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Abstract

Boosted decision trees typically yield good accuracy, preci-
sion, and ROC area. However, because the outputs from
boosting are not well calibrated posterior probabilities, boost-
ing yields poor squared error and cross-entropy. We empir-
ically demonstrate why AdaBoost predicts distorted proba-
bilities and examine three calibration methods for correcting
this distortion: Platt Scaling, Isotonic Regression, and Lo-
gistic Correction. We also experiment with boosting using
log-loss instead of the usual exponential loss. Experiments
show that Logistic Correction and boosting with log-loss work
well when boosting weak models such as decision stumps, but
yield poor performance when boosting more complex mod-
els such as full decision trees. Platt Scaling and Isotonic Re-
gression, however, significantly improve the probabilities pre-
dicted by both boosted stumps and boosted trees. After cal-
ibration, boosted full decision trees predict better probabili-
ties than other learning methods such as SVMs, neural nets,
bagged decision trees, and KNNs, even after these methods
are calibrated.

Introduction
In a recent evaluation of learning algorithms (Caruana &
Niculescu-Mizil 2006), boosted decision trees had excel-
lent performance on metrics such as accuracy, lift, area un-
der the ROC curve, average precision, and precision/recall
break even point. However, boosted decision trees had poor
squared error and cross-entropy because AdaBoost does not
produce good probability estimates.

Friedman, Hastie, and Tibshirani (2000) provide an expla-
nation for why boosting makes poorly calibrated predictions.
They show that boosting can be viewed as an additive logistic
regression model. A consequence of this is that the predic-
tions made by boosting are trying to fit a logit of the true
probabilities, as opposed to the true probabilities themselves.
To get back the probabilities, the logit transformation must
be inverted.

In their treatment of boosting as a large margin classifier,
Schapire et al. (1998) observed that in order to obtain large
margin on cases close to the decision surface, AdaBoost will
sacrifice the margin of the easier cases. This results in a shift-
ing of the predicted values away from 0 and 1, hurting cali-
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bration. This shifting is also consistent with Breiman’s inter-
pretation of boosting as an equalizer (see Breiman’s discus-
sion in (Friedman, Hastie, & Tibshirani 2000)). In the next
section we demonstrate this probability shifting on real data.

To correct for boosting’s poor calibration, we experiment
with boosting with log-loss, and with three methods for cali-
brating the predictions made by boosted models to convert
them to well-calibrated posterior probabilities. The three
post-training calibration methods are:

Logistic Correction: a method based on Friedman et al.’s
analysis of boosting as an additive model

Platt Scaling: the method used by Platt to transform SVM
outputs from [−∞,+∞] to posterior probabilities (1999)

Isotonic Regression: the method used by Zadrozny and
Elkan to calibrate predictions from boosted naive Bayes,
SVM, and decision tree models (2002; 2001)

Logistic Correction and Platt Scaling convert predictions
to probabilities by transforming them with a sigmoid. With
Logistic Correction, the sigmoid parameters are derived from
Friedman et al.’s analysis. With Platt Scaling, the param-
eters are fitted to the data using gradient descent. Isotonic
Regression is a general-purpose non-parametric calibration
method that assumes probabilities are a monotonic transfor-
mation (not just sigmoid) of the predictions.

An alternative to training boosted models with AdaBoost
and then correcting their outputs via post-training calibration
is to use a variant of boosting that directly optimizes cross-
entropy (log-loss). Collins, Schapire and Singer (2002) show
that a boosting algorithm that optimizes log-loss can be ob-
tained by simple modification to the AdaBoost algorithm.
Collins et al. briefly evaluate this new algorithm on a syn-
thetic data set, but acknowledge that a more thorough evalu-
ation on real data sets is necessary.

Lebanon and Lafferty (2001) show that Logistic Correc-
tion applied to boosting with exponential loss should behave
similarly to boosting with log-loss, and then demonstrate this
by examining the performance of boosted stumps on a vari-
ety of data sets. Our results confirm their findings for boosted
stumps, and show the same effect for boosted trees.

