
Solving the Minimum Number of Open Stacks Problem with Explanation-Based
Techniques

Hadrien Cambazard and Narendra Jussien
École des Mines de Nantes – LINA CNRS FRE 2729

4 rue Alfred Kastler – BP 20722
F-44307 Nantes Cedex 3, France

h.cambazard@4c.ucc.ie,narendra.jussien@emn.fr

Abstract
This paper presents a study conducted on the minimum
number of open stacks problem (MOSP) which occurs
in various production environments where an efficient
simultaneous utilization of resources (stacks) is needed
to achieve a set of tasks. We investigate through this
problem how classical look-back reasonings based on
explanations could be used to prune the search space
and design a new solving technique. Explanations
have often been used to design intelligent backtrack-
ing mechanisms in Constraint Programming whereas
their use in nogood recording schemes has been less in-
vestigated. In this paper, we introduce a generalized
nogood (embedding explanation mechanisms) for the
MOSP that leads to a new solving technique and can
provide explanations.

The Minimum number of Open Stacks
Problem

The Minimum number of Open Stacks Problem (MOSP)
has been recently used to support the IJCAI 2005 constraint
modeling challenge (Smith & Gent 2005). This scheduling
problem involves a set of products and a set of customer’s
orders. Each order requires a specific subset of the products
to be completed and sent to the customer. Once an order is
started (i.e. its first product is being made) a stack is created
for that order. At that time, the order is said to be open.
When all products that an order requires have been pro-
duced, the stack/order is closed. Because of limited space
in the production area, the maximum number of stacks that
are used simultaneously, i.e. the number of customer orders
that are in simultaneous production, should be minimized.

Therefore, a solution for the MOSP is a total ordering of
the products describing the production sequence that mini-
mizes the set of simultaneously opened stacks. This problem
is known to be NP-hard and is related to well known graph
problems such as the minimum path-width or the vertex sep-
aration problems. Moreover, it arises in many real life prob-
lems as packing, cutting or VLSI design. Table 1 gives an
example instance of this problem.

The explanations provided in this paper for the MOSP are
related to the removal explanations of Ginsberg which are

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the basis of dynamic backracking (Ginsberg 1993). It does
not provide natural language explanations for a user but is
intended to improve the search by avoiding redundant com-
putation. Indeed by carefully explaining why a failure occur,
one can avoid a number of other failures that would occur for
the same reason. It provides at the same time a justification
of optimilaty for an expert. In the case of the MOSP we
propose to define an explanation as a subset of products that
would account for the minimal number of open orders. As
long as those products are processed, a planner know that
there is no way to reduce the minimum number of simulta-
neous stack needed. In other word, it provide insights about
the bottleneck in the optimal planning.

The following notations will be used throughout the pa-
per:

Table 1: A 6×5 instance of MOSP with an optimal solution
of value 3 – no more than 3 ones can be seen at the same
time on the Stacks representation

Instance Optimal ordering Stacks
P1P2P3P4P5P6 P1P2P6P4P3 P5 P1P2P6P4P3P5

c1 0 0 1 0 1 0 0 0 0 0 1 1 - - - - 1 1
c2 0 1 0 0 0 0 0 1 0 0 0 0 - 1 - - - -
c3 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 -
c4 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 - - -
c5 0 0 0 1 1 1 0 0 1 1 0 1 - - 1 1 1 1

• P : the set of m available products and C, the set of n
orders.

• P (c) is the set of products required by order c. C(p) is
the set of orders requiring product p. A natural extension
of this last notation is used for sets of products (C(sP) is
the set of orders that requires at least one product in sP).
• OK(S) denotes the set of open orders implied by a subset

S ⊆ K of products: OK(S) = |C(S)∩C(K−S)|. O(S)
is a short notation for OP (S). The open orders therefore
refer to a certain point in time where a set of products have
already been processed.

• f(S) is the minimum number of stacks needed to com-
plete a set S and fA(S) is the number of stacks needed
to complete set S assuming a set A of initially active
(opened) orders.

