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Introduction 
The problem of evaluating general architectures is a 
difficult one (Newell, 1990).  Comparative evaluations that 
focus on performance alone are especially problematic.  It 
is usually feasible to develop a specialized solution for any 
particular problem that will outperform a general solution, 
such as one developed within a cognitive architecture.  
Thus, an evaluation of the architectural approach derives 
from the power of the primitives of the architecture, the 
generality and flexibility of these primitives in providing 
solutions across a range of tasks, and the resulting ability 
to (relatively) rapidly develop an architectural solution via 
a common computing framework.  While this power is 
assumed within the cognitive architecture community (and 
there is significant anecdotal evidence to support it), today 
the community lacks a scientific foundation for measuring 
and evaluating these claims. 
This paper identifies a number of metrics that could be 
important for assessing cognitive architectures across a 
range of applications domains. The metrics are organized 
according to a taxonomy of requirements for intelligent 
systems developed by Anderson & Lebiere (2003).  We 
focus only on the functional aspects of their analysis, rather 
than those non-functional requirements specific to human 
cognition, which are also detailed in the Anderson and 
Lebiere evaluation approach.   
These metrics together reflect our attempt to capture and 
measure many necessary components of general intelligent 
behavior, rather than solely performance metrics, which 
are often the primary means of evaluating intelligent 
systems in AI.  We introduce two metrics novel to 
cognitive-architecture research, incrementality and 
adaptivity, which may prove to be useful for capturing and 
expressing the cumulative value of cognitive-architecture-
based solutions across multiple tasks within a domain and 
across multiple application domains.  Our approach is far 
from complete, in that several requirements include only 
notional metrics.  However, this approach provides at least 
an empirical foundation for comparing work within and 
across the development cognitive architectures that can 
provide more objective measures of a cognitive 
architecture’s capabilities and utility as a platform for 
general intelligence. 
One of the primary factors that makes achieving general, 
intelligent behavior such a difficult problem is the 
complexity and variation found in the environment.  For 
general intelligence, agents must be able to cope 
effectively with this complexity.  However, while complex, 
the environment (usually) is not chaotic.  It operates 
according to laws and general properties and can be 

characterized according to its complexity.  Russell and 
Norvig’s (1995) influential textbook introduces a number 
of contrasting dimensions that can be used for 
characterizing domains.  For example, accessible domains 
provide complete access to the state of the environment 
while, in inaccessible domains, information relevant to a 
good choice at some point in time may not be available to 
the agent via direct perception.  Different problems will 
have different complexity profiles based on these 
dimensions.  Many of the metrics introduced below will 
also interact with these dimensions, so that quality of the 
overall solution and the problem complexity define a 
functional space for the metric for some class of related 
problems.  A significant qualification to the work 
presented here is the lack of consistent measures of 
complexity across different application domains.  Some 
problems and domains provide simple measures of 
complexity (such as the number of cities in a Traveling 
Sales Man tour) which can be used to evaluate the 
performance of a system with increasing complexity but, 
to-date, there are no domain-general characterizations of 
complexity that enable cross-domains comparisons.  This 
will limit the utility of some of the proposed metrics to 
comparison within particular domains. 
The remainder of the paper introduces metrics for each 
category of the general requirements of Anderson & 
Lebiere (2003).  Many performance-based metrics are 
reused from one category to the next, suggesting specific 
ways in which base performance characteristics can be 
systematically explored to provide a more complete, multi-
dimensioned characterization of performance results. 
While, in most cases, we propose objective, quantitative 
metrics, in some cases, only qualitative and/or subjective 
evaluation is possible today.  Perhaps the workshop 
discussion will lead to ideas and insights for more 
objective approaches to evaluation in these areas as well. 

Behave as an (almost) arbitrary function of 
the environment  

Environments generally will change independently of an 
intelligent system (“dynamic” in the Russell and Norvig 
properties) and the actual state of an environment may not 
be known or directly perceivable (inaccessible).  Thus, the 
intelligent system must be able to act in the situation it 
finds itself in (and even if it is different than the one it 
expected to be in).  This flexibility implies a breadth of 
capability, meeting the complexity of the environment with 
appropriate responses. 
Taskability is the ability of a system to adapt to new/novel 
problems without human (programmer) intervention.  
Taskability is difficult to measure because there is no 
"absolute" notion of taskability -- a particular quantitative 
measure for one domain might represent the best one could 
achieve, while in another, it might be a baseline.  

