
Metrics for Cognitive Architecture Evaluation

Robert Wray, Soar Technology, Inc., wray@soartech.com
Christian Lebiere, Carnegie Mellon University, cl@cmu.edu

Introduction
The problem of evaluating general architectures is a
difficult one (Newell, 1990). Comparative evaluations that
focus on performance alone are especially problematic. It
is usually feasible to develop a specialized solution for any
particular problem that will outperform a general solution,
such as one developed within a cognitive architecture.
Thus, an evaluation of the architectural approach derives
from the power of the primitives of the architecture, the
generality and flexibility of these primitives in providing
solutions across a range of tasks, and the resulting ability
to (relatively) rapidly develop an architectural solution via
a common computing framework. While this power is
assumed within the cognitive architecture community (and
there is significant anecdotal evidence to support it), today
the community lacks a scientific foundation for measuring
and evaluating these claims.
This paper identifies a number of metrics that could be
important for assessing cognitive architectures across a
range of applications domains. The metrics are organized
according to a taxonomy of requirements for intelligent
systems developed by Anderson & Lebiere (2003). We
focus only on the functional aspects of their analysis, rather
than those non-functional requirements specific to human
cognition, which are also detailed in the Anderson and
Lebiere evaluation approach.
These metrics together reflect our attempt to capture and
measure many necessary components of general intelligent
behavior, rather than solely performance metrics, which
are often the primary means of evaluating intelligent
systems in AI. We introduce two metrics novel to
cognitive-architecture research, incrementality and
adaptivity, which may prove to be useful for capturing and
expressing the cumulative value of cognitive-architecture-
based solutions across multiple tasks within a domain and
across multiple application domains. Our approach is far
from complete, in that several requirements include only
notional metrics. However, this approach provides at least
an empirical foundation for comparing work within and
across the development cognitive architectures that can
provide more objective measures of a cognitive
architecture’s capabilities and utility as a platform for
general intelligence.
One of the primary factors that makes achieving general,
intelligent behavior such a difficult problem is the
complexity and variation found in the environment. For
general intelligence, agents must be able to cope
effectively with this complexity. However, while complex,
the environment (usually) is not chaotic. It operates
according to laws and general properties and can be

characterized according to its complexity. Russell and
Norvig’s (1995) influential textbook introduces a number
of contrasting dimensions that can be used for
characterizing domains. For example, accessible domains
provide complete access to the state of the environment
while, in inaccessible domains, information relevant to a
good choice at some point in time may not be available to
the agent via direct perception. Different problems will
have different complexity profiles based on these
dimensions. Many of the metrics introduced below will
also interact with these dimensions, so that quality of the
overall solution and the problem complexity define a
functional space for the metric for some class of related
problems. A significant qualification to the work
presented here is the lack of consistent measures of
complexity across different application domains. Some
problems and domains provide simple measures of
complexity (such as the number of cities in a Traveling
Sales Man tour) which can be used to evaluate the
performance of a system with increasing complexity but,
to-date, there are no domain-general characterizations of
complexity that enable cross-domains comparisons. This
will limit the utility of some of the proposed metrics to
comparison within particular domains.
The remainder of the paper introduces metrics for each
category of the general requirements of Anderson &
Lebiere (2003). Many performance-based metrics are
reused from one category to the next, suggesting specific
ways in which base performance characteristics can be
systematically explored to provide a more complete, multi-
dimensioned characterization of performance results.
While, in most cases, we propose objective, quantitative
metrics, in some cases, only qualitative and/or subjective
evaluation is possible today. Perhaps the workshop
discussion will lead to ideas and insights for more
objective approaches to evaluation in these areas as well.

