
Designing Explanation Aware Systems:
The Quest for Explanation Patterns

Jörg Cassens and Anders Kofod-Petersen
Department of Computer and Information Science
Norwegian University of Science and Technology

7048 Trondheim, Norway
{cassens,anderpe}@idi.ntnu.no

Abstract

Systems in general, and intelligent systems in particular, need
to be able to explain their behaviour to their users or partners.
Previously, a number of different user goals that explanations
can support have been identified. Likewise, different kinds of
explanations have been proposed. The problem remains how
these abstract concepts can be made fruitful for the design
of intelligent systems – they must be connected to software
engineering methodologies. The work presented here builds
on the concept of patterns and suggests using problem frames
as a tool for requirements engineering. We further on propose
to connect these problem frames with other design patterns as
a tool supporting the implementation process.

Introduction
Although a wide variety of knowledge engineering method-
ologies exists (see the following section), there seems to be a
lack of methods focusing on the peculiarities of explanatory
knowledge. These special features of explanations include
in particular their role in enhancing the user experience by
adding a level of self reflection about the actions of the sys-
tem and the importance of explanations to gain the user’s
trust into the system’s capabilities.

In human to human interaction, the ability to explain its
own behaviour and course of action is a prerequisite for a
meaningful interchange, therefore a truly intelligent system
has to provide comparable capacities. In order to make sure
that the system has sufficient knowledge about itself and that
potential interests a user can have towards explanations can
be satisfied, the design of explanatory capabilities should be
an integral component of the system’s design process.

Additionally, if we have an interest in the widespread
adoption of explanation aware systems, we have to integrate
the methods focussing on knowledge aspects with other soft-
ware development methodologies to make the design of in-
telligent system accessible for a large group of software en-
gineers. To this end, it is our aim to develop a formal no-
tation to support a design methodology which is based on
experiences both in the intelligent systems and software de-
velopment communities. We therefore propose the use of
patterns, especially the use of problem frames, in order to
start the discussion of such methodologies.

The structure of this article is as follows: first, we give
a short overview about the notion of explanations as used

in this paper. Second, we refer to some related work both
from the knowledge engineering and the software engineer-
ing disciplines. In the following step, we propose a descrip-
tion of user goals following Jackson’s notion of problem
frames. Thereafter, we present a simplified example of ex-
planation aware re-engineering of an existing ambient intel-
ligent solution before concluding with some remarks about
further work.

Explanations
The ability to generate explanations is an important aspect
of any intelligent system (Roth-Berghofer & Cassens 2005;
Sørmo, Cassens, & Aamodt 2005). We deem it necessary to
investigate the explanatory capabilities from an early point
onward in the design process to assure that the finished sys-
tem can sufficiently explain itself. Therefore, an analysis of
explanatory needs of both user and system should be part of
the requirements engineering process. It is equally impor-
tant to provide the system designers with methods to assure
that explanatory knowledge and methods can be integrated
into the application.

We have previously presented a framework for explana-
tions in intelligent systems with a special focus on case-
based reasoning (Sørmo, Cassens, & Aamodt 2005). Specif-
ically, we have identified five goals that explanations can
satisfy. The goal of transparency is concerned with the sys-
tem’s ability to explain how an answer was reached. Jus-
tification deals with the ability to explain why the answer
is good. When dealing with the importance of a question
asked, relevance is the goal that must be satisfied. Concep-
tualisation is the goal that handles the meaning of concepts.
Finally, learning is in itself a goal, as it teaches us about
the domain in question. These goals are defined from the
perspective of a human user. His expectations on what con-
stitutes a good explanation is situation dependend and has a
historic dimension (Leake 1995).

Roth-Berghofer has explored some fundamental issues
with different useful kinds of explanation and their connec-
tion to the different knowledge containers of a case-based
reasoning system (Roth-Berghofer 2004). Based on ear-
lier findings from natural language explanations in expert
systems, five different kinds of explanation are identified:
conceptual explanations, which map unknown new con-
cepts to known ones, why-explanations describing causes

20



or justifications, how-explanations depicting causal chains
for an event, purpose-explanations describing the purpose
or use of something, and cognitive explanations predicting
the behaviour of intelligent systems. Roth-Berghofer fur-
ther on ties these different kinds of explanation to the differ-
ent knowledge containers of case-based reasoning systems
(Richter 1995), namely case base, similarity measure, adap-
tation knowledge, and vocabulary.