___________________________ 
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Researchers in AI have generally evaluated taskability by 
adopting a set of benchmark tasks against which a system 
is developed, and then introduced novel tasks within the 
same domain and tested system performance on these new 
tasks (Hanks, Pollack, & Cohen, 1993).  This approach 
provides a reasonable qualitative measure of taskability 
within a domain.   
Incrementality is the ability to extend a cognitive-
architecture-based system from one set of tasks to another 
set, which can be either a superset of the original set (as an 
example of generalization) or reflect a different set of 
requirements (an example of the robustness and taskability 
of the architecture).  Incrementality could possibly be 
measured by the degree of overlap between the solutions to 
the two sets of problems.  For instance, if some cognitive 
system provides a quite general capability, a small task-
specific addition at the knowledge representation level 
might be sufficient to tackle a new task.  On the other 
hand, if a system is overly specific to a particular problem, 
then significant reworking for the new task might be 
necessary and the resulting incrementality will be poor.  
The AAAI General Game Playing (GGP) competition is 
representative of this attempt to realize a more general 
capability than just effective play of some specific game. 
Measuring incrementality will help expose excessive 
benchmark-driven task specialization and thus help ensure 
the generality of an architectural framework.  To our 
knowledge, incrementality is a novel dimension that has 
not been previously evaluated, although it is consistent 
with the general notion of a “cumulation of results” as 
discussed in Newell (1990).  The primary difference is that 
rather than a qualitative accumulation of results across 
different tasks, as suggested by Newell, incrementality is 
proposed as a quantitative measure that expresses the 
actual overlap at the source code level between different 
applications of an architecture. 
Figure 1 illustrates a notional approach to measuring 
incrementality in the evaluation of an architecture.  Here, 
we propose a very simple measure of incrementality.  
Incrementality is the ratio of the unchanged lines of source 
code to total lines of code needed for the solution of some 
problem, in comparison to the source code used to solve 
previous problems.  One of the key points of this definition 
to incrementality is that it makes no distinction between 
the architecture source code (typically written in a standard 

high level language, such as Java, C, or LISP) and the 
knowledge representations encoded in the language(s) an 
architecture defines for specifying content. 
The simplicity of this definition has two advantages.  First, 
because it does attempt to distinguish or weigh the relative 
contribution of different elements in the architecture-based 
application, it provides a direct analog to reuse metrics in 
software engineering generally and allows comparison to 
non-architecture-based approaches and their level of reuse.  
Second, tools to measure incrementality could be readily 
developed using existing source control revision 
comparison tools (e.g., “diff”).   
Today, typically, at best the source code of an architecture 
is reused from one application to the next, resulting in a 
modest but not trivial baseline.  This baseline suggests 
some of the inherent value in cognitive architectures 
generally, since the incrementality of non-cognitive-
architecture-based intelligent systems development is near 
nil (i.e., systems development begins near de novo for new 
applications).   
In the ideal case, which is a long-term, not near-term goal, 
for any existing cognitive architecture, full incrementality 
is reached: no new changes to the architecture or its 
encoded knowledge are needed for a new task.  In the 
meantime, as shown in the middle line, incrementality 
could be used as an explicit tool for understanding at a 
gross level how much of an architecture and its application 
are reusing the previous results over time.  While full 
incrementality is likely infeasible, this approach would 
provide at least a coarse measure of incrementality for 
cognitive systems and give insight to other scientists about 
the level of reuse and cumulation within a particular 
architectural paradigm. 
An obvious drawback of this definition is its coarse-
grained nature.  For example, the Soar source code is very 
roughly 50,000 source lines of code (SLOCs) of C.  An 
obvious parallel to a SLOC in the Soar language is a 
production.  However, most Soar systems have only a few 
hundred productions; the largest Soar application system, 
TacAir-Soar (Jones, et al, 1999), today has about 10,000 
productions.  Thus, significant changes in the kernel level 
of Soar are likely to mask reuse at the production-
knowledge level of representation; similarly, the lack of 
reuse at the production-knowledge level will be masked by 
the SLOCs.  We expect approaches that take 
incrementality seriously will provide a number of more 
fine-grained measures to highlight these effects. 
Another possible limitation of incrementality proposed 
here is that it measures “latent” capability, rather than the 
capabilities actually used in the execution of a task.  For 
example, using another Soar example, one could likely 
include the productions from a number of distinct 
applications into a single Soar system.  In such a situation, 
the numerator of the incrementality metric would increase 
with each new application, but little reuse would be 
guaranteed.  We propose that incrementality be used in 
conjunction with knowledge utilization (described below) 
to make explicit the actual use of the knowledge within an 
incrementally increasing source repository.  

