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Abstract

In order to assist a power plant operator to face un-
usual situations, we have developed an intelligent as-
sistant that explains the suggested commands generated
by an MDP-based planning system. This assistant pro-
vides the trainee a better understanding of the recom-
mended actions to later generalize them to similar situ-
ations. In a first stage, built-in explanations are prede-
fined by a domain expert and encapsulated within ex-
planation units. When the operator takes an incorrect
action, an explanation is automatically generated. A
controlled user study in this stage showed that expla-
nations have a positive impact on learning. In a second
stage, we are developing an automatic explanation gen-
eration mechanism based on a factored representation
of the decision model used by the planning system. As
part of this stage, we describe an algorithm to select a
relevant variable, which is a key component of the ex-
planations defined by the expert.

Introduction
Under emergency conditions, a power plant operator has to
assimilate a great amount of information to promptly ana-
lyze the source of the problem and take the corrective ac-
tions. In such situations, in order to define the corrective ac-
tions, He has to be able to discriminate between erroneous
inputs and the source of the problem. To assist the operator
to face these situations, we have developed an intelligent as-
sistant system (IAS) (Elizalde, Sucar, & deBuen 2005). An
important requirement for intelligent assistants is to have an
explanation generation mechanism, so that the trainee has
a better understanding of the recommended actions and can
generalize them to similar situations (Herrmann, Kloth, &
Feldkamp 1998).

Although there is a lot of work on explanation genera-
tion for some representations, such as rules and qualitative
models, there is very little work on explanation using proba-
bilistic representations, in particular graphical models. The
work on explanations based on graphical models (GM) can
be divided according to the classes of models considered,
basically Bayesian networks (BN’s) and decision networks.
BN’s (Pearl 1988) graphically represent the dependencies of
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a set of random variables, and are usually used for estimat-
ing the posterior probability of some variables given another.
So the main goal of explanations is to try to understand this
inference process, and how it propagates through the net-
work. Two main strategies have been proposed for expla-
nation with BN’s. One strategy is based on transforming
the network to a qualitative representation, and using this
more abstract model to explain the relations between vari-
ables and the inference process (Druzdzel 1991), (Renooij
& Van-DerGaa 1998). The other strategy is based on the
graphical representation of the model, using visual attributes
(such as colors, line widths, etc.) to explain relations be-
tween nodes (variables) as well as the the inference process
(Lacave, Atienza, & Diez 2000). The explanation of links
represents qualitative influences (Wellman 1990) by color-
ing the links depending on the kind of influence transmitted
from its tail to its head. Another possibility for static expla-
nation consists of explaining the whole network.

Decision networks or influence diagrams extend BN’s in-
corporating decision nodes and utility nodes. The main ob-
jective of these models is to help in the decision making
process, by obtaining the decisions that maximize the ex-
pected utility. So explanation in this case has to do with un-
derstanding why some decision (or sequence of decisions)
is the optimal one given the current evidence. There is very
little work on explanations for decision networks. Bielza
(Bielza, del Pozo, & Lucas 2003) proposes an explanation
method for medical expert systems based on influence dia-
grams. It is based on reducing the table of optimal decisions
obtained from an influence diagram, building a list that clus-
ters sets of variable instances with the same decision.They
propose to use this compact representation of the decision
table as a form of explanation, showing the variables that
are fixed as a rule for certain case. It seems like a very lim-
ited form of explanation, difficult to apply to other domains.
Although, an approach based on templates combined with
expert knowledge could be seen as a new alternative to solve
some limitations in the field.

Markov decision processes can be seen as an extension
of decision networks, that consider a series of decisions in
time (dynamic decision network). Thus, the work in expla-
nation for Bayesian and decision nets is relevant, although
not directly applicable.

The following section describes a Markov decision
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processes fundamentals. Next we describe the IAS, their
components and a brief of the application domain. After this
section we describe the Explanation Generation mechanism
proposed in two stages: first, as a Built-in Explanations, and;
second, as an Automatic Explanation approach. Finally, we
give conclusions and future work.