Building on the last two works, we have earlier started to
investigate a combined framework of user goals and expla-
nation kinds (Roth-Berghofer & Cassens 2005). The goal
of this work was to outline a design methodology that starts
from an analysis of usage scenarios in order to be able to
identify possible expectations a user might have towards the
explanatory capabilities of an intelligent system. The re-
quirements recognised can further on be used to identify
which kind of knowledge has to be represented in the sys-
tem, and which knowledge containers are best suited for
this task. In that work, we have also identified the need
for a socio-psychological analysis of workplaces in order to
be able to design systems which can meaningful engage in
socio-technical interactions.

We have also previously proposed the use of activity the-
ory, a theory of human interaction with other humans and
technical artefacts from industrial and organisational psy-
chology, to investigate when explanations are important to
the user (Cassens 2004). The same theory has shown its use-
fulness in designing a case-based reasoning system geared
towards ambient intelligence (Kofod-Petersen & Cassens
2006). This work has recently been extended to explicitly
take explanatory capabilities into account.

We are now in the process of investigating how these dif-
ferent aspects – a socio-technical analysis, user goals with
explanations, and the different kinds of explanations – can fit
into a design methodology which can be handled by knowl-
edge and system engineers.

Related Work
The use of patterns (Alexander et al. 1977) is common for
different software engineering approaches. Patterns can be
used in different software development phases and they can
have different foci. We can also identify knowledge engi-
neering approaches making use of patterns.

When we look towards the software engineering world,
we can see that patterns are used in different phases of the
design process.

Early on in the requirements engineering process, prob-
lem frames (Jackson 2001) are a method to classify software
development problems. Problem frames look out into the
world and attempt to describe the problem and its solution
in the real world. Problem frames introduce concepts like
‘Information Display’ and ‘Commanded Behaviour’.

Jackson’s set of basic problem frames can be extended
to be better able to model domain specific aspects. For
example, (Hatebur & Heisel 2005) introduce new problem
frames for security problems. Their proposal includes prob-
lem frames for issues like ‘Accept Authentication’ and ‘Se-
cure Data Transmission’. They also provide architectural
patterns connected to these problem frames.

On the software architecture level, we find architec-
ture patterns (Avgeriou & Zdun 2005). At this level,
we encounter concepts like ‘Blackboards’, ‘Model-View-
Controller’, or ‘Pipes and Filters’.

For finer grained software development close to the actual
implementation, one can make use of design patterns which
look inside towards the computer and its software (Gamma
et al. 1995). Design patterns deal with concepts like ‘Facto-
ries’, ‘Facade’, and ‘Decorater’.

Patterns can also be useful for modelling non-functional
requirements. HCI design patterns are such a special class
of patterns. Rossi, Schwabe, & Lyardet (2000) introduce
HCI patterns for hypermedia applications (like ‘Information
on Demand’ and ‘Process Feedback’). Another collection
of HCI patterns can be found in (van Welie & Trætteberg
2000), covering aspects like ‘Wizards’ or ‘Preferences’.

Some research has been done on the issue of how patterns
on different levels are related with each other. For example,
(Wentzlaff & Specker 2006) apply case-based reasoning to
construct design patterns from developed problem frames.
The problem part of the cases consist of problem frames,
and the solution part is a corresponding HCI pattern.

Choppy, Hatebur, & Heisel (2006) relate architectural pat-
terns to problem frames. The design problem at hand can be
divided into multiple frames, and the authors offer a modular
approach to refining the problem frames into architectural
patterns.

Methods and languages which use patterns and focus ex-
plicitly on the knowledge aspects of system design exist
as well. There are for example efforts to provide reusable
architectures by describing the abilities of (a library of)
generic problem solving methods. An example for a com-
ponent model is the Unified Problem-Solving Method De-
velopment Language UPML, cf. (Fensel et al. 1999).