14

• pj denotes the product assigned to position j in the pro-
duction sequence and openj expresses the number of
open orders at time j. Those variables take their value in a
set called their original domain (Dorig(x) for variable x).
This set is reduced to a singleton throughout computation.
The current domain is denoted D(x).

Using those notations, one can provide a mathematical
model of the problem:

min(maxj<m openj) s.t.
∀j, 0 < j ≤ m, pj ∈ [1..m]
∀j, 0 < j ≤ m, openj ∈ [1..n]
alldifferent({p1, . . . , pm})
openj = |C({p1, . . . , pj}) ∩ C({pj , . . . , pm})|

First insights in solving the MOSP
We give a rapid review of the main results obtained for solv-
ing the MOSP during the IJCAI 2005 challenge.

Search techniques
A wide variety of approaches were proposed for solving
this problem during the IJCAI 2005 constraint modelling
challenge (Smith & Gent 2005). One of the most effi-
cient has been identified by (Garcia de la Banda & Stuckey
2007) and (Benoist 2005). It is based on dynamic pro-
gramming (DP): consider a set S of products that have
been placed chronologically up to time t from the begin-
ning of the sequence (|S| = t − 1 and products from S
are set from slot 1 to slot t − 1). Then, one can notice
that fO(S)(P − S) remains the same for any permutation
of S. Indeed, problem P − S is only related to problem
P by the active set of orders at time t: O(S) which does
not depend on any particular order of S (an order c is in-
deed open if P (c) ∩ S 6= ∅ and P (c) ∩ (P − S) 6= ∅).
This fact gives a natural formulation of the problem in DP
and the objective function can be recursively1 written as:
f(P) = minj∈P (max(f(P − {j}), |O(P − {j})|). The
strong advantage of this approach is to switch from a search
space of size m! to one of size 2m because one only need
to explore the subsets of P . From a constraint programming
point of view, if S is a nogood, i.e. a set of products that
has been proven as infeasible (according to the current up-
per bound), any permutation of products of S will lead to an
infeasible subproblem P−S. Storing such nogoods during a
chronological enumeration of the production sequence leads
to the same search space size of 2m.

Preprocessing and lower bounds
A useful preprocessing step can be applied by removing any
product p such that ∃p′, C(p) ⊆ C(p′). This can even be
done during search: if S is the current set of already chrono-
logically assigned products up to time t, then one can assign
immediately after S the products p such that C(p) ⊆ O(S).

Lower bounds are often based on the co-demand graph
G which has been defined in the literature in (Becceneri,
Yannasse, & Soma 2004). The nodes of G are associated

1We consider that if |P | = 1 with P = {p}, f({p}) = |C(p)|.

Algorithm 1 : NogoodRecMOSP({p1, . . . , pt−1})
1.If t− 1 6= m do
2. For each i ∈ D(pt) then
3. pt ← i; ∀k > t, remove i from D(pk);
4. S ← {p1, . . . , pt};
5. Try
6. filter(S,pt+1);
7. NogoodRecMOSP(S);
8. Catch (Contradiction c)
9. add nogood {p1, . . . , pt};
10. EndTryCatch;
11. EndFor
12.Else store new best solution, update ub;
13.throw new Contradiction();

Algorithm 2 : filter(S = {p1, . . . , pt}, pt+1)
1.For each i ∈ dom(pt+1) then
2. If |OP (S) ∪ C(i)| ≥ ub or S ∪ {i} is a nogood
3. remove i from D(pt+1);
4.EndFor

to orders and an edge (i, j) is added if and only if orders i
and j share at least one product. Several lower bounds can
be defined from this graph, and we use the size of a clique
obtained as a minor of G (Becceneri, Yannasse, & Soma
2004) by edge contraction as it appeared the most effective
in our experimentation. These bounds may also be used dur-
ing search on the problem restricted to P − S by taking into
account the current open orders and we used the one given
in (Garcia de la Banda & Stuckey 2007).