Markov decision processes
A Markov decision process (MDP) (Puterman 1994) models
a sequential decision problem, in which a system evolves in
time and is controlled by an agent. The system dynamics
is governed by a probabilistic transition function that maps
states and actions to states. At each time, an agent receives
a reward that depends on the current state and the applied
action. Thus, the main problem is to find a control strategy
or policy that maximizes the expected reward over time. The
Markov property means that the next state st+1 and the im-
mediate reward rt+1 depend only of the current state and the
action (st,at).

A solution to an MDP is a policy that maximizes its
expected value. For the discounted infinite-horizon case
with any given discount factor β, there is a policy V ∗ that
is optimal regardless of the starting state that satisfies the
Bellman equation (Bellman 1957):

V ∗(s) = maxa{R(s, a) + γβu∈SΦ(a, s, u)V ∗(u)}

Two popular methods for solving this equation and find-
ing an optimal policy for an MDP are: (a) value iteration and
(2) policy iteration (Puterman 1994).

In value iteration, optimal policies are produced for suc-
cessively longer finite horizons until they converge. In pol-
icy iteration, the current policy is repeatedly improved by
finding some action in each state that has a higher value than
the action chosen by the current policy for the state. The pol-
icy is initially chosen at random, and the process terminates
when no improvement can be found. This process converges
to an optimal policy.

Factored MDPs
A common problem with the MDP formalism is that the

state space grows exponentially with the number of domain
variables, and its inference methods grow with the number
of actions. Thus, in a large problems, MDPs becomes im-
practical and inefficient. Factored representations avoid enu-
merating the problem state space, producing a more concise
representation that makes solving more complex problems
tractable.

In a factored MDP, the set of states is described via a set
of random variables X = {X1, ..., Xn}, where each Xi takes
on values in some finite domain Dom(Xi). A state x defines
a value xi ∈ Dom(Xi) for each variable Xi. Thus, the set of
states S = Dom(Xi) is exponentially large, making it imprac-
tical to represent the transition model explicitly as matrices.
Fortunately, the framework of dynamic Bayesian networks
(DBN) (Dean & Kanasawa 1989) gives us the tools to de-
scribe the transition model concisely. In these representa-
tions, the post-action nodes (at the time t+1) contain matri-
ces with the probabilities of their values given their parents’

values under the effects of an action.

Intelligent Assistant System for Operator’s
Training

Figure 1: IAOT description (Elizalde, Sucar, & deBuen
2005).

We have developed an Intelligent Assistant for Operator’s
Training (IAOT), see Fig. 1. The input to the IAOT is a
recommended-plan generated by a decision-theoretic plan-
ner, which establishes the sequence of actions that will allow
to reach the optimal operation of a steam generator (Reyes
et al. 2006). Operator actions are monitored and discrepan-
cies are detected regarding the operator’s expected behavior.
This behavior is followed-up using a model (obtained from
the optimal plan) represented as a Petri net (Petri 1962).
IAOT’s architectural components are described as follows.
Fig. 1 shows the following three main blocks: process side,
central module, operator side.

The simulator that represents the plant is on the process
side. The operator side includes the operator (human-
machine interface) and the observed actions. The central
module has 5 submodules: process model, task model, op-
erator model, Monitoring Operator Actions and interface.
The process model contains the MDP which generates the
optimal policy. In the task model, a temporal plan is gen-
erated. The operator’s model includes the advisor module.
The monitor of the operator’s actions contains a Petri net
model just for the actions sequence.