Plaza and Arcos (1999) describe an application of the
UPML model to case-based reasoning (CBR). They propose
the ABC software architecture, based on the three compo-
nents task description, domain model, and adaptors. The
authors focus on the reuse part of the CBR cycle (Aamodt
& Plaza March 1994) and interpret problem-solving as con-
structing a (case-specific) model of the input problem.

The INRECA (Bergmann et al. 2003) methodology is
aimed at developing (industrial) case-based reasoning appli-
cations. Software process models from existing CBR ap-
plications are stored in an experience base which is struc-
tured at three levels. The common generic level is a col-
lection of very generic processes, products, and methods
for CBR applications. At the cookbook level, we find soft-
ware models for particular classes of applications (so called
recipes). At the specific project level, experiences from par-
ticular projects are stored. We can identify the recipes at the
cookbook level as patterns.

Another well-known approach can be found with the
CommonKADS methodology (Schreiber et al. 2000). It
encompasses both a result perspective with a set of models
of different aspects of the knowledge based system and its
environment, and a project management perspective starting
from a spiral life-cycle model that can be adapted to the par-
ticular project.

21



The CommonKADS template knowledge model provides
a way of (partially) reusing knowledge models in new ap-
plications and can be understood as patterns in the software
engineering sense of the word.

Building on the KADS model and extending it explic-
itly towards software engineering, (Gardner et al. 1998) in-
troduce the notion of KADS Objects. The KADS Object
framework allows direct support for object-oriented decom-
position and utilises research on human cognition. The au-
thors also supply a library of generic problem-solving tem-
plates, which themselves can be seen as software engineer-
ing patterns.

Unfortunately, despite the fact that a lot of work has been
done on knowledge engineering methodologies and in par-
ticular the reuse of experience gained, it seems that little at-
tention has been paid to the specifics of explanatory knowl-
edge outlined above.

Explanation Problem Frames
The main purpose of any problem frame (Jackson 2001) is
to propose a machine which improves the combined perfor-
mance of itself and its environment by describing the ma-
chine’s behaviour in a specification. The most important ap-
proach is to address the frame concern. To explain ones be-
haviour a problem frame must be constructed that relates the
behaviour the system shows to different parts of knowledge
used by the system to support the chosen course of action in
a specification.

Jackson (2001) originally described five different basic
frames, each of which comes in different flavours and vari-
ants: ‘required behaviour’, ‘commanded behaviour’, ‘infor-
mation display’, ‘simple workpieces’ and ‘transformation’.
Each basic frame has its own requirements, domain charac-
teristics, domain involvement, and frame concern.

In general, a problem frame assumes a user driven per-
spective. Except for the ‘required behaviour’ basic frame,
each frame assumes that the user is in control and dictates
the behaviour of the machine. Since intelligent systems (ide-
ally) take a much more pro active approach and mixed ini-
tiative issues become relevant, new problem frames address-
ing these topics have to be developed. For the course of
this paper, we will focus exclusively on frames targeting ex-
planatory aspects and will not discuss other types of problem
frames.

Problem frames can be described by problem frame di-
agrams. These diagrams consist basically of dashed ovals,
representing the requirements, plain rectangles, denoting ap-
plication domains, and a rectangle with a double vertical
stripe, standing for the machine (or software machine) do-
main to be developed. These entities become the nodes of
the frame diagram. They are connected by edges, represent-
ing shared phenomena and denoting an interface. Dashed
edges refer to requirement references. Dashed arrows desig-
nate constraining requirement references.

The domains can be of different types, indicated by a let-
ter in the lower right corner. Here, a ‘C’ stands for a causal
domain whose properties include predictable causal rela-
tionships among its phenomena. A ‘B’ denotes a biddable

domain which lacks positive predictable internal behaviour.
Biddable domains are usually associated with user actions.
Finally, an ‘X’ marks a lexical domain. Such a domain is
a physical representation of data and combines causal and
symbolic phenomena.

In the software development process, problem frames are
used in the following way. First, we start with a context di-
agram, which consists of domain nodes and their relations,
but without the requirements. Afterwards, the context dia-
gram is divided into sub problems. The resulting sub prob-
lems should, whenever possible, relate to existing generic
problem frames. These generic problem frames are hereby
instantiated do describe the particular sub problem at hand.