Behave as an (almost) arbitrary function of
the environment

Environments generally will change independently of an
intelligent system (“dynamic” in the Russell and Norvig
properties) and the actual state of an environment may not
be known or directly perceivable (inaccessible). Thus, the
intelligent system must be able to act in the situation it
finds itself in (and even if it is different than the one it
expected to be in). This flexibility implies a breadth of
capability, meeting the complexity of the environment with
appropriate responses.
Taskability is the ability of a system to adapt to new/novel
problems without human (programmer) intervention.
Taskability is difficult to measure because there is no
"absolute" notion of taskability -- a particular quantitative
measure for one domain might represent the best one could
achieve, while in another, it might be a baseline.

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

60

Researchers in AI have generally evaluated taskability by
adopting a set of benchmark tasks against which a system
is developed, and then introduced novel tasks within the
same domain and tested system performance on these new
tasks (Hanks, Pollack, & Cohen, 1993). This approach
provides a reasonable qualitative measure of taskability
within a domain.
Incrementality is the ability to extend a cognitive-
architecture-based system from one set of tasks to another
set, which can be either a superset of the original set (as an
example of generalization) or reflect a different set of
requirements (an example of the robustness and taskability
of the architecture). Incrementality could possibly be
measured by the degree of overlap between the solutions to
the two sets of problems. For instance, if some cognitive
system provides a quite general capability, a small task-
specific addition at the knowledge representation level
might be sufficient to tackle a new task. On the other
hand, if a system is overly specific to a particular problem,
then significant reworking for the new task might be
necessary and the resulting incrementality will be poor.
The AAAI General Game Playing (GGP) competition is
representative of this attempt to realize a more general
capability than just effective play of some specific game.
Measuring incrementality will help expose excessive
benchmark-driven task specialization and thus help ensure
the generality of an architectural framework. To our
knowledge, incrementality is a novel dimension that has
not been previously evaluated, although it is consistent
with the general notion of a “cumulation of results” as
discussed in Newell (1990). The primary difference is that
rather than a qualitative accumulation of results across
different tasks, as suggested by Newell, incrementality is
proposed as a quantitative measure that expresses the
actual overlap at the source code level between different
applications of an architecture.
Figure 1 illustrates a notional approach to measuring
incrementality in the evaluation of an architecture. Here,
we propose a very simple measure of incrementality.
Incrementality is the ratio of the unchanged lines of source
code to total lines of code needed for the solution of some
problem, in comparison to the source code used to solve
previous problems. One of the key points of this definition
to incrementality is that it makes no distinction between
the architecture source code (typically written in a standard

high level language, such as Java, C, or LISP) and the
knowledge representations encoded in the language(s) an
architecture defines for specifying content.
The simplicity of this definition has two advantages. First,
because it does attempt to distinguish or weigh the relative
contribution of different elements in the architecture-based
application, it provides a direct analog to reuse metrics in
software engineering generally and allows comparison to
non-architecture-based approaches and their level of reuse.
Second, tools to measure incrementality could be readily
developed using existing source control revision
comparison tools (e.g., “diff”).
Today, typically, at best the source code of an architecture
is reused from one application to the next, resulting in a
modest but not trivial baseline. This baseline suggests
some of the inherent value in cognitive architectures
generally, since the incrementality of non-cognitive-
architecture-based intelligent systems development is near
nil (i.e., systems development begins near de novo for new
applications).
In the ideal case, which is a long-term, not near-term goal,
for any existing cognitive architecture, full incrementality
is reached: no new changes to the architecture or its
encoded knowledge are needed for a new task. In the
meantime, as shown in the middle line, incrementality
could be used as an explicit tool for understanding at a
gross level how much of an architecture and its application
are reusing the previous results over time. While full
incrementality is likely infeasible, this approach would
provide at least a coarse measure of incrementality for
cognitive systems and give insight to other scientists about
the level of reuse and cumulation within a particular
architectural paradigm.
An obvious drawback of this definition is its coarse-
grained nature. For example, the Soar source code is very
roughly 50,000 source lines of code (SLOCs) of C. An
obvious parallel to a SLOC in the Soar language is a
production. However, most Soar systems have only a few
hundred productions; the largest Soar application system,
TacAir-Soar (Jones, et al, 1999), today has about 10,000
productions. Thus, significant changes in the kernel level
of Soar are likely to mask reuse at the production-
knowledge level of representation; similarly, the lack of
reuse at the production-knowledge level will be masked by
the SLOCs. We expect approaches that take
incrementality seriously will provide a number of more
fine-grained measures to highlight these effects.
Another possible limitation of incrementality proposed
here is that it measures “latent” capability, rather than the
capabilities actually used in the execution of a task. For
example, using another Soar example, one could likely
include the productions from a number of distinct
applications into a single Soar system. In such a situation,
the numerator of the incrementality metric would increase
with each new application, but little reuse would be
guaranteed. We propose that incrementality be used in
conjunction with knowledge utilization (described below)
to make explicit the actual use of the knowledge within an
incrementally increasing source repository.