Figure 1: Measuring incrementality. 
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Operate in real time 
For an intelligent system to behave intelligently, it must 
able to recognize a situation that it cares about, determine 
an appropriate response, and then act.  However, the world 
in which an agent operates may be continually changing.  
Thus, the agent must perform its internal processes 
quickly, relative to the speed of change in the environment, 
or its chances of survival/success diminish in a ling-term-
existence.  Many reflexes and instincts can be viewed as 
evolutionary solutions to the problem of fast reaction in the 
animal world, “hard wiring” responses to specific 
situations.  The important requirement is that the speed of 
response is sufficient for the demands of the problem, 
rather than being as fast (in absolute terms) as possible.  
There is typically also a trade-off between performance 
measures and the quality of solution (QoS).  As an 
example, consider the range of potential relationships 
between the time taken to compute or generate some 
response or behavior, and the quality of the resulting 
solution, as illustrated in Figure 2.  There may a fixed 
computation time that is needed before any solution or 
response is produced, as shown by the gray, pulse arrows.  
Computing an optimal solution typically provides an upper 
limit on compute time.  While heuristics can be used to 
shorten the delay, except in special cases (such as 
admissible heuristics), more computational effort does not 
necessarily result in improving QoS.   In the ideal case, 
behavior generation and reasoning has an anytime
property, in which additional computation leads to 
improvement in the overall quality of solution.  However, 
many real-world problems are difficult to formulate in 
terms of anytime response characteristics.  The main lesson 
from Figure 2 is that there is typically a relationship 
between the time invested in generating a solution and its 
overall quality, meaning that absolute performance 
comparisons should be normalized or cast against QoS. 
Metrics for real-time operation should likely include: 
Response time is the time between the onset/assignment of 
a task (including specific subtasks) and its resolution.  As 
noted above, response time should be accompanied by a 
Quality of Solution associated metric, to distinguish 
between satisficing/non-satisficing solutions, and to 

demonstrate trade offs between solution quality and 
response time.  Also, response time should distinguish 
between soft and hard real time responses. 
Cognitive cycles/cognitive operations per second 
(COPS) measures the cycles (or %age of total CPU time) 
devoted to cognitive-architecture operations.  This metric 
is a poor stand-alone metric because decreases or increases 
cannot be evaluated in an absolute sense, similar to the 
way comparing operations per second in RISC vs. CISC 
architectures is also marginally informative.  Although it 
has limited utility as an absolute measure, cognitive 
operations/time is a good relative metric, allowing one to 
assess improvements against a baseline or benchmark. 
Scalability (as discussed further below) can be partially 
evaluated according to such metrics.   
Extended operation/longevity: Intelligent systems must 
be able to persist over long durations.  What is the uptime 
of the cognitive architecture in a particular application?  
How do other performance metrics change as uptime 
increases?  For example, does system performance degrade 
as uptime increases (this is often observed in some learning 
systems, where the addition of knowledge via learning 
leads to significant degradation in knowledge retrieval 
performance)?  While it may be true that particular 
architectures exhibit poor uptimes due to implementation 
issues (a common problem is the implementation of 
inherently parallel processes on serial machines), the 
engineering-oriented reportage of these measures would 
give potential users insights into the maturity of current 
implementations and a better understanding of their actual 
potential value in a proposed application. 