Our solution
None of the proposed approaches during the IJCAI 05 Chal-
lenge involved look-back techniques (intelligent backtrack-
ers or explanation-based techniques). We intend to show in
this paper that the MOSP is a good candidate for these ap-
proaches because it is a structured problem, and the optimal
number of stacks is often related to small kernels of prod-
ucts.

We will first introduce the simple nogood recording
scheme and the main ideas of look-back reasonings for the
MOSP. Second, we will define formally the generalized no-
good and the two related backjumping algorithms. Experi-
mental results finally show that the proposed look-back tech-
niques perform well on the challenge instances.

Simple nogood recording
The nogood recording approach (Schiex & Verfaillie 1994;
Katsirelos & Bacchus 2005) is simply based on the chrono-
logical enumeration of pi from p1 to pm. Algorithm 1 takes
as input a partial sequence of assigned products and tries to
extend it to a complete sequence. If the sequence has not
been completed yet (line 1), all remaining products for slot
pt will be tried (line 2). A filtering step is then performed
and if no contradiction occurs, the algorithm goes on (recur-
sive call line 7). The filtering applied in line 6 is minimal and

15

only prunes the next time-slot according to the current up-
per bound ub (i.e the value of the best solution found so far)
and the known nogoods (Algorithm 2). Once a sequence,
p1, . . . , pk is proved as infeasible (line 9), it is stored so that
all permutations will be forbidden in future search. (Shaw
& Laborie 2005) outlines this fact while finally choosing
another enumeration scheme. Line 13 is called to backtrack
when the domain of pt has been emptied by search or when a
new solution is found (line 12) to prove its optimality. Com-
putation of lower bounds and the use of dominance rules on
including products should be included in line 6 and a heuris-
tic to order the products in line 2. This basic algorithm will
be improved step by step in the following.

Learning from failures
Nogoods and explanations have long been used in various
paradigms for improving search (Ginsberg 1993; Schiex &
Verfaillie 1994; Prosser 1995; Jussien & Lhomme 2002). In
the MOSP, from a given nogood S, we can try to generalize
it and design a whole class of equivalent nogoods to speed
up search.

Computing smaller nogoods
The idea is to answer the following question: once
fO(S)(P−S) ≥ ub has been proven (line 9 of Algorithm 1),
what are the conditions on S under which this proof remains
valid ?

As the optimal value fO(S)(P − S) depends on P − S
and O(S), removing a product from S that does not de-
crease O(S) provides another valid nogood. Indeed adding
the corresponding product to P − S can only increase
fO(S)(P − S). We can therefore compute some minimal
subsets of S that keep O(S) by applying the Xplain algo-
rithm (Siqueira & Puget 1988; Junker 2001). Table 2 gives
an example.

Table 2: Example of nogood reduction: S =
{P1, P2, P3, P4, P5} is a nogood. P1, P2 and P3 can be re-
moved without changing O(S) so that {P4, P5} is also a
nogood. In this case, the already closed orders lead to un-
necessary products.

P1P2P3P4P5 O(S) ...
c1 1 0 0 1 0 1
c2 0 1 1 0 0 0
c3 0 0 1 0 1 1 ...
c4 1 1 0 0 0 0
c5 0 0 0 1 0 1
c6 0 0 0 0 1 1

Computing equivalent nogoods
The main question now becomes: once fO(S)(P −S) ≥ ub
has been proven, what are the conditions on P − S under
which this proof remains valid ? Can we build from those
conditions larger sets of nogoods ?

This problem relies on explanations. Instead of comput-
ing some conditions S1 on S which can be seen as the deci-
sions made so far, we compute some conditions S2 on P−S
which can be seen as original constraints of the problem. A
contradiction on S is therefore logically justified by S1∪S2.
Only S2 needs really to be stored within the explanation be-
cause S1 can be computed from scratch at each failure and
is resolved by search.

Definition 1. Let S = p1, . . . , pj−1 be a sequence of prod-
ucts and S

′
= p1, . . . , pj a sequence that extends S with

pj = i. An explanation for the removal of a value i from pj ,
expl(pj 6= i) is defined by a set E, E ⊆ P − S such that

|OS∪E(S)∪C(i)| ≥ ub or fO(S
′
)(E−{i}) ≥ ub (in other

words, the remaining problem reduced to E is infeasible).