Our experiments show that boosting full decision trees
usually yields better models than boosting weaker stumps.
Unfortunately, our results also show that boosting to directly
optimize log-loss, or applying Logistic Correction to models
boosted with exponential loss, is only effective when boost-
ing weak models such as stumps. Neither of these methods is
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effective when boosting full decision trees. Significantly bet-
ter performance is obtained by boosting full decision trees
with exponential loss, and then calibrating their predictions
using either Platt Scaling or Isotonic Regression. Calibration
with Platt Scaling or Isotonic Regression is so effective that
after calibration boosted decision trees predict better prob-
abilities than any other learning method we have compared
them to, including neural nets, bagged trees, random forests,
and calibrated SVMs.

Boosting and Calibration
In this section we empirically examine the relationship be-
tween boosting’s predictions and posterior probabilities. One
way to visualize this relationship when the true posterior
probabilities are not known is through reliability diagrams
(DeGroot & Fienberg 1982). To construct a reliability dia-
gram, the prediction space is discretized into ten bins. Cases
with predicted value between 0 and 0.1 are put in the first
bin, between 0.1 and 0.2 in the second bin, etc. For each bin,
the mean predicted value is plotted against the true fraction
of positive cases in the bin. If the model is well calibrated
the points will fall near the diagonal line.

The bottom row of Figure 1 shows reliability plots on a
large test set after 1,4,8,32,128, and 1024 stages of boosting
Bayesian smoothed decision trees (Buntine 1992). The top
of the figure shows histograms of the predicted values for the
same models. The histograms show that as the number of
steps of boosting increases, the predicted values are pushed
away from 0 and 1 and tend to collect on either side of the de-
cision surface. This shift away from 0 and 1 hurts calibration
and yields sigmoid-shaped reliability plots.

Figure 2 shows histograms and reliability diagrams for
boosted decision trees after 1024 steps of boosting on eight
test problems. (See the Empirical Results section for more
detail about these problems.) The figures present results mea-
sured on large independent test sets not used for training. For
seven of the eight data sets the predicted values after boosting
do not approach 0 or 1. The one exception is LETTER.P1,
a highly skewed data set that has only 3% positive class.
On this problem some of the predicted values do approach
0, though careful examination of the histogram shows that
there is a sharp drop in the number of cases predicted to have
probability near 0.

All the reliability plots in Figure 2 display sigmoid-shaped
reliability diagrams, motivating the use of a sigmoid to map
the predictions to calibrated probabilities. The functions fit-
ted with Platt’s method and Isotonic Regression are shown in
the middle and bottom rows of the figure.

Calibration
In this section we describe three methods for calibrating pre-
dictions from AdaBoost: Logistic Correction, Platt Scaling,
and Isotonic Regression.

Logistic Correction
Before describing Logistic Correction, it is useful to briefly
review AdaBoost. Start with each example in the train set
(xi, yi) having equal weight. At each step i a weak learner

hi is trained on the weighted train set. The error of hi deter-
mines the model weight αi and the future weight of each
training example. There are two equivalent formulations.
The first formulation, also used by Friedman, Hastie, and
Tibshirani (2000) assumes yi ∈ {−1, 1} and hi ∈ {−1, 1}.
The output of the boosted model is:

F (x) =

T∑

i=1

αihi(x) (1)

Friedman et al. show that AdaBoost builds an additive
logistic regression model for minimizing E(exp(−yF (x))).
They show that E(exp(−yF (x))) is minimized by:

F (x) =
1

2
log

P (y = 1|x)

P (y = −1|x)
(2)

This suggests applying a logistic correction in order to get
back the conditional probability:

P (y = 1|x) =
1

1 + exp(−2F (x))
(3)

As we will see in the Empirical Results section, this logis-
tic correction works well when boosting simple base learners
such as decision stumps. However, if the base learners are
powerful enough that the training data becomes fully separa-
ble, after correction the predictions will become only 0’s and
1’s (Rosset, Zhu, & Hastie 2004) and thus have poor calibra-
tion.

