1 when the latter es-
capes stop.

ppo
i = pesc

i (stop) ∗ p[@s∗ ∈ S∗ : ϕi(s
∗) ≤ ϕi(s1) < ϕi(stop)]

(4)

To avoid the generation of all dominators of s1, we ap-
proximate the probability by considering only a subset of
S∗. We would like to consider a smaller set S∗ that is large
enough to give us a better approximation of the probability
of Pareto-optimality. To do so, we look for k solutions s∗
that maximize p[ϕi(s∗) ≤ ϕi(s1) < ϕi(stop)]. This will
give us a handy set of dominators that give the highest con-
tribution to the “correction” of the probability of becoming
Pareto-optimal.

We define top-block, a COP where the weights of a soft
constraint ϕtb

i represent the probability of any domain value
being preferred to the value of the current suggestion when
the latter is better than vi(stop).

Definition 6 Given a ProbCOP (V,D,HC,R,Π), we
define top-block COP (V,D,HC,SCtb,+,Max),
where ∀vi ∈ Vu: ϕtb

i : d → p[ϕi(d) ≤ ϕi(s1) < ϕi(stop)]

Solving the top-block COP, we retrieve a set S∗ that we
can use to approximate the probability of becoming optimal
of the current solution that was selected as suggestion s.

The strategy proceeds in the following way. We gen-
erate an initial suggestion s by considering the top-escape
approximation, by solving top-escape CSP. We generate a
set S∗ of solutions by solving top-block CSP; we evaluate
the approximated value of optimality of s by calculating
the expression of equation (indicated in the algorithm as
eval-approx-po). We replace the current s with one op-
tion in S∗. We repeat this indefinitely, stopping when there
is no further gain in the (approximated) probability of be-
coming Pareto-optimal. Algorithm 1 shows how to retrieve
suggestions in this way.

Algorithm 1: The iterative approximated method for
computing suggestions.

1: stop = solve(top-k)
2: s = solve(top-escape CSP,stop)
3: S∗ = solve(top-block(s))
4: ppo(s)=eval-approx-po(s, S∗)
5: while true do
6: s1 = choose(S∗)
7: S∗1 = solve(top-block(s1))
8: ppo(s1)=eval-approx-po(s1, S

∗
1 )

9: if ppo(s1) < ppo(s) then
10: Return s
11: s = s1

Example
We consider an example (Table 2) with three variables v1,
v2 and v3, all with domain {a, b, c}. The hard constraints
require pairwise different values: ∀i,j∈[1,3]ci,j : (vi 6= vj).

Suppose that preferences are:

• Initial Preference on v1: r(a)=0, r(b)=1, r(c)=2 (or any
other evaluation that prefers a to b and b to c).

Π2 Π3

θ p(θ) θ p(θ)
a Â b Â c 0.16 a Â b Â c 0.25
a Â c Â b 0.16 a Â c Â b 0.25
b Â a Â c 0.16 b Â a Â c 0
b Â c Â a 0.16 b Â c Â a 0
c Â a Â b 0.16 c Â a Â b 0.25
c Â b Â a 0.16 c Â b Â a 0.25

Table 2: Probability distributions for the uncertain prefer-
ences on variable v2 and v3, expressed giving a probability
to every single combination. Π2 expresses that any combi-
nation is equally likely, while Π3 represents equal chance
of having either a or c as most preferred value. Here, the
parameter θ of the distribution represents the possible pref-
erence order.

35



s δ2(v2(s), {b, c}) δ3(v3(s), {b, c}) pesc(Stop)
(b,a,c) 0.33 0 0.16
(b,c,a) 0 0.5 0.25
(c,a,b) 0.33 0 0.16
(c,b,a) 0 0.5 0.25

Table 3: Example of calculation of the probability of escap-
ing the top options so1 = (a, b, c) and so2 = (a, c, b). Given
that the 2 top options take both values b and c on v2 and v3,
the only positive contribution to the probability is given by
value a, which is better than b and c with p=0.33 for v2, and
with p=0.5 for v3.

dominators Sd δ2 δ3 popt

(b,a,c) (a,b,c) (a,c,b) 0.33 0 0.16
(b,c,a) (a,b,c) (a,c,b) 0 0.5 0.25
(c,a,b) (a,b,c) (a,c,b) (b,a,c) (b,c,a) 0 0 0
(c,b,a) (a,b,c) (a,c,b) (b,a,c) (b,c,a) 0 0 0

Table 4: Example of calculation of the probability of be-
coming Pareto-optimal. The solution (c,b,a) has no proba-
bility of becoming Pareto-optimal when a single preference
is missing, because if the preference is on v3 it is still domi-
nated by (b,c,a), if the preference is on v2, it does not escape
dominance with (a,b,c).

• Preference Distribution for v2: any permutation of a,b,c
with equal probability, assigning 0 to the most preferred,
2 to the worst

• Preference Distribution for v3: either c or a is the most
preferred with equal chance, assigning 0 to the most pre-
ferred, 2 to the worst

Candidates Given the only known preference on v1, in
this case the two best configuration so1 = (a, b, c) and so2 =
(a, c, b) with cost 0, that are also the Pareto-optimal.

Model-based Suggestions We consider the difference be-
tween the original method based on Pareto-optimality and
the top-escape strategy.

The best suggestion according to the original definition
of the lookahead principle (Table 4) is (b, c, a) that has 0.25
probability of becoming optimal, than (b, a, c) with 0.16.

The top-escape strategy constructs a COP with the fol-
lowing soft constraints: v2 → {a → 0.33, b → 0, c → 0},
v3 → {a → 0.5, b → 0, c → 0}. The approximate method
retrieves either (b, c, a) or (c, b, a) as best suggestion. We
can notice that (c, b, a) has no real chance of becoming
Pareto-optimal by means of a single new preference state-
ment (Table 3).