In the remainder of this section, we propose a set of new
generic problem frames to capture aspects of explanations
connected to the aforementioned different user goals identi-
fied in (Sørmo, Cassens, & Aamodt 2005).

Transparency Explanation

Figure 1: Transparency Explanation. An explanation supporting
this goal gives the user some insight into the inner working of the
system. To this end, the system inspects its own reasoning trace
when formulating the explanation.

This goal is concerned with an explanation of how the sys-
tem reached the answer.
“I had the same problem with my car yesterday, and charging
the battery fixed it.”
The goal of an explanation of this kind is to impart an un-
derstanding of how the system found an answer. This allows
the users to check the system by examining the way it rea-
sons and allows them to look for explanations for why the
system has reached a surprising or anomalous result.

The frame diagram depicted in Figure 1 highlights that in
order to support the transparency goal, the software system
has to inspect its reasoning trace and represent the relevant
facts of its reasoning process to the user. We expect a trans-
parency explanation usually to be given after the reasoning
process has terminated.

Justification Explanation
When supporting the justification goal, we want to explain
why the answer given is a good answer.
“You should eat more fish - your heart needs it!”
“My predictions have been 80% correct up until now.”
This is the goal of increasing the confidence in the advice or
solution offered by the system by giving some kind of sup-
port for the conclusion suggested by the system. This goal
allows for a simplification of the explanation compared to
the actual process the system goes through to find a solu-
tion. Potentially, this kind of explanation can be completely

22



Figure 2: Justification Explanation. In contrast to the trans-
parency explanation, the user is here not primarily interested in
why the system exposes a particular behaviour, but wants to have
evidence supporting that this behaviour is correct. Therefore, other
knowledge has to be taken into account besides the reasoning trace.

decoupled from the reasoning process, but it may also be
achieved by using additional background knowledge or re-
formulation and simplification of knowledge that is used in
the reasoning process.

A explanation supporting the justification goal, as shown
in Figure 2, has not only to take the reasoning of the machine
into account, but it will also make use of other parts of the
system’s knowledge in order to generate after the fact ex-
planations supporting its actions or decisions. Since justifi-
cation explanations complement transparency explanations,
we expect it to be given usually after the reasoning process
has terminated.

Relevance Explanation

Figure 3: Relevance Explanation. An explanation supporting this
goal should instil confidence by indicating that the system’s be-
haviour is connected to the task at hand. Consequently, the rea-
soning and dialogue traces should be taken into account as well as
other (domain) knowledge.

An explanation targeting this goal gives hints about why a
question asked is relevant.
“I ask about the more common failures first, and many users
do forget to connect the power cable.”
An explanation of this type would have to justify the strategy
pursued by the system. This is in contrast to the previous
two goals that focus on the solution. The reasoning trace
type of explanations may display the strategy of the system
implicitly, but it does not argue why it is a good strategy. In
conversational systems, the user may wish to know why a
question asked by the system is relevant to the task at hand.

It can also be relevant in other kinds of systems where a user
would like to verify that the approach used by the system is
valid.

Since this goal, depicted by the frame diagram in Figure 3,
is of particular interest for mixed initiative systems, the ex-
plaining machine has to relate its explanation both to its own
dialogue with the user (and here in particular the questions
asked by the system or the actions performed), the reasoning
trace (in oder to relate to the situation the system assumes it
is in) and the system knowledge relevant. In contrast to the
first two goals, an explanation supporting this goal is impor-
tant to be given during the reasoning process of the system.

Conceptualisation Explanation

Figure 4: Conceptualisation Explanation. By giving a conceptu-
alisation explanation, the system explicates its own conceptualisa-
tion of the domain or the task at hand to the user. Hence, it will
connect the concept to be explained with its own knowledge com-
ponents.

The conceptualisation goal deals with the need to clarify the
meaning of concepts.
“By ‘conceptualisation’ we mean the process of forming con-
cepts and relations between concepts.”
One of the lessons learned after the first wave of expert sys-
tems had been analysed was that the users did not always
understand the terms used by a system. This may be because
the user is a novice in the domain, but also because different
people can use terms differently or organise the knowledge
in different ways. It may not be clear, even to an expert,
what the system means when using a specific term, and he
may want to get an explanation of what the system means
when using it.