All filtering mechanisms must now be explained. In the
simple case of Algorithm 2, a value i can be removed from
D(pj) if openj is incompatible with the current upper bound
ub. An explanation is therefore only a subset of the remain-
ing products that keep open the open orders at time j. If
S = {p0, .., pj−1}, E = expl(pj 6= i) is in this case defined
as :

|O(S∪E)(S) ∪ C(i)| ≥ ub

As openj−1 is compatible with ub, once S is
proved infeasible (both by search and pruning),
expl(pj−1 6= k) =

⋃
v∈Dorig(pj)

expl(pj 6= v).

Example: Consider the first example in table 3. S =
{P1, P2}, P − S = {P3, P4, P5, P6, P7}, O(S) =
{c2, c3, c4}. On step 1, the upper bound is currently 4 and
p2 6= P2 because fO(S)({P3, P4, P5, P6, P7}) ≥ 4. This
is however also true as long as O(S) is unchanged. It is
the case with {P3, P5, P6} or {P4, P5, P6}. All values v of
p3 are removed by filtering and {P4, P5, P6} is recorded for
each expl(p3 6= v) so that expl(p2 6= P2) = {P4, P5, P6}.
Going a step further, the search tries p2 = P3 and an expla-
nation such as {P4, P5, P6} or {P2, P5, P7} is computed.
The first set leads to expl(p2 6= {P2, P3}) = {P4, P5, P6}
and the process goes on.

For a filtering due to a nogood N , an explanation expl(N)
has already been recorded. A contradiction raised by the
lower bound needs also to be explained. Xplain can be again
applied on the products of P−S to find a subset that respects
the needed property.

For each infeasible sequence S, by explaining the proof
made on P − S, one may first incriminate only a subset
OP (S) that could be used to derive a more accurate subset
of S leading to the same contradiction (and a more relevant
point to backtrack). Second, it can be useful to generalize
the nogood based on the products that are not involved in
the explanation. In the second example of Table 3, P4 can
be exchanged with {P1, P3} if P4 is not needed to prove
that {P1, P2, P3} is a nogood. Therefore, {P4, P2} is also
a nogood. Equivalent sets to S provided by explanations as
well as subsets could therefore allow the pruning of future
paths of the search.

Explanations rely on the idea that independency and re-
dundancy among P can lead to small subsets of P having

16

Table 3: Example of explanation computation

Example 1 Example 2
Step 1 Step 2

P1P2 O(S) P3P4P5P6P7 P1P3 O(S) P2P4P5P6P7 P1P2P3 O(S) P4...
c1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 c1 1 0 0 1 1
c2 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 c2 0 1 1 0 0
c3 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 0 c3 1 0 1 0 0 ...
c4 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 c4 0 1 0 1 0
c5 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 c5 0 0 1 1 1

the same optimal value. Explanations provide a way to take
advantage of these structures.

Generalized nogoods for the MOSP
A classical nogood, defined as a partial assignment that can
not be extended to a solution, becomes useless as soon as
one of its subset becomes a nogood. This is however not
true for the nogoods presented above for the MOSP. The no-
good {P1, P3, P4} is a subset of {P1, P2, P3, P4} but does
not forbid the sequence {P1, P3, P2, P4}. A MOSP nogood
is indeed a sequence of products that forbids to start the pro-
duction sequence by any of its permutations. With the sub-
sets of a set S denoted by P(S), the nogoods considered for
our problem are defined as follows:
Definition 2. A generalized nogood N is defined by a pair
of sets (R, T) (root and tail) which forbids to start the pro-
duction sequence by any permutation of a set belonging to
{R ∪ Ti, Ti ∈ P(T)}.