Lex-Top-Cost method constructs a COP that, in addition
to the constraints of top-escape, separately evaluates the cur-
rent cost v1 → {a → 0, b → 1, c → 2}. The resulting best
suggestion (b, c, a) has (prob,cost) = (0.25, 1) preferred to
(c, b, a) whose lex-evaluation is (0.25, 2).

The iterative method would either retrieve (b, c, a) or
(c, b, a) at the first step, as they have the same chance of
escaping stop. In the second case, it will retrieve (b, c, a) in
S∗, because it is the solution that has the highest chance to
be better than (c, b, a) when the latter is better than so1 and
so2. So, (c, b, a) will be considered the best suggestion by
this method.

Evaluation
In this section we compare the strategies for generating sug-
gestions for preference-based search for configurable prod-
ucts that we considered in this paper. We consider, as before,
random generated problems and electronic catalog of laptop
computers.

We want to check whether the suggestions we find with
the top-escape method are very different from those re-
trieved with the original formulation. To do so, we compare
the actual probability of becoming Pareto-optimal (com-
puted with with the original lookahead method) of the sug-
gestions retrieved by each of the top-escape methods and
use this as an evaluation of the performance of the strate-
gies. For each simulation, a random preference model is
generated and 3 suggestions are retrieved. The average prob-
ability of the 3 suggestions for each method is considered.
The values are scaled upon the probability of optimality of
the best possible suggestions (those retrieved with the ex-
act method). This however is not a precise measure of the
quality of the suggestions.

method random CSP laptop CSP time
Look-ahead Pareto 100% 100% 6.15s

Top-escape 70% 21% 0.16s
Lex-Top-Cost 88% 38% 0.17s

Iterative 93% 40% 0.40s

Table 5: The evaluation of the different methods for the re-
trieval of suggestions. The methods are evaluated according
to the probability that a suggestion becomes Pareto-optimal.
The numbers are scaled so that the exact method gets 100%.
Given a user model of preferences, 3 suggestions are re-
trieved with each of the methods; their true probability of
optimality is considered. The computation time is given for
the laptop configuration database.

Conclusions
We presented the problem of preference-based search and
focused on example-based tools in which preferences are ac-
quired by critiques of the user to displayed examples.

We considered the look-ahead principle (Pu, Viappiani,
& Faltings 2006) for suggestions that stimulate preference
expression and looked at implementation for configurable
catalogs. The main difficulty to compute suggestions is to
avoid the generation of all the solutions of the configuration
problem.

We proposed a strategy, called top-escape, that looks
for solutions that have the highest probability of being bet-
ter than a few current best options at the top of the current

36



ranking and can be modeled as a single optimization prob-
lem. We presented an improvement lex-top-cost that
considers, among the solutions that have the same probabil-
ity, those that are better given the current preferences. Then,
we proposed a method that looks for the best dominators
to approximate the probability of becoming Pareto-optimal,
requiring to iteratively solve a series of COP problem.

The methods proposed seem to be sufficiently fast for
practical applications.

References
Hebrard, E.; Hnich, B.; O’Sullivan, B.; and Walsh, T. 2005. Find-
ing diverse and similar solutions in constraint programming. In
Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI’05), 372–377.
Keeney, R. L. 1992. Value-Focused Thinking. A Path to Creative
Decision Making. Cambridge: Harvard University Press.
Linden, G.; Hanks, S.; and Lesh, N. 1997. Interactive assess-
ment of user preference models: The automated travel assistant.
In Proceedings of the Fifth Internation Conference on User Mod-
eling (UM’97).
Payne, J.; Bettman, J.; and Johnson, E. 1993. The Adaptive De-
cision Maker. Cambridge University Press.
Pu, P., and Kumar, P. 2004. Evaluating example-based search
tools. In Proceedings of the ACM Conference on Electronic Com-
merce (EC’04).
Pu, P.; Viappiani, P.; and Faltings, B. 2006. Increasing user deci-
sion accuracy using suggestions. In ACM Conference on Human
factors in computing systems (CHI06), 121–130.
Shimazu, H. 2001. Expertclerk: Navigating shoppers buying pro-
cess with the combination of asking and proposing. In Proceed-
ings of the Seventeenth International Joint Conference on Artifi-
cial Intelligence (IJCAI’01), volume 2, 1443–1448.
Smyth, B., and McClave, P. 2001. Similarity vs. diversity. In
Proceedings of the 4th International Conference on Case-Based
Reasoning (ICCBR’01), 347–361.
Smyth, B., and McGinty, L. 2003. The power of suggestion. In
Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, 127–132.
Tversky, A. 1974. Judgement under uncertainity: Heuristics and
biases. Science 185:1124–1131.
Viappiani, P., and Faltings, B. 2006. Design and implementa-
tion of preference-based search. In Springer., ed., The 7th Inter-
national Conference on Web Information Systems Engineering,
LNCS4255, 72–83.
Viappiani, P.; Faltings, B.; and Pu, P. 2006a. Evaluating
preference-based search tools: a tale of two approaches. In Pro-
ceedings of the Twenty-first National Conference on Artificial In-
telligence (AAAI-06), 205–211. Boston, MA, USA: AAAI press.
Viappiani, P.; Faltings, B.; and Pu, P. 2006b. The lookahead prin-
ciple for preference elicitation: Experimental results. In Seventh
International Conference on Flexible Query Answering Systems
(FQAS).
Viappiani, P.; Faltings, B.; and Pu, P. 2006c. Preference-based
search using example-critiquing with suggestions. Journal of Ar-
tificial Intelligence Research (JAIR) 27:465–503.

37