Figure 1: Measuring incrementality.

61

Operate in real time
For an intelligent system to behave intelligently, it must
able to recognize a situation that it cares about, determine
an appropriate response, and then act. However, the world
in which an agent operates may be continually changing.
Thus, the agent must perform its internal processes
quickly, relative to the speed of change in the environment,
or its chances of survival/success diminish in a ling-term-
existence. Many reflexes and instincts can be viewed as
evolutionary solutions to the problem of fast reaction in the
animal world, “hard wiring” responses to specific
situations. The important requirement is that the speed of
response is sufficient for the demands of the problem,
rather than being as fast (in absolute terms) as possible.
There is typically also a trade-off between performance
measures and the quality of solution (QoS). As an
example, consider the range of potential relationships
between the time taken to compute or generate some
response or behavior, and the quality of the resulting
solution, as illustrated in Figure 2. There may a fixed
computation time that is needed before any solution or
response is produced, as shown by the gray, pulse arrows.
Computing an optimal solution typically provides an upper
limit on compute time. While heuristics can be used to
shorten the delay, except in special cases (such as
admissible heuristics), more computational effort does not
necessarily result in improving QoS. In the ideal case,
behavior generation and reasoning has an anytime
property, in which additional computation leads to
improvement in the overall quality of solution. However,
many real-world problems are difficult to formulate in
terms of anytime response characteristics. The main lesson
from Figure 2 is that there is typically a relationship
between the time invested in generating a solution and its
overall quality, meaning that absolute performance
comparisons should be normalized or cast against QoS.
Metrics for real-time operation should likely include:
Response time is the time between the onset/assignment of
a task (including specific subtasks) and its resolution. As
noted above, response time should be accompanied by a
Quality of Solution associated metric, to distinguish
between satisficing/non-satisficing solutions, and to

demonstrate trade offs between solution quality and
response time. Also, response time should distinguish
between soft and hard real time responses.
Cognitive cycles/cognitive operations per second
(COPS) measures the cycles (or %age of total CPU time)
devoted to cognitive-architecture operations. This metric
is a poor stand-alone metric because decreases or increases
cannot be evaluated in an absolute sense, similar to the
way comparing operations per second in RISC vs. CISC
architectures is also marginally informative. Although it
has limited utility as an absolute measure, cognitive
operations/time is a good relative metric, allowing one to
assess improvements against a baseline or benchmark.
Scalability (as discussed further below) can be partially
evaluated according to such metrics.
Extended operation/longevity: Intelligent systems must
be able to persist over long durations. What is the uptime
of the cognitive architecture in a particular application?
How do other performance metrics change as uptime
increases? For example, does system performance degrade
as uptime increases (this is often observed in some learning
systems, where the addition of knowledge via learning
leads to significant degradation in knowledge retrieval
performance)? While it may be true that particular
architectures exhibit poor uptimes due to implementation
issues (a common problem is the implementation of
inherently parallel processes on serial machines), the
engineering-oriented reportage of these measures would
give potential users insights into the maturity of current
implementations and a better understanding of their actual
potential value in a proposed application.