Platt Calibration
An equivalent formulation of AdaBoost assumes yi ∈ {0, 1}
and hi ∈ {0, 1}. The output of the boosted model is

f(x) =

∑T

i=1
αihi(x)

∑T

i=1
αi

(4)

We use this model for Platt Scaling and Isotonic Regres-
sion, and treat f(x) as the raw (uncalibrated) prediction.

Platt (1999) uses a sigmoid to map SVM outputs on
[−∞,+∞] to posterior probabilities on [0, 1]. The sigmoidal
shape of the reliability diagrams in Figure 2 suggest that the
same calibration method should be effective at calibrating
boosting predictions. In this section we closely follow the
description of Platt’s method in (Platt 1999).

Let the output of boosting be f(x) given by equation 4.
To get calibrated probabilities, pass the output of boosting
through a sigmoid:

P (y = 1|f) =
1

1 + exp(Af + B)
(5)

where the A and B are fitted using maximum likelihood es-
timation from a calibration set (fi, yi). Gradient descent is
used to find A and B that are the solution to:

argmin
A,B

{−
∑

i

yilog(pi) + (1 − yi)log(1 − pi)}, (6)

where
pi =

1

1 + exp(Afi + B)
(7)

Two questions arise: where does the sigmoid training set
(fi, yi) come from and how to avoid overfitting to it.

One answer to the first question is to use the same train set
as boosting: for each example (xi, yi) in the boosting train
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Figure 1: Effect of boosting on the predicted values. Histograms of the predicted values (top) and reliability diagrams (bottom)
on the test set for boosted trees at different steps of boosting on the COV TYPE problem.
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Figure 2: Histograms of predicted values and reliability diagrams for boosted decision trees.

set, use (f(xi), yi) as a training example for the sigmoid. Un-
fortunately, this can introduce unwanted bias in the sigmoid
training set and can lead to poor results (Platt 1999).

An alternate solution is to split the data into a training and
a validation set. After boosting is trained on the training set,
the predictions on the validation set are used to fit the sig-
moid. Cross validation can be used to allow both boosting
and the sigmoid to be trained on the full data set. The data
is split into C parts. For each fold one part is held aside for
use as an independent calibration validation set while boost-
ing is performed using the other C-1 parts. The union of the
C validation sets is then used to fit the sigmoid parameters.
Following Platt, experiments in this paper use 3-fold cross-
validation to estimate the sigmoid parameters.

As for the second question, an out-of-sample model is used
to avoid overfitting to the calibration set. If there are N+ pos-
itive examples and N

−
negative examples in the calibration

set, for each example Platt Calibration uses target values y+

and y
−

(instead of 1 and 0, respectively), where

y+ =
N+ + 1

N+ + 2
; y

−
=

1

N
−

+ 2
(8)

For a more detailed treatment, and a justification of these

target values see (Platt 1999). The middle row of Figure 2
shows the sigmoids fitted with Platt Scaling.

Isotonic Regression
An alternative to Platt Scaling is to use Isotonic Regression
(Robertson, Wright, & Dykstra 1988). Zadrozny and Elkan
(2002; 2001) successfully used Isotonic Regression to cali-
brate predictions from SVMs, Naive Bayes, boosted Naive
Bayes, and decision trees. Isotonic Regression assumes only
that:

yi = m(fi) + εi (9)

where m is an isotonic (monotonically increasing) function.
Given a training set (fi, yi), the Isotonic Regression problem
is finding the isotonic function m̂ such that:

m̂ = argmin
z

∑
(yi − z(fi))

2 (10)

A piecewise constant solution m̂ can be found in linear
time by using the pair-adjacent violators (PAV) algorithm
(Ayer et al. 1955) presented in Table 1.