Exhibit rational, effective adaptive behavior 
An intelligent system must not only respond to its 
environment, but it should respond in a manner appropriate 
for the situation.  In particular, as the world changes, the 
agent should adapt its behavior to the situation such that it 
continues to make progress on its long-term goals (i.e., it 
cannot just be reactive).  Because environments have 
consistent (or slowly changing) dynamics, an agent can 
make predictions about future states and attempt to act to 
effect the environment in ways that meet its goals.  This 
capability is useful both in domains that are deterministic 
and non-deterministic.  Different sources of knowledge 
available in the environment can be used to formulate 
goals, to act to achieve them, and to recognize when goals 
are met or unreachable.  Adaptation to the specific 
environment is important because the agent’s existence 
may span a long period of time (as above), and non-
adaptive behavior may influence the survivability or 
viability of the agent in an application domain. 
Adaptivity corresponds to both short-term adaptivity 
(changes in how the agent responds within an on-going 
episode of behavior) and long-term adaptivity (acquiring 
new general knowledge to improve long-term 
performance).  Adaptivity may be a consequence of 
learning but is not a learning metric per se; instead, 
adaptivity is focused on measuring the ability of a system 
to respond appropriately to variation in its environment.  
The analog of adaptivity in control systems is the region of 
stability in a non-linear control problem. 

Computation Time

Fixed, heuristic 
approximations

Idealized 
Speed/Quality
function 

Optimal 
solution

Figure 2: The relationship between computational 
investment and quality of solution.
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Adaptivity can be quantified by comparing the 
performance gain of an adaptive version of an agent 
system, to a non-adaptive system.  This approach is 
somewhat related to robustness (below) but does not 
reduce to it.  Both robustness and adaptivity are necessary: 
robustness provides acceptable performance in unforeseen 
situations, adaptivity suggests a cognitive architecture 
simplifies a priori engineering and provides a more 
efficient solution-authoring process than one in which 
complete capability has to be specified by the designer, in 
addition to allowing the system to adapt on its own to the 
changing dynamics and task requirements of a domain. 
Figure 3 illustrates a possible, albeit notional approach to a 
domain-specific measure of adaptivity.  In this approach, 
adaptivity is the ratio of the size of perturbation in the 
environment (measured in terms of problem complexity) to 
the difference in the resulting quality of solution.  As the 
difference in quality of solution increases (presumably, via 
a poorer quality solution), adaptivity decreases.  Similarly, 
if quality of solution remains constant while the 
perturbation increases, adaptivity also increases.   
In the current state-of-the-art, intelligent systems are 
generally designed for a given problem complexity and 
quality of solution, so that any perturbations, even ones in 
which complexity decreases, quality of solution is likely to 
decrease (with very sharp decreases as complexity 
increases, as suggested by the dotted lines in the figure).  
The solid lines intersecting the baseline complexity point 
in the figure illustrate a “minimum” standard for 
adaptivity.  In this case, decreasing complexity preserves 
the baseline QoS and, as problem complexity increases, 
solution decreases somewhat more gracefully than the 
state-of-art.
The figure also suggests how robustness and learning 
(discussed below) can impact overall adaptivity.  The stars 
in the figure represent a particular point on the problem 
complexity curve.  In comparison to a non-adaptive, 
baseline system, processes in the agent systems that enable 
robustness to perturbation could result in an improved 
Quality of Service.  In this case, we assume there are many 
decisions and actions an agent takes to achieve some result.  
Robustness processes can produce somewhat better 
intermediate results, leading to improvement in overall 
QoS at the baseline level of complexity.   
Agent learning should result in an improved quality of 
service as well (whether resulting in improving 
performance or solution quality).  Thus, if learning is 
effective, it will shift the systems resulting adaptivity up 
and out, providing improved quality of solution for any 
particular point in the problem complexity space, as 
suggested by the third line in the figure. 
Additional metrics for rational, effective, adaptive behavior 
include the performance metrics introduced previously, but 
with different emphases and points of comparison: 
Response time: What is the response time to an 
unexpected event?  Is the system able to resume execution 
of an existing plan once an interrupting event to which the 
agent has responded?  As one example, Wray and Laird 
(2003) developed a domain specific metric to illustrate the 
reaction time of a system in response to a triggering event.  

However, there is no domain general metric for evaluating 
this aspect of response time. 
Scalability in this case is the ability to handle increasingly 
complex problems.  Scalability in the context of this 
requirement is the ability to adapt to the requirements of 
specific problems.  For example, a system might choose an 
analytic solution for Traveling Salesman problems up to 
some system-determined size n, then switch to a heuristic 
method for problems of size greater than n.  The Traveling 
Salesman problem represents a problem in which the 
problem complexity can be systematically scaled; 
however, collective, subjective judgment is currently the 
only available approach to ranking domain problems 
generally along each dimension of complexity. 