Exhibit rational, effective adaptive behavior
An intelligent system must not only respond to its
environment, but it should respond in a manner appropriate
for the situation. In particular, as the world changes, the
agent should adapt its behavior to the situation such that it
continues to make progress on its long-term goals (i.e., it
cannot just be reactive). Because environments have
consistent (or slowly changing) dynamics, an agent can
make predictions about future states and attempt to act to
effect the environment in ways that meet its goals. This
capability is useful both in domains that are deterministic
and non-deterministic. Different sources of knowledge
available in the environment can be used to formulate
goals, to act to achieve them, and to recognize when goals
are met or unreachable. Adaptation to the specific
environment is important because the agent’s existence
may span a long period of time (as above), and non-
adaptive behavior may influence the survivability or
viability of the agent in an application domain.
Adaptivity corresponds to both short-term adaptivity
(changes in how the agent responds within an on-going
episode of behavior) and long-term adaptivity (acquiring
new general knowledge to improve long-term
performance). Adaptivity may be a consequence of
learning but is not a learning metric per se; instead,
adaptivity is focused on measuring the ability of a system
to respond appropriately to variation in its environment.
The analog of adaptivity in control systems is the region of
stability in a non-linear control problem.

Computation Time

Fixed, heuristic
approximations

Idealized
Speed/Quality
function

Optimal
solution

Figure 2: The relationship between computational
investment and quality of solution.

62

Adaptivity can be quantified by comparing the
performance gain of an adaptive version of an agent
system, to a non-adaptive system. This approach is
somewhat related to robustness (below) but does not
reduce to it. Both robustness and adaptivity are necessary:
robustness provides acceptable performance in unforeseen
situations, adaptivity suggests a cognitive architecture
simplifies a priori engineering and provides a more
efficient solution-authoring process than one in which
complete capability has to be specified by the designer, in
addition to allowing the system to adapt on its own to the
changing dynamics and task requirements of a domain.
Figure 3 illustrates a possible, albeit notional approach to a
domain-specific measure of adaptivity. In this approach,
adaptivity is the ratio of the size of perturbation in the
environment (measured in terms of problem complexity) to
the difference in the resulting quality of solution. As the
difference in quality of solution increases (presumably, via
a poorer quality solution), adaptivity decreases. Similarly,
if quality of solution remains constant while the
perturbation increases, adaptivity also increases.
In the current state-of-the-art, intelligent systems are
generally designed for a given problem complexity and
quality of solution, so that any perturbations, even ones in
which complexity decreases, quality of solution is likely to
decrease (with very sharp decreases as complexity
increases, as suggested by the dotted lines in the figure).
The solid lines intersecting the baseline complexity point
in the figure illustrate a “minimum” standard for
adaptivity. In this case, decreasing complexity preserves
the baseline QoS and, as problem complexity increases,
solution decreases somewhat more gracefully than the
state-of-art.
The figure also suggests how robustness and learning
(discussed below) can impact overall adaptivity. The stars
in the figure represent a particular point on the problem
complexity curve. In comparison to a non-adaptive,
baseline system, processes in the agent systems that enable
robustness to perturbation could result in an improved
Quality of Service. In this case, we assume there are many
decisions and actions an agent takes to achieve some result.
Robustness processes can produce somewhat better
intermediate results, leading to improvement in overall
QoS at the baseline level of complexity.
Agent learning should result in an improved quality of
service as well (whether resulting in improving
performance or solution quality). Thus, if learning is
effective, it will shift the systems resulting adaptivity up
and out, providing improved quality of solution for any
particular point in the problem complexity space, as
suggested by the third line in the figure.
Additional metrics for rational, effective, adaptive behavior
include the performance metrics introduced previously, but
with different emphases and points of comparison:
Response time: What is the response time to an
unexpected event? Is the system able to resume execution
of an existing plan once an interrupting event to which the
agent has responded? As one example, Wray and Laird
(2003) developed a domain specific metric to illustrate the
reaction time of a system in response to a triggering event.

