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Abstract

In this position paper, we present a methodology for the for-
mal evaluation of agent architectures. We argue that any
agent architecture can be formally represented by a set of
state transition systems. We then show how both qualitative
and quantitative properties of an architecture can be evaluated
using logical formulas interpreted in this set of state transi-
tion systems. In addition, we also provide a precise notion
of what it means for an agent described in implementation
specific terms to have or implement a given architecture.

Introduction
An architecture can be thought of as specifying both a set
of concepts which can be used to talk about an intelligent
system (e.g., a robot or an intelligent agent) and a set of
(usually high-level) capabilities realised by a system. For
example, if we say that a system has “beliefs”, we are say-
ing something about its internal representations of states of
affairs. If we say that it can “plan”, we mean that it is ca-
pable of generating a representation of a sequence of future
actions, which, if executed in a state of affairs in which its
beliefs hold, will achieve its goal(s). However, while such
informal high-level descriptions of a system are useful, they
can be hard to pin down when we are trying to determine
if a given intelligent system has a particular property as a
consequence of its architecture. There are many variants of
“Belief-Desire-Intention” (BDI) architectures in the agents
literature for example. This lack of precision makes it hard
to compare or evaluate architectures or to say that a given
system has a particular property as a consequence of it hav-
ing a particular architecture.

In this position paper, we propose an approach to architec-
tures and their evaluation which both makes precise exactly
what it means for a system to ‘have’ an architecture, and al-
lows us to establish properties of a system expressed in terms
of its architectural description. In what follows, we focus on
architectures of software agents, however a similar approach
can be applied to robots and other kinds of intelligent sys-
tems. We show how to establish a precise formal relation-
ship between an evaluation criterion, an agent architecture
and an agent model (taken to be an implementation-level de-
scription of an agent). A consequence of our approach is that
it is possible to verify whether two different agent programs

really have the same architecture or the same properties, al-
lowing a more precise comparison of architectures and the
agent programs which implement them. We illustrate our
approach with a number of examples which show how to es-
tablish both qualitative and quantitative properties of archi-
tectures and agent programs, and how to establish whether a
particular agent has a particular architecture.

Specifying Architectures and Properties
An architecture is a way of looking at or conceptualising
an agent program which defines the possible states of the
agent and transitions between them. We can think of an ar-
chitecture as providing a language of concepts and relations
for describing the contents of agent states and their possible
transitions. Different architectures characterise the contents
of the agent’s state in different ways, e.g., as beliefs or goals
or ‘affective’ states such as ‘hungry’ or ‘fearful’ or simply in
terms of the contents of particular memory locations. Simi-
larly, the possible transitions may be characterised in terms
of basic agent capabilities, such as performing a ‘basic ac-
tion’, or by higher-level capabilities such as ‘perception’,
‘learning’ or ‘planning’. Typically some of the contents of
the states and some of the possible transitions will be under
the control of the agent developer. For example, an agent
programming language or toolkit may allow the representa-
tion of beliefs about any state of affairs, whereas a particular
agent implementation may only have beliefs about customer
orders for a given range of goods. Those transitions which
are not under the control of the developer typically corre-
spond to the execution of some ‘basic’ control cycle speci-
fied by the architecture. For example, a particular architec-
ture may specify that the execution of a basic action or plan
step is always followed by a ‘sensing’ step.

In this view, the ‘pure’ architecture of an agent consists of
a language for describing its states and transitions, and a set
of constraints which limit the possible states and the transi-
tions between them to those allowed by the architecture. For
example, a possible constraint on the agent’s beliefs imposed
by the architecture may be that beliefs are always consistent,
or that they always include, e.g., a belief about the current
time or the agent’s battery level.

Since instances of an architecture are computer programs,
they can be represented as state transition systems. The
states of the state transition system will be determined by
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the possible states defined by the architecture. Similarly,
the transitions between states are determined by the kinds
of transitions supported by the architecture. The set of all
possible transition systems corresponding to instances of an
architecture provides a formal model of the architecture it-
self. Note that we assume that this set is not given extension-
ally, but is defined by a set of constraints on possible states
and possible transitions between states.