As in the case of Platt calibration, if we use the boosting
train set (xi, yi) to get the train set (f(xi), yi) for Isotonic
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Table 2: Cross-entropy performance of boosted decision stumps and boosted decision trees before and after calibration. Quali-
tatively similar results are obtained for squared error.

BOOSTED STUMPS BOOSTED TREES
PROBLEM RAW PLATT ISO LOGIST LOGLOSS RAW PLATT ISO LOGIST LOGLOSS

COV TYPE 0.7571 0.6705 0.6714 0.6785 0.6932 0.6241 0.5113 0.5179 0.7787 0.7062
ADULT 0.5891 0.4570 0.4632 0.4585 0.4905 0.5439 0.4957 0.5072 0.5330 0.5094
LETTER.P1 0.2825 0.0797 0.0837 0.0820 0.0869 0.0975 0.0375 0.0378 0.1172 0.0799
LETTER.P2 0.8018 0.5437 0.5485 0.5452 0.5789 0.3901 0.1451 0.1412 0.5255 0.3461
MEDIS 0.4573 0.3829 0.3754 0.3836 0.4411 0.4757 0.3877 0.3885 0.5596 0.5462
SLAC 0.8698 0.8304 0.8351 0.8114 0.8435 0.8270 0.7888 0.7786 0.8626 0.8450
HS 0.6110 0.3351 0.3365 0.3824 0.3407 0.4084 0.2429 0.2501 0.5988 0.4780
MG 0.4868 0.4107 0.4125 0.4096 0.4568 0.5021 0.4286 0.4297 0.5026 0.4830
MEAN 0.6069 0.4637 0.4658 0.4689 0.4914 0.4836 0.3797 0.3814 0.5597 0.4992

Table 1: PAV Algorithm

Algorithm 1. PAV algorithm for estimating posterior
probabilities from uncalibrated model predictions.
1 Input: training set (fi, yi) sorted according to fi

2 Initialize m̂i,i = yi, wi,i = 1
3 While ∃ i s.t. m̂k,i−1 ≥ m̂i,l

Set wk,l = wk,i−1 + wi,l

Set m̂k,l = (wk,i−1m̂k,i−1 + wi,lm̂i,l)/wk,l

Replace m̂k,i−1 and m̂i,l with m̂k,l

4 Output the stepwise constant function:
m̂(f) = m̂i,j , for fi < f ≤ fj

Regression, we introduce unwanted bias – in the fully separa-
ble case, boosting will order all the negative examples before
the positive examples, so Isotonic Regression will output just
a 0,1 function. An unbiased calibration set can be obtained
using the methods discussed in the previous subsection. For
the Isotonic Regression experiments we use the same 3-fold
CV methodology used with Platt Scaling. The bottom row of
Figure 2 shows functions fitted with Isotonic Regression.

Empirical Results
In this section we apply the three scaling methods to predic-
tions from boosted trees and boosted stumps on eight binary
classification problems. The ADULT, COV TYPE and LET-
TER problems are from the UCI Repository (Blake & Merz
1998). COV TYPE was converted to a binary problem by
treating the largest class as positives and the rest as negatives.
LETTER was converted to boolean two ways. LETTER.p1
treats the letter ”O” as positive and the remaining letters as
negative, yielding a very unbalanced problem. LETTER.p2
uses letters A-M as positives and N-Z as negatives, yield-
ing a well balanced problem. HS is the IndianPine92 data
set (Gualtieri et al. 1999) where the class Soybean-mintill is
the positive class. SLAC is a particle physics problem from
collaborators at the Stanford Linear Accelerator, and MEDIS
and MG are medical data sets.