However, there is no domain general metric for evaluating
this aspect of response time.
Scalability in this case is the ability to handle increasingly
complex problems. Scalability in the context of this
requirement is the ability to adapt to the requirements of
specific problems. For example, a system might choose an
analytic solution for Traveling Salesman problems up to
some system-determined size n, then switch to a heuristic
method for problems of size greater than n. The Traveling
Salesman problem represents a problem in which the
problem complexity can be systematically scaled;
however, collective, subjective judgment is currently the
only available approach to ranking domain problems
generally along each dimension of complexity.

Use vast amounts of knowledge
There are many different objects in the environment,
including other agents. Most objects obey consistent,
predictable dynamics, although the agent may not have
complete or correct knowledge about these laws and
dynamics. These attributes of the environment make
“knowledge” a fundamental requirement for intelligent
systems. “Knowledge” here really means nothing more
than having the means to predict future states of the
environment; it does not necessarily imply deep, first-
principals knowledge (e.g., the Three Laws of
Thermodynamics). However, as the agent’s environment
becomes more complex (in terms of the objects and
interactions it must manage to succeed), it will need
increasingly large stores of knowledge to cope with the
complexity. Potential metrics for this requirement include:
Knowledge capacity: How much “knowledge” is
represented in a cognitive-architecture-based agent?
Within a particular symbolic cognitive architecture, it
should be relatively straightforward to characterize the size
of a knowledge base. However, this metric is difficult to
quantify generally. Knowledge content will be especially
difficult to quantify in non-symbolic systems. Although
enumerating knowledge representations is trivially simple
in symbolic systems, simple enumeration can also be
misleading (a Soar rule and ACT-R rule correspond to
different grain-sizes of cognitive operations; how should
ACT-R rules be combined with ACT-R chunks, etc.?)

Q
ua

lit
y

of
 s

ol
ut

io
n

(Q
oS

)
(a

pp
lic

at
io

n
sp

ec
ifi

c)

Problem complexity

baseline
complexity

state-of-art?

Adaptivity/robustness
curvesRobustness

goal?

Robustness + learning
goal?

Adaptivity = d(perturbation)
d(QoS)

Figure 3: An adaptivity metric.

63

Knowledge capacity may also have little meaning in
architectures (and other intelligent systems) where there is
no distinct line between architectural processes and
knowledge content. As was observed for many of the
performance metrics, knowledge capacity is better
employed as a relative measure, than an absolute one.
Figure 4 illustrates one possible use of knowledge
capacity. In the ideal case, across a range of tasks and
domains, increasing stores of knowledge should result in
overall improvements in the average quality of solution.
However, the state-of-art today is often that increases in
knowledge capacity actually reduce the quality of solution,
chiefly due to the additional costs of storing more
knowledge encodings and having to search them for
retrieval.
Rather than the ideal, in the near-term, a goal of cognitive-
architecture-based applications should be to be able to
demonstrate that increasing knowledge capacity does not
degrade quality of solution. For example, Doorenbos
(1994) showed that performance (which is only one
measure of quality of service) did not decrease
substantially when a research application of Soar was
scaled to a million productions. However, in practice,
knowledge engineers within the Soar community often do
attempt to limit the size of Soar knowledge bases because
storing and matching any additional knowledge has some
incremental cost, even if small, when implemented on
serial hardware. Other architectures have similar
limitations, although, as discussed above, it may be that
decreasing QoS with increasing knowledge capacity
represents more of an engineering issue than a theoretical
one.
Knowledge utilization: Knowledge capacity reflects the
total content of knowledge that could be applied in some
situation. However, that capacity may largely be latent for
any particular application (especially when increasing
incrementality is an explicit goal, as described previously).
Knowledge utilization reflects the knowledge that is
actually used in the execution of a set of tasks. A
straightforward way to measure knowledge utilization is to
count the unique instances of each knowledge
representation activated or applied in the course of
performing a representative sampling of tasks within a
domain.
A representative sampling is necessary because any single
task instance may only activate part of the utilized
knowledge store. TacAir-Soar offers another good
example. The TacAir-Soar knowledge base spans many
different missions a military pilot might fly; everything
from fighter intercepts to flying air refueling missions. For
any particular mission, knowledge utilization is likely to be
low, but, across the span of all missions, we would assume
knowledge utilization would be close to 100% within this
single application.
Learning complicates knowledge utilization measures. For
example, both Soar and ACT-R include mechanisms of
compiling / composing production firings (Laird, et al,
1986; Taatgen & and Lee, 2003). In similar, future
situations, the newly-created productions will likely
supplant the original ones. Naively, a simple way to avoid
this problem would be to “start counting” with the original