The key idea underlying our approach is to define a logic
which axiomatises the set of transition systems correspond-
ing to the architecture of interest. This logic can then be used
to state properties of the architecture (typically couched in
terms of the concepts defined by the architecture). An archi-
tecture has a particular property if a formula in the logic ex-
pressing this property is true in all transition systems defined
by the architecture. For example, we can formulate precisely
in a suitable logic (e.g., CTL∗ or PDL extended with for ex-
ample belief and goal modalities) various qualitative prop-
erties of architectures such as, ‘Can an agent have inconsis-
tent beliefs?’, ‘Can an agent drop a goal?’ or ‘Can an agent
drop a goal which is not achieved?’, and check which of
these properties are satisfied by which architectures. Per-
haps more surprisingly, we can also use this approach to
evaluate various quantitative properties of architectures. For
example, ‘how much time would choosing an action take in
this agent architecture?’, or ‘how much memory is required
to perform deliberation?’. Note that by appropriate choice of
the logic, we can perform an evaluation at different levels of
detail. For example we can establish properties of the ‘pure’
architecture, or of a particular agent program, or a particular
agent program with particular inputs.

There exists a substantial amount of work on modelling
agent systems using state transition systems and express-
ing correctness properties in logic (for example, (Rao &
Georgeff 1991; Fagin et al. 1995; van der Hoek, van Linder,
& Meyer 1999; Wooldridge 2000)). The major difference
between this work and our approach, is that we use syntac-
tic belief, goal etc. modalities rather than a standard Kripke-
style semantics to model agent beliefs and other proposi-
tional attitudes, thus avoiding the problem of logical omni-
science (that the agents are modelled as believing all logical
consequences of their beliefs) (Hintikka 1962). Since rea-
soning takes time and memory in any implemented agent
system, formal models based on possible worlds semantics
may incorrectly ascribe properties to real agent systems.

Evaluating Correctness Properties
In the remainder of this paper we illustrate our approach by
means of some simple examples drawn from our previous
work. In this section we briefly survey some previous work
in (Alechina et al. 2007), in which we proposed a sound
and complete logic for SimpleAPL, an APL-like (Dastani
et al. 2004; Bordini et al. 2005) agent programming lan-
guage. The logic is a variant of Propositional Dynamic
Logic (PDL) (Fischer & Ladner 1979), which allows the
specification of safety and liveness properties of SimpleAPL
agent programs. In (Alechina et al. 2007) we showed how
to define transition systems corresponding to different pro-
gram execution strategies in that logic. Here, we first briefly

describe the language of SimpleAPL and two possible ex-
ecution strategies (atomic and interleaved) and then sketch
how to formalise them in logic.

SimpleAPL is a fragment of 3APL (Dastani et al. 2004;
Bordini et al. 2005). A SimpleAPL agent has a set of goals
(ground literals), beliefs (ground literals), plans, and plan-
ning goal rules. A planning goal rule of the form

ψ ← φ|π
can be read as “if you have a goal ψ and you believe φ,
then adopt plan π”. SimpleAPL plans are built from basic
actions using sequential composition, conditionals and iter-
ation. Basic actions have a finite set of pre- and postcon-
ditions. For simplicity, to avoid modelling the environment,
we assume that the agent’s beliefs are always correct and ac-
tions always successful, which allows us to express pre- and
postconditions in terms of the agent’s beliefs.

An important choice in defining the architecture of a Sim-
pleAPL agent is to decide whether the agent has an atomic
or an interleaved plan execution strategy. By an atomic plan
execution strategy we mean the following two conditions:

• the agent has a single plan at any given time; and

• the agent only applies a planning goal rule after it has
completely executed its current plan.

By an interleaved execution strategy we mean:

• the agent may have several active plans at any given time;
and

• at each execution cycle, the agent can either apply a plan-
ning goal rule, or execute the first step in any of its current
plans.