This explanation machine, represented with the frame di-
agram depicted in Figure 4, builds on its own system knowl-
edge. This highlights the fact that explanations supporting
this goal should set unknown concepts in the context of the
other knowledge the system has, and which is expected to
be shared with the user already. Conceptualisation explana-
tions are important both during the reasoning process (e.g.
in addition to a relevance explanation) and after the reason-
ing process has terminated (e.g. in addition to a justification
explanation).

Learning Explanation
The learning goal focuses on the interest of the user to learn
something about the application domain.
“When the headlights won’t work, the battery may be flat as it
is supposed to deliver power to the lights.”
This goal is of specific interest for educational applications,
which have learning as the primary goal of the whole sys-
tem. In these systems, we cannot assume that the user will

23



Figure 5: Learning Explanation. This goal is special, since it fo-
cuses on the user’s interest in the application domain (hence the
real world), and not on some particular behaviour of the system.

understand even definitions of terms, and may need to pro-
vide explanations at different levels of expertise. The goal
of the system is typically not only to find a good solution
to a problem, but to explain the solution process to the user
in a way that will increase his understanding of the domain.
The goal can be to teach more general domain theory or to
train the user in solving problems similar to those solved by
the system. In other words, the explanation is often more
important than the answer itself.

The Figure 5 highlights this fact by pointing out that the
explanatory machine has to connect its own system knowl-
edge with the real world (representing the application do-
main) in order to generate explanations supporting the user
in gaining a better understanding of the application domain.
The explanation given should also relate to the system’s as-
sumptions about its user, which is influenced by the dialogue
trace. Because of the nature of this goal, it will usually be
important during the system’s reasoning process.

Example
Like mentioned in the introduction, we have designed and
implemented an ambient intelligent application (Cassens &
Kofod-Petersen 2006) where the main purpose is to identify
ongoing situations and proactively acquire digital informa-
tion required by the persons present.

The system consists of three main components: one com-
ponent acquiring data from the environment relevant for
classifying the situation (Kofod-Petersen & Mikalsen 2005);
one component assessing the ongoing situation through the
use of case-based reasoning, which we understand as be-
ing context aware (Kofod-Petersen & Aamodt 2006); and
finally one component conducting a task decomposition to
solve the problem in the ongoing situation, which we un-
derstand as being context sensitive (Gundersen & Kofod-
Petersen 2005).

To exemplify how problem frames can assist us in build-
ing explanation aware applications, let us look at a typical
engineering task where we start with the existing system and
want to re-engineer it to include explanations.

As an example, we have the instance where the system
correctly classifies an ongoing situation as a pre-ward round.
A pre-ward round is a particular type of meeting that occurs

every morning. Here the physician in charge and the nurse
in charge go over the status of the patients on the ward, and
decide on the treatment plan. The current condition of the
patients in question is reviewed in light of any changes, test
results, and the like.

We know from the knowledge acquisition and modelling
process (Cassens & Kofod-Petersen 2006) that the goal of
this type of situation can be decomposed into the following
sequence of tasks:

1. Acquire name of patient;
2. Acquire changes in patient’s condition since yesterday;
3. Acquire any new results from tests;
4. Examine, and possible change, medication scheme;
5. Note changes in treatment.

If we focus on the context sensitive part of the system,
its main purpose is to examine the artefacts, represented by
agents, in the environment and find those that can supply
relevant information. If we examine a particular pre-ward
round situation, here one occurring at the cardiology ward,
the problem can be decomposed as depicted in Figure 10.

Figure 10 demonstrates how the initial problem of find-
ing the name of the patient can be facilitated by the Patient
List Agent. Further on, the ‘Acquire Information’ task is
decomposed into one task that acquires changes which are
supplied by the Electronic Patient Record, the WiseW appli-
cation and the Patient Chart, and another task that acquires
results which can be delivered by the Patient Chart and the
WiseW application. So far this application only supplies in-
formation without any explanation of its behaviour.