knowledge base. However, from the point of view of an
agent who’s knowledge base in increasing in capacity
within and across domains, it may be undesirable (or
infeasible) to perform some task without the learned
knowledge representations.
As suggested, performance metrics also interact strongly
with the notion of knowledge capacity and knowledge
utilization:
Response time: How does response time change when
across orders-of-magnitude differences in the knowledge
capacity of a particular system? Does response time
change as knowledge utilization changes?
Cognitive cycles/cognitive operations per second: How
does the basic cycle time change across orders-of-
magnitude differences in the encoded “knowledge” in a
particular system? In Figure 4, the limitation of the state-
of-art is assumed to derive from a decrease in the
cycles/second with increasing knowledge.
System memory footprint: How do memory requirements
scale with knowledge capacity?

Behave robustly in the face of error, the
unexpected, and the unknown

An agent will always have incomplete or partially incorrect
knowledge of the many objects and other agents that
appear in its environment. Yet, in order to thrive, it must
overcome these limitations and complexities in the
environment and behave robustly. The environment itself
provides some important aid in this respect. First, the
environment usually has structure and abstractions that
alleviate the unpredictability of the situation. A shopping
agent may not have experience with the specific website
just encountered in the execution of a product search, but
previous experience with and knowledge of similar
websites makes the situation more predictable and provides
suggestions for courses of action that increase the
likelihood of a successful transaction. Second, the
environment provides many sources of knowledge
including direct experience, observation of others,
instruction, etc. These sources of knowledge can be draw
on (and learned) in order to encounter the inherent
uncertainty in the environment more readily.

Q
ua

lit
y

of
 s

ol
ut

io
n

(Q
oS

)
(a

pp
lic

at
io

n
sp

ec
ifi

c)

Knowledge Capacity

state-of-art?

goal?

ideal?

Figure 4: Knowledge capacity.

64

Robustness is the ability to successfully
(autonomously/dynamically/safely) withstand
perturbations in expected events and tasks. There are no
existing, general metrics for robustness, although domain
specific metrics have been developed (Nielsen, Beard et al,
2002). One possibility would be to cast robustness as the
ratio of the degree of success vs. the degree of
perturbation, which is a specialization of the adaptivity
metric discussed above. However, both of these measures
will be domain and task dependent.
Robustness has a direct relationship with the notion of
taskability introduced earlier. The primary difference is
that taskability focuses on the ability of the system to
handle variation in tasks, while robustness primarily
focuses on success in environments where the expected
dynamics are changing.
Stochastic assimilation is the ability of the system to
capture and reflect in behavior the stochastic character of
the environment. Where robustness reflects the ability to
recover from unexpected events, in any real application an
agent will also need to make rational choices in an
environment where those choices are governed by
probability distributions. As an example, ACT-R has been
applied to a range of non-deterministic games (West, et al,
2006) and has demonstrated its ability to learn the
stochastic dynamics of these games. An obvious approach
to measuring stochastic assimilation within a domain is to
measure the change in QoS over time. We have not yet
considered a domain-general formulation of this measure.