Use vast amounts of knowledge 
There are many different objects in the environment, 
including other agents. Most objects obey consistent, 
predictable dynamics, although the agent may not have 
complete or correct knowledge about these laws and 
dynamics.  These attributes of the environment make 
“knowledge” a fundamental requirement for intelligent 
systems.  “Knowledge” here really means nothing more 
than having the means to predict future states of the 
environment; it does not necessarily imply deep, first-
principals knowledge (e.g., the Three Laws of 
Thermodynamics).  However, as the agent’s environment 
becomes more complex (in terms of the objects and 
interactions it must manage to succeed), it will need 
increasingly large stores of knowledge to cope with the 
complexity.  Potential metrics for this requirement include: 
Knowledge capacity: How much “knowledge” is 
represented in a cognitive-architecture-based agent?  
Within a particular symbolic cognitive architecture, it 
should be relatively straightforward to characterize the size 
of a knowledge base.  However, this metric is difficult to 
quantify generally.  Knowledge content will be especially 
difficult to quantify in non-symbolic systems.  Although 
enumerating knowledge representations is trivially simple 
in symbolic systems, simple enumeration can also be 
misleading (a Soar rule and ACT-R rule correspond to 
different grain-sizes of cognitive operations; how should 
ACT-R rules be combined with ACT-R chunks, etc.?)  
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Knowledge capacity may also have little meaning in 
architectures (and other intelligent systems) where there is 
no distinct line between architectural processes and 
knowledge content.  As was observed for many of the 
performance metrics, knowledge capacity is better 
employed as a relative measure, than an absolute one. 
Figure 4 illustrates one possible use of knowledge 
capacity.  In the ideal case, across a range of tasks and 
domains, increasing stores of knowledge should result in 
overall improvements in the average quality of solution.  
However, the state-of-art today is often that increases in 
knowledge capacity actually reduce the quality of solution, 
chiefly due to the additional costs of storing more 
knowledge encodings and having to search them for 
retrieval.   
Rather than the ideal, in the near-term, a goal of cognitive-
architecture-based applications should be to be able to 
demonstrate that increasing knowledge capacity does not 
degrade quality of solution.  For example, Doorenbos 
(1994) showed that performance (which is only one 
measure of quality of service) did not decrease 
substantially when a research application of Soar was 
scaled to a million productions.  However, in practice, 
knowledge engineers within the Soar community often do 
attempt to limit the size of Soar knowledge bases because 
storing and matching any additional knowledge has some 
incremental cost, even if small, when implemented on 
serial hardware.  Other architectures have similar 
limitations, although, as discussed above, it may be that 
decreasing QoS with increasing knowledge capacity 
represents more of an engineering issue than a theoretical 
one. 
Knowledge utilization: Knowledge capacity reflects the 
total content of knowledge that could be applied in some 
situation.  However, that capacity may largely be latent for 
any particular application (especially when increasing 
incrementality is an explicit goal, as described previously).  
Knowledge utilization reflects the knowledge that is 
actually used in the execution of a set of tasks.  A 
straightforward way to measure knowledge utilization is to 
count the unique instances of each knowledge 
representation activated or applied in the course of 
performing a representative sampling of tasks within a 
domain.   
A representative sampling is necessary because any single 
task instance may only activate part of the utilized 
knowledge store.  TacAir-Soar offers another good 
example.  The TacAir-Soar knowledge base spans many 
different missions a military pilot might fly; everything 
from fighter intercepts to flying air refueling missions.  For 
any particular mission, knowledge utilization is likely to be 
low, but, across the span of all missions, we would assume 
knowledge utilization would be close to 100% within this 
single application. 
Learning complicates knowledge utilization measures.  For 
example, both Soar and ACT-R include mechanisms of 
compiling / composing production firings (Laird, et al, 
1986; Taatgen & and Lee, 2003).  In similar, future 
situations, the newly-created productions will likely 
supplant the original ones.  Naively, a simple way to avoid 
this problem would be to “start counting” with the original 

knowledge base.  However, from the point of view of an 
agent who’s knowledge base in increasing in capacity 
within and across domains, it may be undesirable (or 
infeasible) to perform some task without the learned 
knowledge representations. 
As suggested, performance metrics also interact strongly 
with the notion of knowledge capacity and knowledge 
utilization: 
Response time: How does response time change when 
across orders-of-magnitude differences in the knowledge 
capacity of a particular system?  Does response time 
change as knowledge utilization changes?  
Cognitive cycles/cognitive operations per second: How 
does the basic cycle time change across orders-of-
magnitude differences in the encoded “knowledge” in a 
particular system?  In Figure 4, the limitation of the state-
of-art is assumed to derive from a decrease in the 
cycles/second with increasing knowledge. 
System memory footprint: How do memory requirements 
scale with knowledge capacity? 