In order to demonstrate how the explanation goal problem
frames can be used to model explanatory needs in the prob-
lem domain, we will start with a simplified problem diagram
for our application (Figure 6). We have modified Jackson’s
information display problem frame (Figure 7) and used it as
a starting point for the diagram. You can see three domains
representing (groups of) the agents mentioned in Figure 10
and explained above.

Figure 6: Simplified problem diagram for an ambient intelligent
system for displaying medical information in pre-ward rounds.

Additionally, you see the ‘Display’ domain which stands
for the information display of the system and ‘System

24



Figure 7: Jackson’s information display problem frame diagram.

Knowledge’ for deciding which data sources to use. For the
sake of clarity and simplicity, we have abstracted away the
sensor parts of as well as the context aware parts of our ex-
ample application and focus solely on the information gath-
ering and display parts.

Let us now assume that the results displayed by the sys-
tem are of such a nature that the physician using the system
requires an explanation. Let us further focus on the trans-
parency and justification explanations.

The transparency and justification explanations are related
in the sense that they to some degree serve the same purpose.
Namely, to persuade the user of the validity of the proposed
solution and/or the validity of the problem solving approach
chosen by the system. In the work presented here, we decide
upon which of the two explanations to present as a function
of the user’s level of competence. That is, expert users are
subject to transparency explanations and novice users to jus-
tification explanations (Mao & Benbasat 2000).

Figure 8: Simplified problem diagram with explanation problem
frames added.

To model the explanatory capabilities of the system, we
want to integrate the explanation sub problems described by
the two problem frame diagrams for the Transparency and
the Justification goal with the original application problem
diagram. The goal is to compose a single problem diagram
for the three sub problems depicted in Figure 8.

Figure 9: Simplified problem diagram with explanation problem
frames integrated and user model added.

Figure 9 shows one possible problem diagram for an ex-
planation aware patient information display system. In order
to be able to chose the right type of explanation – trans-
parency or justification – we have included a user model
component in this diagram. The need for this domain be-
came clear when we tried to integrate the two different ex-
planation machines. Please note also that we now share one
common display for both the information delivery and ex-
planation delivery.

The problem diagram depicted in Figure 9 is a simpli-
fied version of a real world diagram. The solution shown is
probably not the best one possible, but it can be seen that
different sub problems can be composed into a larger prob-
lem diagram. Some of the domains of the problems can be
shared, whereas others might only be used by one or some
sub problems (please note the user model in our example).

After we have included the explanatory machine in our
problem diagram, we can re-visit the problem described
above. The expert user physician might wish to know how
the particular combination of information displayed was
reached. According to the transparency explanation prob-
lem frame, this explanation can be achieved by displaying
the reasoning trace. This can for example be done by show-
ing that the top task ‘Pre-ward round’ was selected as a func-
tion of the classification, by displaying how the decomposi-
tion tree looks like, and by supplying information about the
agents which were selected.

For the justification explanation, the novice user physician
would like to know why this combination of information is

25



Figure 10: Decomposition tree for a pre-ward round situation, as constructed by our context sensitive component.

any good. This can be achieved by relating the reasoning
trace to the domain model of the system. For example, ac-
cording to the domain model, the ‘Acquire Medication’ task
could be satisfied not only by the Patient Chart but also by
the Electronic Patient Record. However, as the Electronic
Patient Record agent was busy serving other requests only
the Patient Chart could respond to this request.

This example shows how the use of explanation goal
problem frames can explicate which kind of explanatory
knowledge is necessary to support the explanatory needs of
the users of the system. It can help identifying the struc-
ture of the problem at hand and the knowledge components
required. It can further on be used as a means of commu-
nication between prospective users, software engineers, and
knowledge engineers.

Conclusion and Future Work
This is ongoing work, but we have sketched how a set of
problem frames targeted specifically towards explanatory
capabilities of knowledge based systems can support the en-
gineering process of explanation aware systems. With the
explicit use of patterns, we have started to formalise the pre-
viously introduced notions of explanation goals and expla-
nation kinds.

Until now, we have only looked out into the environment
in which the intelligent system has to function, and proposed
a formal notation for the description of user goals. These
outward looking descriptions should further be connected
with another view looking inwards towards the implementa-
tion of the system.