First we use boosted stumps to examine the case when
the data is not separable in the span of the base learn-
ers. We boost five different types of stumps by using all
of the splitting criteria in Buntine’s IND package (1991).
Because boosting can overfit (Rosset, Zhu, & Hastie 2004;

Friedman, Hastie, & Tibshirani 2000), and because many
iterations of boosting can make calibration worse (see
Figure 1), we consider boosted stumps after 2,4,8,16,32,
64,128,256,512,1024,2048,4096 and 8192 steps of boosting.
The left side of Table 2 shows the cross-entropy on large fi-
nal test sets for the best boosted stump models before and
after calibration1. The results show that the performance
of boosted stumps is dramatically improved by calibration
or by optimizing to log-loss. On average calibration re-
duces cross-entropy by about 23% and squared error by about
14%. The three post-training calibration methods (PLATT,
ISO, and LOGIST in the table) work equally well. Logis-
tic Correction has the advantage that no extra time is re-
quired to fit the calibration model and no cross-validation is
needed to create independent test sets. The LOGLOSS col-
umn shows the performance of boosted stumps when trained
to optimize the log-loss as opposed to the usual exponential
loss. When directly optimizing log-loss, the performance of
boosted stumps is a few percent worse than with the other
calibration methods. This is consistent with the results re-
ported in (Lebanon & Lafferty 2001). As with Logistic Cor-
rection, there is no need for an independent calibration set
and no extra time is spent training the calibration models.

Logistic Correction and directly optimizing log-loss are
effective when using very weak base learners such as 1-level
stumps. Unfortunately, because the base learners are so sim-
ple, boosted stumps are not able to capture all the structure
of most real data-sets. Boosted 1-level stumps are optimal
when the true model is additive in the features, but can not
model non-additive interactions between 2 or more features
(Friedman, Hastie, & Tibshirani 2000). As we see in Table 2,
boosting full decision trees yields significantly better perfor-
mance on 5 of the 8 test problems.

Unlike 1-level stumps, decision trees are complex enough
base models to make many data-sets separable (in their span).
This means that boosted decision trees are expressive enough
to capture the full complexity of most data-sets. Unfortu-
nately this means they are expressive enough to perfectly sep-
arate the training set, pushing the probabilities predicted by
Logistic Correction to 0 or 1. Although Logistic Correction
is no longer effective, Figure 2 shows that good posterior es-
timates can still be found by fitting a sigmoid or an isotonic

1To protect against an infinite cross-entropy we prevent the mod-
els from predicting exactly 0 or 1
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Figure 3: Histograms of predicted values and reliability diagrams for boosted trees calibrated with Platt’s method.
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Figure 4: Histograms of predicted values and reliability diagrams for boosted trees calibrated with Isotonic Regression.

function on an independent test set.
The right side of Table 2 presents the performance of the

best boosted trees before and after calibration. To prevent
the results from depending on one specific tree style, we
boost ten different styles of trees. We use all the tree types
in Buntine’s IND package (1991) (ID3, CART, CART0,
C4.5, MML, SMML, BAYES) as well as three new tree
types that should predict better probabilities: unpruned C4.5
with Laplacian smoothing (Provost & Domingos 2003); un-
pruned C4.5 with Bayesian smoothing; and MML trees with
Laplacian smoothing. We consider the boosted models after
2,4,8,16,32,64,128,256,512,1024 and 2048 steps of boosting.

As expected, Logistic Correction is not competitive when
boosting full decision trees. The other two calibration meth-
ods (Platt Scaling and Isotonic Regression) provide a sig-
nificant improvement in the quality of the predicted proba-
bilities. Both methods reduce cross-entropy about 21% and
squared error about 13%.

Surprisingly, when boosting directly optimizes log-loss,
boosted trees have poor performance. Because the base-level
models are so expressive, boosting with log-loss quickly sep-
arates the two classes on the train set and pushes predictions
toward 0 and 1, hurting calibration. This happens despite the
fact that we regularize boosting by varying the number of
iterations of boosting (Rosset, Zhu, & Hastie 2004).