Behave robustly in the face of error, the 
unexpected, and the unknown   

An agent will always have incomplete or partially incorrect 
knowledge of the many objects and other agents that 
appear in its environment.  Yet, in order to thrive, it must 
overcome these limitations and complexities in the 
environment and behave robustly.  The environment itself 
provides some important aid in this respect.  First, the 
environment usually has structure and abstractions that 
alleviate the unpredictability of the situation.  A shopping 
agent may not have experience with the specific website 
just encountered in the execution of a product search, but 
previous experience with and knowledge of similar 
websites makes the situation more predictable and provides 
suggestions for courses of action that increase the 
likelihood of a successful transaction.  Second, the 
environment provides many sources of knowledge 
including direct experience, observation of others, 
instruction, etc.  These sources of knowledge can be draw 
on (and learned) in order to encounter the inherent 
uncertainty in the environment more readily. 
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Robustness is the ability to successfully 
(autonomously/dynamically/safely) withstand 
perturbations in expected events and tasks.  There are no 
existing, general metrics for robustness, although domain 
specific metrics have been developed (Nielsen, Beard et al, 
2002).  One possibility would be to cast robustness as the 
ratio of the degree of success vs. the degree of 
perturbation, which is a specialization of the adaptivity 
metric discussed above.  However, both of these measures 
will be domain and task dependent.   
Robustness has a direct relationship with the notion of 
taskability introduced earlier.  The primary difference is 
that taskability focuses on the ability of the system to 
handle variation in tasks, while robustness primarily 
focuses on success in environments where the expected 
dynamics are changing. 
Stochastic assimilation is the ability of the system to 
capture and reflect in behavior the stochastic character of 
the environment.  Where robustness reflects the ability to 
recover from unexpected events, in any real application an 
agent will also need to make rational choices in an 
environment where those choices are governed by 
probability distributions.  As an example, ACT-R has been 
applied to a range of non-deterministic games (West, et al, 
2006) and has demonstrated its ability to learn the 
stochastic dynamics of these games.  An obvious approach 
to measuring stochastic assimilation within a domain is to 
measure the change in QoS over time.  We have not yet 
considered a domain-general formulation of this measure. 

Integrate diverse knowledge. 
The objects and other agents in the environment result in 
many different sources of knowledge.  To act 
appropriately, the agent must integrate its knowledge of 
these different objects to act appropriately in a situation.  
For example, in an evidence marshalling task, such as 
“detective’s helper,” the system must integrate knowledge 
from “scene of the crime” reports, draw on past 
experience, be able to reason deductively as well as by 
abduction and analogy, use general knowledge (language, 
ontology, etc.) as well as domain specific knowledge (such 
as the typical etiologies of particular crimes).  While the 
task could possibly be accomplished without multiple 
sources of knowledge, the assumption is that the 
introduction of a much larger branching factor in both 
knowledge search and problem search is offset by the 
ability to reach a conclusion in just a few steps. 
A key aspect of this requirement is the ability to integrate 
diverse sources of knowledge effectively.  As another 
example, consider an agent that must conduct a TSP tour 
over an actual landscape, with latitude and longitude 
coordinates of “cities,” roads, obstacles, varying 
constraints (e.g., the fastest tour, vs. the shortest).  A 
common approach to a problem like this is to attempt to 
map these diverse constraints into an edge-cost that 
facilitates an algorithmic solution, such as the application 
of Dijkstra’s algorithm.  Cognitive architectures typically 
enable a more open-ended approach to the problem, where 
individual aspects of the problem can be encoded directly 
(and with comparatively little information loss) and then 
combined at run-time to provide a solution. 

At present, we have not yet developed metrics for 
knowledge integration.  Knowledge capacity and 
knowledge utilization express coarse aspects of the general 
capability, but are not themselves sufficient to express this 
requirement. 