There are two directions of research we want to explore.
One direction is to amend the explanation problem frames
and to further analyse the relation between explanation goals
and explanation kinds. To this end, we have to formalise

the previously proposed stepwise refinement process from
goals to kinds (Roth-Berghofer & Cassens 2005) so that we
can construct combined patterns for goals and kinds. By
this, we are going to populate the proposed model with ex-
amples for how the outward directed view on the non func-
tional user requirements for explanation aware systems can
be combined with the inward directed view of necessary ex-
planatory knowledge.

The other direction is aimed at relating the proposed ex-
planation goal problem frames with architectural patterns.
Ideally, this would enable us to discuss explanation issues,
knowledge aspects, HCI aspects, and functional require-
ments at a very early stage of the development process
without any a priori assumptions about the problem solving
methods used.

Further on, it is necessary to extend the formalism at
“both ends”, meaning that we on one hand have to revisit
our analysis of how the necessary knowledge to support the
different explanation kinds can be represented in the actual
system, and that we on the other hand have to refine our
socio-technical analysis to end up with a psychologically
plausible model for elucidating the explanatory needs of the
prospected users.

Acknowledgements
Part of this work has been supported by Accenture Innova-
tion Lab Norway.

References
Aamodt, A., and Plaza, E. March 1994. Case-Based Rea-
soning; Foundational Issues, Methodological Variations,
and System Approaches. AI Communications 7(1):39–59.
Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.;

26



Fiksdahl-King, I.; and Angel, S. 1977. A Pattern Lan-
guage. New York: Oxford University Press.
Avgeriou, P., and Zdun, U. 2005. Architectural Patterns
Revisited – A Pattern Language. In Proceedings of the 10th
European Conference on Pattern Languages of Programs
(EuroPlop 2005), 1–39.
Bergmann, R.; Althoff, K.-D.; Breen, S.; Göker, M.; Man-
ago, M.; Traphöner, R.; and Wess, S. 2003. Developing In-
dustrial Case-Based Resoning Applications: The INRECA
Methodology, volume 1612 of LNCS. Berlin: Springer-
Verlag, second edition.
Cassens, J., and Kofod-Petersen, A. 2006. Using Activity
Theory to Model Context Awareness: a Qualitative Case
Study. In Proceedings of the 19th International Florida
Artificial Intelligence Research Society Conference, 619–
624. Menlo Park, CA: AAAI Press.
Cassens, J. 2004. Knowing What to Explain and When. In
Gervás, P., and Gupta, K. M., eds., Proceedings of the EC-
CBR 2004 Workshops, number 142-04 in Technical Report
of the Departamento de Sistemas Informáticos y Progra-
mación, Universidad Complutense de Madrid, 97–104.
Choppy, C.; Hatebur, D.; and Heisel, M. 2006. Compo-
nent Composition through Architectural Patterns for Prob-
lem Frames. In APSEC ’06: Proceedings of the XIII Asia
Pacific Software Engineering Conference, 27–36. Wash-
ington, DC: IEEE Computer Society.
Fensel, D.; Benjamins, R.; Decker, S.; Gaspari, M.; Groen-
boom, R.; Grosso, W.; Musen, M.; Motta, E.; Plaza, E.;
Schreiber, G.; Studer, R.; and Wielinga, B. 1999. The
Component Model of UPML in a Nutshell. In WWW Pro-
ceedings WICSA1, 1st Working IFIP Conference on Soft-
ware Architectures.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, MA: Addison-Wesley.
Gardner, K. M.; Rush, A.; Crist, M. K.; Konitzer, R.; and
Teegarden, B. 1998. Cognitive Patterns. Cambridge, UK:
Cambridge University Press.
Gundersen, O. E., and Kofod-Petersen, A. 2005. Mul-
tiagent Based Problem-solving in a Mobile Environment.
In Coward, E., ed., Norsk Informatikkonferanse 2005,
NIK 2005, 7–18. Institutt for Informatikk, Universitetet
i Bergen.
Hatebur, D., and Heisel, M. 2005. Problem Frames and
Architectures for Security Problems. In Winther, R.; Gran,
B. A.; and Dahll, G., eds., Proceedings of the 24th Inter-
national Conference on Computer Safety, Reliability and
Security (SAFECOMP), number 3688 in LNCS, 390–404.
Berlin: Springer-Verlag.
Jackson, M. 2001. Problem Frames – Analysing and
Structuring Software Development Problems. Boston, MA:
Addison-Wesley.
Kofod-Petersen, A., and Aamodt, A. 2006. Contextualised
Ambient Intelligence through Case-Based Reasoning. In
Roth-Berghofer, T. R.; Göker, M. H.; and Güvenir, H. A.,
eds., Proceedings of the Eighth European Conference on