For both strategies, we can represent the resulting agent sys-
tem, (i.e., a set of planning goal rules plus an execution strat-
egy) as a PDL program expression χ. We need to make a
minor extension to the language of PDL to include syntactic
modalities B and G. (Bφ means that the agent believes φ,
and Gφ means that the agent has φ as a goal. Both modal-
ities are interpreted by simply checking whether φ is in the
agent’s beliefs or goals respectively.) For the interleaving
strategy, we also need to extend PDL with the interleaving
operator introduced in (Abrahamson 1980). We can then ex-
press correctness properties such as ‘after every execution of
the agent’s program, φ holds as [χ]φ.

Clearly, the behaviour of two agents with the same set
of planning goal rules and the same initial state, but using
different execution strategies, may differ. In particular, if
an agent starts with beliefs φ1, . . . , φn and goal ψ, it may
be guaranteed to achieve the goal under the atomic execu-
tion strategy, but not under the interleaved execution strat-
egy (e.g., it may be possible under the interleaved strategy
to always execute a planning goal rule and never execute any
basic actions). In logic, we can formalise this precisely. Let
χ be the translation of the agent’s program executed atomi-
cally and χ′ be the translation of the same program executed
in the interleaved fashion. Then the formula

Bφ1 ∧ . . . Bφn ∧ Gψ → [χ]Bψ
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will be valid in all transition systems which satisfy pre- and
postconditions on the basic actions, and

Bφ1 ∧ . . . Bφn ∧ Gψ → [χ′]Bψ

will be not valid.

Evaluating Resource Requirements
In this section we consider the problem of comparing the
relative resource requirements of architectures. For exam-
ple, given two agents with different architectures, how much
time or memory do they require to solve the same problem?
Or, given two multi-agent systems possessing the same in-
formation, how many messages do the agents in each system
have to exchange before they solve a given problem? We
have studied these problems for rule-based agents (Alechina,
Logan, & Whitsey 2004a; 2004b; Alechina & Logan 2005;
Alechina, Jago, & Logan 2006) and for agents reasoning in
a variety of logics (Alechina et al. 2006; Albore et al. 2006).

An important aspect of the architecture of a rule-based
agent is how the rule instances which are applied to produce
the next state are selected from the set of all matching rule
instances (conflict resolution and rule application strategy).
This can affect the time (number of rule application cycles)
which an agent takes to select an action or to assert a certain
fact in memory. In (Alechina, Logan, & Whitsey 2004a;
2004b) we axiomatised classes of transition systems corre-
sponding to different kinds of conflict resolution strategies.
The logic we used to axiomatise those classes of transi-
tion systems, Timed Reasoning Logic, uses time labels at-
tached to formulas as in step logic (Elgot-Drapkin & Perlis
1990). This enabled us to express in the logic the fact that
a certain statement will be derived by the agent within n
timesteps. For example, in (Alechina, Logan, & Whitsey
2004b), we used Timed Reasoning Logic to model two rule-
based agents with the same set of rules and the same set of
initial observations, but with two different conflict resolu-
tion strategies. One agent used the depth conflict resolution
strategy of CLIPS, which favours more recently derived in-
formation, while the other used a breadth conflict resolution
strategy which favours older information. We showed how
the times at which facts are derived differ for the two agents,
and also that facts will be derived sooner if the two agents
communicate.

As well as considering time requirements of agents with
different architectures, we can also consider their respec-
tive memory requirements. A simple measure of the agent’s
memory requirement is the size of the agent’s belief base,
which can be identified either with the number of distinct
beliefs in the belief base, or the total number of symbols re-
quired to represent all beliefs in the belief base. Logics for
agents with bounded memory were studied in (Alechina et
al. 2006; Albore et al. 2006), where we showed the exis-
tence of trade-offs between the agent’s time and memory re-
quirements: for example, deriving the same conclusion with
a smaller memory may require more derivation steps.