Comparing the results in the left and right side of Tables 2
we see that boosted trees significantly outperform boosted
stumps on five of the eight problems. On average over the
eight problems, boosted trees yield about 13% lower squared
error and 18% lower cross-entropy than boosted stumps.
Boosted stumps, however, do win by a small margin on three

problems, and have the nice property that the theoretically
suggested Logistic Correction works well.2

To illustrate how calibration transforms the predictions, we
show histograms and reliability diagrams for the eight prob-
lems for boosted trees after 1024 steps of boosting, after Platt
Scaling (Figure 3) and after Isotonic Regression (Figure 4).
The figures show that calibration undoes the shift in proba-
bility mass caused by boosting: after calibration many more
cases have predicted probabilities near 0 and 1. The relia-
bility plots are closer to the diagonal, and the S shape char-
acteristic of boosting’s predictions is gone. On each prob-
lem, transforming the predictions using either Platt Scaling
or Isotonic Regression yields a significant improvement in
the quality of the predicted probabilities, leading to much
lower squared error and cross-entropy. The main difference
between Isotonic Regression and Platt Scaling for boosting
can be seen when comparing the histograms in the two fig-
ures. Because Isotonic Regression generates a piecewise
constant function, the histograms are quite coarse, while the
histograms generated by Platt Scaling are smooth and easier
to interpret.

To determine how the performance of Platt Scaling and
Isotonic Regression changes with the amount of data avail-
able for calibration, we vary the size of the calibration set
from 32 to 8192 by factors of two. Figure 5 shows the av-

2We also tried boosting 2-level decision trees. Boosted 2-level
trees outperformed boosted 1-level stumps, but did not perform as
well as boosting full trees. Moreover, 2-level trees are complex
enough base-level models that Logistic Correction is no longer as
effective as Platt Scaling or Isotonic Regression.
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Figure 5: Learning curves for Platt Scaling and Isotonic Re-
gression for boosted trees (average across 8 problems)

erage squared error over the eight test problems for the best
uncalibrated and the best calibrated boosted trees. We per-
form ten trials for each problem.

The nearly horizontal line in the graph show the squared
error prior to calibration. This line is not perfectly horizon-
tal only because the test sets change as more data is moved
into the calibration sets. The plot shows the squared error af-
ter calibration with Platt’s method or Isotonic Regression as
the size of the calibration set varies from small to large. The
learning curves show that the performance of boosted trees
is improved by calibration even for very small calibration set
sizes. When the calibration set is small (less than about 2000
cases), Platt Scaling outperforms Isotonic Regression. This
happens because Isotonic Regression is less constrained than
Platt Scaling, so it is easier for it to overfit when the cali-
bration set is small. Platt’s method also has some overfitting
control built in.

Conclusions
In this paper we empirically demonstrated why AdaBoost
yields poorly calibrated predictions. To correct this problem,
we experimented with using a variant of boosting that di-
rectly optimizes log-loss, as well as with three post-training
calibration methods: Logistic Correction justified by Fried-
man et al.’s analysis, Platt Scaling justified by the sigmoidal
shape of the reliability plots, and Isotonic Regression, a gen-
eral non-parametric calibration method.

One surprising result is that boosting with log-loss instead
of the usual exponential loss works well when the base level
models are weak models such as 1-level stumps, but is not
competitive when boosting more powerful models such as
full decision trees. Similarly Logistic Correction works well
for boosted stumps, but gives poor results when boosting full
decision trees (or even 2-level trees).

The other two calibration methods, Platt Scaling and Iso-
tonic Regression, are very effective at mapping boosting’s
predictions to calibrated posterior probabilities, regardless
of how complex the base level models are. After calibra-
tion with either of these two methods, boosted decision trees
have better reliability diagrams, and significantly improved
squared-error and cross-entropy.

When compared to other learning algorithms, boosted de-
cision trees that have been calibrated with Platt Scaling or

Isotonic Regression yield the best average squared error and
cross-entropy performance (results are not included due to
lack of space). This, combined with their excellent per-
formance on other measures such as accuracy, precision,
and area under the ROC curve (Caruana & Niculescu-Mizil
2006), may make calibrated boosted decision trees the model
of choice for many applications.
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