Case-Based Reasoning (ECCBR 2006), volume 4106 of
LNCS, 211–225. Berlin: Springer-Verlag.
Kofod-Petersen, A., and Cassens, J. 2006. Using Activity
Theory to Model Context Awareness. In Roth-Berghofer,
T. R.; Schulz, S.; and Leake, D. B., eds., Modeling and Re-
trieval of Context: Second International Workshop, MRC
2005, Revised Selected Papers, volume 3946 of LNCS, 1–
17. Berlin: Springer-Verlag.
Kofod-Petersen, A., and Mikalsen, M. 2005. Context:
Representation and Reasoning – Representing and Rea-
soning about Context in a Mobile Environment. Revue
d’Intelligence Artificielle 19(3):479–498.
Leake, D. B. 1995. Goal-Based Explanation Evaluation. In
Goal-Driven Learning. Cambridge: MIT Press. 251–285.
Mao, J.-Y., and Benbasat, I. 2000. The Use of Explanations
in Knowledge-Based Systems: Cognitive Perspectives and
a Process-Tracing Analysis. Journal of Management Infor-
mation Systems 17(2):153–179.
Plaza, E., and Arco, J. L. 1999. The ABC of Adap-
tation: Towards a Software Architecture for Adaptation-
centered CBR Systems. Research Report 99-22, Artificial
Intelligence Research Institute (IIIA), Bellaterra, Spain.
http://www.iiia.csic.es/.
Richter, M. M. 1995. The Knowledge Contained in Simi-
larity Measures. Invited Talk at the First International Con-
ference on Case-Based Reasoning, ICCBR’95, Sesimbra,
Portugal.
Rossi, G.; Schwabe, D.; and Lyardet, F. 2000. User In-
terface Patterns for Hypermedia Applications. In AVI ’00:
Proceedings of the working conference on Advanced visual
interfaces, 136–142. New York, NY: ACM Press.
Roth-Berghofer, T. R., and Cassens, J. 2005. Mapping
Goals and Kinds of Explanations to the Knowledge Con-
tainers of Case-Based Reasoning Systems. In Muñoz-
Avila, H., and Ricci, F., eds., Case Based Reasoning Re-
search and Development – ICCBR 2005, volume 3630 of
LNCS, 451–464. Berlin: Springer-Verlag.
Roth-Berghofer, T. R. 2004. Explanations and Case-Based
Reasoning: Foundational Issues. In Funk, P., and Calero,
P. A. G., eds., Proceedings of the 7th European Conference
(ECCBR 2004), volume 3155 of LNCS, 389–403. Berlin:
Springer-Verlag.
Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog,
R.; Shadbolt, N.; de Velde, W. V.; and Wielinga, B. 2000.
Knowledge Engineering and Management – The Com-
monKADS Methodology. Cambridge, MA: MIT Press.
Sørmo, F.; Cassens, J.; and Aamodt, A. 2005. Explanation
in Case-Based Reasoning – Perspectives and Goals. Artifi-
cial Intelligence Review 24(2):109–143.
van Welie, M., and Trætteberg, H. 2000. Interaction Pat-
terns in User Interfaces. In Proceedings of the 7th Pattern
Languages of Programs Conference (PLoP).
Wentzlaff, I., and Specker, M. 2006. Pattern-Based De-
velopment of User-Friendly Web Applications. In ICWE
’06: Workshop Proceedings of the sixth International Con-
ference on Web Engineering. New York, NY: ACM Press.

27