Correct Implementation
The approach outlined above allows us to study properties of
architectures in the abstract and of agent programs expressed

in terms of architecture specific concepts. However it leaves
open the question of whether a particular agent program de-
scribed in implementation-level terms can be said to realise
a particular architecture. In this section we sketch what it
means in our view for an agent to implement or realise an
architecture, and give an example in which we show how to
correctly ascribe beliefs to a behaviour-based agent.

Given our definition of (a formal model of) an architec-
ture as the set of all transition systems corresponding to pro-
grams which implement the architecture, there is a trivial
sense in which a particular agent program can be seen as im-
plementing an architecture: this holds if a transition system
corresponding to the program is in the set of transition sys-
tems corresponding to the architecture (if it satisfies the con-
straints imposed by the architecture). However, in practice
the problem is often more complex, in that the “natural” de-
scriptions of the architecture and its implementation may use
different concepts and levels of detail. For example, the lan-
guage for specifying constraints on transition systems corre-
sponding to a BDI architecture would involve ways of refer-
ring to beliefs, desires and intentions, while the description
of an agent program may be in terms of basic programming
constructs and data structures. We therefore define the no-
tion of ‘implementation’ in terms of a mapping between the
transition systems corresponding to an agent program and
an architecture, and say that a particular agent implements
a particular architecture if the transition system describing
the agent program can be mapped into one of the transition
systems in the architecture set. For example, if the low-level
model of an agent involves two boolean state variables x and
y, we may decide to translate x = 1 as ‘the agent has belief
p’ and y = 1 as ‘the agent has goal q’. Similarly we may
collapse several of the agent’s low-level actions into a single
‘basic action’ at the architecture level. If such a mapping
into one of the transition systems corresponding to an archi-
tecture can be carried out (namely, there exists a transition
system S in the set corresponding to the architecture, such
that initial states of the agent translate into initial states of S,
and every time when there is a sequence of low-level transi-
tions in the agent’s description, then there is a corresponding
basic action in S, again leading to the matching states), we
will say that the agent program implements the architecture.

This ‘implementation relation’ defines precisely when a
given agent can be said to have or implement a particular
architecture and hence satisfies all the properties of the ar-
chitecture. Clearly, the same agent program may implement
several different architectures under this definition. Indeed
an agent can correctly be said to implement any architecture
for which there exists a mapping from the agent model to
the architectural description.

As an example, in (Alechina & Logan 2002) we showed
how to correctly ascribe beliefs to agents which do not em-
ploy explicit representations of beliefs, e.g., where the be-
haviour of the agent is controlled by a collection of decision
rules or reactive behaviours which simply respond to sen-
sor inputs from the agent’s environment. In particular, we
showed that if we only ascribe an agent beliefs in literals
then it is safe to model the agent’s beliefs in a logic such
as KD45 or S5 in which beliefs are modelled as closed un-
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der logical consequence. (KD45 and S5 are widely used in
formal models of agents, see, e.g., (Rao & Georgeff 1991;
Fagin et al. 1995; van der Hoek, van Linder, & Meyer 1999;
Wooldridge 2000).) However, it is not safe to ascribe be-
liefs in complex formulas to an agent, because then the ac-
tual state of the agent (which does not contain all the conse-
quences of its beliefs) and the corresponding formal model
(which assumes its beliefs to be logically closed) would not
match.

Summary
We have presented a methodology for the formal evaluation
of agent architectures. Our evaluation methodology consists
of defining a set of transition systems corresponding to an ar-
chitecture of interest, and verifying properties of this set of
transition systems. The evaluation is therefore of the archi-
tecture in a very direct sense. The results of the evaluation
hold for a particular agent (relative to some implementation-
level description of the agent) insofar as the agent imple-
ments the architecture. While our analysis does not allow us
to answer all questions of interest regarding the evaluation
of architectures, we believe it allows us to address a (sur-
prisingly) wide range of architectural evaluation questions.
As examples we sketched to how establish correctness prop-
erties, response time properties and how to correctly ascribe
beliefs to agents. However we feel that this is a potentially
very productive area, and previous work has barely begun to
scratch the surface of what is possible in terms of the evalu-
ation at the architecture level.
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