Integrate diverse knowledge.
The objects and other agents in the environment result in
many different sources of knowledge. To act
appropriately, the agent must integrate its knowledge of
these different objects to act appropriately in a situation.
For example, in an evidence marshalling task, such as
“detective’s helper,” the system must integrate knowledge
from “scene of the crime” reports, draw on past
experience, be able to reason deductively as well as by
abduction and analogy, use general knowledge (language,
ontology, etc.) as well as domain specific knowledge (such
as the typical etiologies of particular crimes). While the
task could possibly be accomplished without multiple
sources of knowledge, the assumption is that the
introduction of a much larger branching factor in both
knowledge search and problem search is offset by the
ability to reach a conclusion in just a few steps.
A key aspect of this requirement is the ability to integrate
diverse sources of knowledge effectively. As another
example, consider an agent that must conduct a TSP tour
over an actual landscape, with latitude and longitude
coordinates of “cities,” roads, obstacles, varying
constraints (e.g., the fastest tour, vs. the shortest). A
common approach to a problem like this is to attempt to
map these diverse constraints into an edge-cost that
facilitates an algorithmic solution, such as the application
of Dijkstra’s algorithm. Cognitive architectures typically
enable a more open-ended approach to the problem, where
individual aspects of the problem can be encoded directly
(and with comparatively little information loss) and then
combined at run-time to provide a solution.

At present, we have not yet developed metrics for
knowledge integration. Knowledge capacity and
knowledge utilization express coarse aspects of the general
capability, but are not themselves sufficient to express this
requirement.

Behave autonomously in a social environment
Over a long life of continual behavior in the environment,
an agent will pursue its own success and act on its own.
However, the agent may live in a social environment with
other agents and actors. Other agents can complicate
ultimate success (competitors), but may also be the source
of additional knowledge and cooperation. Other actors
require that the system be knowledgeable of them (able to
predict actions and evaluate intents) as well as the ability to
communicate with the other actors.
Scalability: How many "cognitive agents" can interact
together, given some baseline performance measure?
Ideally, overall performance costs will increase at most
linearly with the addition of multiple agents.
Figure 5 suggests some of the potential impacts of multiple
agents. In the degenerate case, represented by the dotted
line, the addition of additional agents decreases the quality
of solution. In the neutral case, represented by the
horizontal line, the addition of more agents does not affect
the resulting quality of solution. In this case, additional
agents are not providing benefit to the agent performing its
task. The heavier, straight line suggests a linear benefit of
the addition of more agents. In the ideal case, there is a
synergistic benefit, with the addition of more agents
significantly increasing to overall quality of solution. This
latter effect is a common goal of many multiagent systems
technologies, such as swarming (e.g., Brueckner and
Parunak, 2002). Demonstrating such benefits with
cognitive-architecture-based agents has not generally been
undertaken.

Exhibit self-awareness and a sense of self
Because existence is long term, an agent will have many
opportunities to recognize deficiencies in its knowledge of
the environment, and can utilize the many different sources
of knowledge in the environment to address the
deficiencies. “Self-awareness” is the capability to
recognize these opportunities to reflect on the state of
one’s self and one’s behavior and to improve future action

Q
oS

Number of agents
Figure 5: Benefits of social agency.

65

by evaluating the efficacy of actions taken in the current
situation. Self-awareness can also include notions of
performance monitoring and fault localization within the
overall system (i.e., extending beyond the cognitive
components of the system).
Adaptivity and Robustness are a result of meta-cognitive
capabilities, but we have not yet developed a metric that
would reflect meta-cognitive capabilities generally. A
subjective approach would be to enumerate and define the
kinds of processes available in the system for meta-
cognitive activity. For example, Soar’s automatic
subgoaling / impasse mechanism are assumed to provide
the basis for meta-cognitive capabilities in Soar, although
the basic architectural processes must be completed by
encoded knowledge as well.