This definition provides a way of factorizing information
regarding a set of nogoods (into the tail part). It is meant to
capture a large number of identified nogoods. The follow-
ing proposition is used to characterize generalized nogoods
when confronted to infeasible sequences of products.
Proposition 1. If S is an infeasible sequence of products
and expl(S) ⊆ P −S an explanation of this fact then a pair
(R, T) such that,
• (R ∪ T) ∩ expl(S) = ∅,
• OS∪expl(S)(S) ⊆ O(R),
is a valid generalized nogood.
Proof: As S is a nogood, fO(S)(P − S) ≥ ub.
Moreover, expl(S) is a subset of P − S such that,
after assigning chronologically S, the remaining prob-
lem restricted to expl(S) is infeasible. This leads to
fOS∪expl(S)(S)(expl(S)) ≥ ub. Due to OS∪expl(S)(S) ⊆
O(R) and R ∩ expl(S) = ∅ the previous inequality be-
comes fO(R)(expl(S)) ≥ ub. This inequality shows that
(R,S − R) is a valid generalized nogood even if P − S
is restricted to expl(S). Moreover, adding products not in-
cluded in expl(S) to the tail of (R,S −R) cannot decrease
O(R). Each order of O(R) is indeed active because of at
least one of the product of expl(S). So (R, T) remains a
valid nogood as long as T ∩ expl(S) = ∅. �

In practice, such nogoods are obtained by applying to S
the reasonings presented in the previous section. This leads
to the algorithms detailed in the following.

Generalized nogood recording
To implement the above idea, lines 8-10 of Algorithm 1
are modified to introduce the computation of the general-
ized nogood and the backjumping feature. The following
pseudo-code of algorithm 3 assumes that a contradiction c
is labeled by the level where it occurs (c.level in line 9a), in
other words, infeasibility of p1, . . . pk proved by the empty
domain of pk+1 would raise a contradiction labelled by k+1
(throw new Contradiction(k+1)).

Algorithm 3 extends lines 8-10 of algorithm 1.
8. Catch (Contradiction c)
9a. If t < c.level
9b. R1 ← minimize(S, OP (S));
9c. R2 ← minimize({pt, pt−1, . . . , p1}, OP (S));
9d. ∀j ∈ {1, 2} ad nogood (Rj , S −Rj);
9e. newLevel← argmaxk(pk ∈ R1)
9f. If newLevel < t
9g. throw new Contradiction(newLevel);
9h. Else if (t > c.level)
9i. throw new Contradiction(c.level);
10. EndTryCatch;

The function minimize(S, Op) computes S
′
, a subset

of S, such that Op ⊆ O(S′) based on the Xplain tech-
nique. Moreover the order of S is used to guide the gen-
eration of the subset of S. If S = p1, . . . pi, it ensures
that argmaxk(pk ∈ S

′
) is minimal2. Two nogoods, based

on the roots R1 and R2, are recorded at each contradiction.
The purpose of R1 is to provide the best backjumping point
(as the latest product within R1 will be as early as possible)
whereas R2 is the one with the best chance of being mini-
mal (as the contradiction may only involve recent products,
S is reversed to focus the subset on the last added products).
Backjumping is ensured in line 9h by raising immediately a
contradiction if the guilty level is not reached.

Explanation-based generalized nogood recording
Let us go a step further to develop the above ideas. First,
Algorithm 4 replaces Algorithm 2 to explain the pruning due
to ub and already known nogoods (whose explanations are
computed line 9j of Algorithm 5). We also assume that a
contradiction c is labeled by its explanation (c.exp).

2There is no subsequence of S with a product pj s.t j < k.

17

Algorithm 4 : filter(S = {p1, . . . , pt}, pt+1)
1.For each i ∈ D(pt+1) do
2. If |OP (S) ∪ C(i)| ≥ ub
4. remove i from pt+1;
5. expl(pt+1 6= i) ← E s.t |OS∪E(S) ∪ C(i)| ≥ ub;
6. Else If S ∪ {i} is a nogood N;
7. remove i from pt+1;
8. expl(pt+1 6= i) ← expl(N);
9.EndFor

Algorithm 1 is extended again when getting a contradic-
tion to deal with explanations leading to algorithm 5. A
contradiction explanation is computed in line 9b from the
empty domain of pt+1. This explanation will be recorded
to explain the removal of the value i that has been tried for
pt (refer to Algorithm 1 for i, pt and S) when the corre-
sponding level is reached (lines 9n, 9o). Then, at most 4
nogoods are recorded. R1, R2 are the same as previously
except that S ∪E can be more precise than P for OS∪E(S)
(lines 9c, 9d). However, this should be very rare without
more advanced filtering3 and the main improvements of ex-
planations are to further generalize the nogoods. This gener-
alization occurs in lines 9f, 9g and 9i when using E to build
the roots R3,R4 and {E ∪ S} −Ri to build the tail.