Behave autonomously in a social environment 
Over a long life of continual behavior in the environment, 
an agent will pursue its own success and act on its own.   
However, the agent may live in a social environment with 
other agents and actors.  Other agents can complicate 
ultimate success (competitors), but may also be the source 
of additional knowledge and cooperation.  Other actors 
require that the system be knowledgeable of them (able to 
predict actions and evaluate intents) as well as the ability to 
communicate with the other actors. 
Scalability: How many "cognitive agents" can interact 
together, given some baseline performance measure? 
Ideally, overall performance costs will increase at most 
linearly with the addition of multiple agents.  
Figure 5 suggests some of the potential impacts of multiple 
agents.  In the degenerate case, represented by the dotted 
line, the addition of additional agents decreases the quality 
of solution.  In the neutral case, represented by the 
horizontal line, the addition of more agents does not affect 
the resulting quality of solution.  In this case, additional 
agents are not providing benefit to the agent performing its 
task.  The heavier, straight line suggests a linear benefit of 
the addition of more agents.  In the ideal case, there is a 
synergistic benefit, with the addition of more agents 
significantly increasing to overall quality of solution.  This 
latter effect is a common goal of many multiagent systems 
technologies, such as swarming (e.g., Brueckner and 
Parunak, 2002). Demonstrating such benefits with 
cognitive-architecture-based agents has not generally been 
undertaken. 

Exhibit self-awareness and a sense of self   
Because existence is long term, an agent will have many 
opportunities to recognize deficiencies in its knowledge of 
the environment, and can utilize the many different sources 
of knowledge in the environment to address the 
deficiencies.  “Self-awareness” is the capability to 
recognize these opportunities to reflect on the state of 
one’s self and one’s behavior and to improve future action 
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Figure 5: Benefits of social agency.
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by evaluating the efficacy of actions taken in the current 
situation.  Self-awareness can also include notions of 
performance monitoring and fault localization within the 
overall system (i.e., extending beyond the cognitive 
components of the system). 
Adaptivity and Robustness are a result of meta-cognitive 
capabilities, but we have not yet developed a metric that 
would reflect meta-cognitive capabilities generally.  A 
subjective approach would be to enumerate and define the 
kinds of processes available in the system for meta-
cognitive activity.  For example, Soar’s automatic 
subgoaling / impasse mechanism are assumed to provide 
the basis for meta-cognitive capabilities in Soar, although 
the basic architectural processes must be completed by 
encoded knowledge as well.   

Learn from its environment 
Can the system produce a breadth of different types of 
learning and improve its function?  If the world is 
consistent and the agent’s knowledge is incomplete (as will 
almost always be the case), then an obvious requirement 
for long-term success in the environment is learning.  
Learning, which will draw from the many sources of 
knowledge in the environment, re-shapes behavior.  In the 
ideal case, learning improves outcomes of future 
experiences in comparison to past, similar ones. 
An intelligent system must not only respond to its 
environment, but it should respond in a manner appropriate 
for the situation.  In particular, as the world changes, the 
agent should adapt its behavior to the situation such that it 
continues to make progress on its long-term goals (i.e., it 
cannot just be reactive).  Because environments have 
consistent (or slowly changing) dynamics, an agent can 
make predictions about future states and attempt to act to 
effect the environment in ways that meet its goals.  
Different sources of knowledge available in the 
environment can be used to formulate goals, to act to 
achieve them, and to recognize when goals are met or 
unreachable.  As discussed above, learning is reflected in 
improving adaptivity within a specific environment.  Non-
adaptive behavior may influence the survivability or 
viability of the agent in an application domain 
Performance measures also interact strongly with learning.  
The agent’s existence may span a long period of time and 
the cognitive architecture must strike a solution to the 
utility problem (Holder, 1990), such that learning increases 
the quality of solution with experience, rather than 
decreasing it. 

Conclusions
Evaluating cognitive architectures has proven difficult, 
because both their theoretical and practical value is often 
only emergent from a breadth of application 
demonstrations.  Cognitive-architecture benchmarks tend 
to look especially poor in performance-oriented 
benchmarking, because they typically include an integrated 
collection of processes and mechanisms, some of which 
may not significant value in a given benchmark task.  We 
have proposed a number of specific metrics, organized 

according to a general list of requirements for intelligence, 
which could be used to measure some of the (assumed) 
utilitarian advantages of cognitive architectures as general 
tools for building intelligent systems. 
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