Learn from its environment
Can the system produce a breadth of different types of
learning and improve its function? If the world is
consistent and the agent’s knowledge is incomplete (as will
almost always be the case), then an obvious requirement
for long-term success in the environment is learning.
Learning, which will draw from the many sources of
knowledge in the environment, re-shapes behavior. In the
ideal case, learning improves outcomes of future
experiences in comparison to past, similar ones.
An intelligent system must not only respond to its
environment, but it should respond in a manner appropriate
for the situation. In particular, as the world changes, the
agent should adapt its behavior to the situation such that it
continues to make progress on its long-term goals (i.e., it
cannot just be reactive). Because environments have
consistent (or slowly changing) dynamics, an agent can
make predictions about future states and attempt to act to
effect the environment in ways that meet its goals.
Different sources of knowledge available in the
environment can be used to formulate goals, to act to
achieve them, and to recognize when goals are met or
unreachable. As discussed above, learning is reflected in
improving adaptivity within a specific environment. Non-
adaptive behavior may influence the survivability or
viability of the agent in an application domain
Performance measures also interact strongly with learning.
The agent’s existence may span a long period of time and
the cognitive architecture must strike a solution to the
utility problem (Holder, 1990), such that learning increases
the quality of solution with experience, rather than
decreasing it.

Conclusions
Evaluating cognitive architectures has proven difficult,
because both their theoretical and practical value is often
only emergent from a breadth of application
demonstrations. Cognitive-architecture benchmarks tend
to look especially poor in performance-oriented
benchmarking, because they typically include an integrated
collection of processes and mechanisms, some of which
may not significant value in a given benchmark task. We
have proposed a number of specific metrics, organized

according to a general list of requirements for intelligence,
which could be used to measure some of the (assumed)
utilitarian advantages of cognitive architectures as general
tools for building intelligent systems.

References
1. Anderson, J. R., & Lebiere, C. (2003). The

Newell test for a theory of cognition. Behavioral
and Brain Science, 26, 587-637.

2. Brueckner, S. A., and Parunak, H. V. D. (2002).
Swarming Agents for Distributed Pattern
Detection and Classification. In "AAMAS
Workshop on Ubiquitous Computing", Bologna,
Italy.

3. Doorenbos, R. B. (1994). Combining left and
right unlinking for matching a large number of
learned rules. In "Twelfth National Conference on
Artificial Intelligence (AAAI-94)". AAAI Press,
Seattle, Washington.

4. Hanks, S., Pollack, M. E., & Cohen, P. R. (1993).
Benchmarks, Test Beds, Controlled
Experimentation, and the Design of Agent
Architectures. AI Magazine, 14, 17-42.

5. Holder, L. B. (1990). The General Utility Problem
in Machine Learning. In "Machine Learning:
Proceedings of the Seventh International
Conference", pp. 402-410. Morgan Kaufmann
Publishers, San Mateo, CA.

6. Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter,
K. J., Kenny, P. G., and Koss, F. V. (1999).
Automated Intelligent Pilots for Combat Flight
Simulation. AI Magazine 20, 27-42.

7. Laird, J. E., Rosenbloom, P. S., and Newell, A.
(1986). Chunking in Soar: The anatomy of a
general learning mechanism. Machine Learning 1,
11-46.

8. Newell, A. (1990). Unified Theories of Cognition.
Cambridge, Massachusetts: Harvard University
Press.

9. Russell, S., & Norvig, P. (1995). Artificial
Intelligence: A Modern Approach. Upper Saddle
River, NJ: Prentice-Hall.

10. Taatgen, N. A., and Lee, F. J. (2003). Production
Compilation: A simple mechanism to model
Complex Skill Acquisition. Human Factors 45,
61-76.

11. West, R. L., Lebiere, C. & Bothell, D. J. (2006).
Cognitive architectures, game playing and human
evolution. In Sun, R. (Ed) Cognition and Multi-
Agent Interaction: From Cognitive Modeling to
Social Simulation. NY, NY: Cambridge
University Press

12. Wray, R. E., & Laird, J. E. (2003). An
architectural approach to consistency in
hierarchical execution. Journal of Artificial
Intelligence Research, 19, 355-398.

66

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