Algorithm 5 extends lines 8-10 of algorithm 1.
8. Catch (Contradiction c)
9a. If t < c.level
9b. E ←

S
j∈Dorig(pt+1) expl(pt+1 6= j);

9c. R1 ← minimize(S, OS∪E(S));
9d. R2 ← minimize({pt, pt−1, . . . , p1}, OS∪E(S));
9e. E ← P − S − E;
9f. R3 ← minimize(R1 ∪ E, OS∪E(S));
9g. R4 ← minimize(R2 ∪ E, OS∪E(S));
9h. for each j ∈ {1, 2, 3, 4}
9i. add nogood Nj = (Rj , {E ∪ S} −Rj);
9j. expl(Nj)← E;
9k. newLevel← argmaxk(pk ∈ R1)
9l. If newLevel < t
9m. throw new Contradiction(newLevel, E);
9n. Else expl(pt 6= i)← E
9o. Else if (t = c.level) expl(pt 6= i)← c.exp;
9p. Else throw new Contradiction(c.level, c.exp);
10. EndTryCatch;

The generalized nogood of Definition 2 corresponds to an
exponential number of simple nogoods used in DP and it is
impossible to store them all individually. We use a simple
form of a finite automaton called a TRIE (Knuth 1997) to
store them and perform the pruning. Storing and efficiently
managing nogoods is always a challenging problem. SAT
solvers (Moskewicz et al. 2001) provides interesting results
in that matter that are however difficult to apply in our case.

3This may occur due to the lower bound for example.

Experimental results
Our experiments are performed on the challenge instances 4

on a laptop MacBook, 2Ghz processor with 2Gb of RAM.
The algorithms have been implemented in Java.

We first analyze the accuracy of explanations by look-
ing at the explanation of optimality. It gives a subset of
P such that the problem reduced to this set will have the
same optimal value as the original problem. For compari-
son reasons, the problem was also iteratively solved within
an Xplain scheme and both approaches were tried. Xplain
was able to derive shorter explanations with 35.1% of prod-
ucts removed on average against 21.1% for our explanation
based approach but is unpractical on larger instances. These
rates can reach 51.8% and 40% on simonis20 20 benchmark
for example demonstrating that some problems can be very
structured.

Secondly, results are given for the three approaches: NR
(the existing simple nogood recording which is closely re-
lated to DP), GNR (Algorithm 3) and EXP (Algorithm 5).
All instances except the last SP2, SP3 and SP4 instances
are solved optimally, and smaller instances than 15 30 such
as 20 20 ones are all solved in less than one second in the
worst case. Average and maximum measures of time (in
seconds) and search effort (backtracks) are indicated for the
hardest instances of the challenge in Table 4. The search
space reduction implied by the backjumping and the gen-
eralized nogood recording (GNR) is huge (on average by
55, 5% and at most by 64%) with however similar time re-
sults. This clearly shows the accuracy of the technique and
time improvements could be obtained by improving the no-
goods computation and management which remain currently
quite naive. The use of explanations (EXP) is clearly more
costly. The search space is nevertheless reduced again con-
firming the accuracy of explanations analyzed on smaller
problems. But this technique remains competitive with the
best pure constraint programming approaches while com-
puting an explanation at the same time. It is therefore able
to highlight hard subsets of products responsible for the min-
imum number of open stacks.

Conclusion: beyond the MOSP
The main assumptions for the results given here on the
MOSP are related to the chronological enumeration and the
nature of the objective function. We believe that side con-
straints could be naturally added (e.g. precedences among
orders) and any propagation scheme could be performed as
long as it is explained on P − S.

We investigated on the MOSP, how classical look-back
reasonings based on explanations could be used to prune the
search space. We focused our attention on deriving a set
of conditions which generalize a given failure to a whole
class of failures. The experimental results demonstrate the
interest of such an approach for the MOSP even if no time
improvements have been obtained yet. We believe that the
dynamic programming-based approaches could therefore be
improved by the ideas presented in the paper. There exist

4http://www.dcs.st-and.ac.uk/˜ipg/challenge/

18

Table 4: Average and maximum results (time and backtracks) on hard benchmarks from the challenge for NR, GNR and EXP

Inst OptM TAvg (s) Tmax BkAvg BkMax
NR

simonis 30 30 28.32 1.5 14.5 67617.3 708845
wbo 30 30 22.56 2.1 16.2 99586.9 760602

wbop 30 30 23.84 2.3 18.9 109465.9 829886
wbp 30 30 24.46 2.7 35.5 125704.7 1618700

GNR
simonis 30 30 28.32 1.6 14.8 23246.3 196229

wbo 30 30 22.56 2.1 14.2 44181.0 283491
wbop 30 30 23.84 2.8 22.6 59874.1 402049
wbp 30 30 24.46 3.0 35.5 51621.3 504488

EXP
simonis 30 30 28.32 8.4 64.3 18126.0 167322

wbo 30 30 22.56 13.0 88.0 35818.9 238380
wbop 30 30 23.84 28.0 177.1 52267.2 361704
wbp 30 30 24.46 25.5 256.9 43836.2 431215

many ways to speed up GNR and EXP which could eventu-
ally lead to a time gain. The current data structure storing the
nogoods is a critical component which could be vastly im-
proved by allowing incremental propagation. This remains
to be done as we first investigate the accuracy of explana-
tions for this problem. Moreover, many nogood generation
schemes could be designed.

References
Becceneri, J.; Yannasse, H.; and Soma, N. 2004. A
method for solving the minimization of the maximum num-
ber of open stacks problem within a cutting process. C&OR
31:2315–2332.
Benoist, T. 2005. A dynamic programming approach. In
IJCAI’05 Fifth Workshop on Modelling and Solving Prob-
lems with Constraints.
Garcia de la Banda, M., and Stuckey, P. J. 2007. Using
dynamic programming to minimize the maximum number
of open stacks. In INFORMS Journal of Computing.
Ginsberg, M. 1993. Dynamic backtracking. Journal of
Artificial Intelligence Research 1:25–46.
Junker, U. 2001. QuickXplain: Conflict detection for arbi-
trary constraint propagation algorithms. In IJCAI’01 Work-
shop on Modelling and Solving problems with constraints.
Jussien, N., and Lhomme, O. 2002. Local search with con-
straint propagation and conflict-based heuristics. Artificial
Intelligence 139(1):21–45.
Katsirelos, G., and Bacchus, F. 2005. Generalized nogoods
in csps. In National Conference on Artificial Intelligence
(AAAI-2005), 390–396.
Knuth, D. E. 1997. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley. 492–512.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference
(DAC’01).

Prosser, P. 1995. MAC-CBJ: maintaining arc consistency
with conflict-directed backjumping. Technical Report Re-
search Report/95/177, Dept. of Computer Science, Univer-
sity of Strathclyde.
Schiex, T., and Verfaillie, G. 1994. Nogood recording for
static and dynamic constraint satisfaction problem. IJAIT
3(2):187–207.
Shaw, P., and Laborie, P. 2005. A constraint program-
ming approach to the min-stack problem. In IJCAI’05 Fifth
Workshop on Modelling and Solving Problems with Con-
straints.
Siqueira, J. D., and Puget, J. 1988. Explanation-based
generalisation of failures. In (ECAI’88), 339–344.
Smith, B., and Gent, I. 2005. Constraint modelling chal-
lenge 2005. In IJCAI’05 Fifth Workshop on Modelling and
Solving Problems with Constraints.

19