The process starts with an initial state of the plant, usually
under an abnormal condition; so the operator should return
the plant to its optimum operating condition using some con-
trols. Considering this situation, an optimal policy is gener-
ated based on an MDP, and an a temporal plan is obtained to
reach the desired state. This plan has nodes that represent ac-
tions whose temporary relationship are represented through
arcs. The model into the monitor of the operator’s actions is
applied in order to follow the sequence of actions from the
operator to compared against those actions recommended by
the adviser. If an error is detected when the action performed
by the operator deviates from the optimal plan, either in the
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type of action or its timing. Depending on the of error and
the operators model (novice, intermediate or advanced), an
advice message is generated. These messages give evidence
of the incorrect actions completed by the operator or the crit-
ical plant conditions, and suggest the correct actions. If the
error is not critical the training session continues, otherwise
it is terminated.

The assistant detects the differences between the executed
and recommended actions, gives advice to the trainee and if
necessary stops the current case. Depending on the opera-
tor’s performance, the advisor presents a new case through
the case generator module. This module contains several
predefined scenarios for selection, with different complexity
levels. Through an operator’s interface the trainee interacts
with the system. This interface represents the objects, the
instruments and the application domain information which
the operator uses to complete the task.

Domain
We have considered as a training scenario the operation
of the steam generation system in a power plant. In this
process, and under certain conditions, the drum level be-
comes unstable and the operator has to return it to a safe
state using the control valves.

Figure 2: Schematic diagram for the steam section in a com-
bined cycle power plant, indicating the four variables used
in the explanation-framework. one of these is selected as a
relevant variable for each state-action

Figure 2 depicts the main elements considered in the train-
ing scenario: steam drum, turbine, generator and control
valves. The main variables in this process are:

1. Drum pressure (Pd)

2. Main steam flow (Fms)

3. Feed water flow (Ffw)

4. Power Generation (G)

In this domain the operator can command the process
opening or closing control valves (Fms, Ffw). The null
action is also possible to be selected.

Built-in Explanations
As a first stage towards explanation generation, we started
by defining a set of explanation units with the aid of a do-
main expert, to test their impact on operator training. This
explanation units are stored in a data base, and the assistant
selects the appropriate one to show to the user, according to
the current state and optimal action given by the MDP.

The MDP representation establishes the optimal action
given a plant state (optimal policy). Explanations are ex-
tracting from the MDP optimal policy by considering: a) the
optimal action for the current state; b) the relevant variable
(VarRel) for each action (determined by the expert); and c)
the most adequate explanation that justifies the action. These
explanations are defined by an expert and are encapsulated
in explanation units (UnidExp), an example of an (UnidExp)
is show in Fig. 3.

Figure 3: An Explanation Unit generated for a trainee as a
consequence of an action taken during a real training ses-
sion.

The built-in UnidExp depicted in Fig. 3 was generated
by the IAOT during a training session. An UnidExp has
two main components, the first one (left side) is an explana-
tion and the second one (right side) is the selected relevant
variable (VarRel). Both sides (left and right) are the built-
in explanation for a certain incomplete task due an incor-
rect action taken by the trainee. The two components in an
UnidExp are directly related sice the VarRel is an important
component to fit the explanation in left side, for example,
for the VarRel = Ffw in the right side, the explanation in
the left side of the Fig. 3 show the text: ”Acción que debió
haberse tomado: Nula”, means: ”Action that must be taken:
Null” due the VarRel, and the text: ”Explicación - 1. Re-
alizar una acción nula (optimo) ...”, refers to: ”Explanation
- 1. Taking the action Null (optimal) at this point is given
that the feedback water flow level is descending to the set
point due the normal ascending of the load”, and the text
”2. El nivel se dirige (descenso) a su punto de ajuste, por lo
que es correcto realizar la accin nula (optimo)”, means: ”2.
The level is towards (descending) the set point, therefore is
correct to take the Null action (optimal)”.
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Then, from the optimal policy, the two main components
to generate a complete UnidExp are: 1. An optimal action
given the state, and; 2. A relevant variable (VarRel) given the
action-state. Therefore, the first component of the UnidExp

is an explanation of why the the specific action is selected
given the current plan state. In the current implementation,
a set of templates were defined for typical plant conditions
with the aide of an expert in the domain. These templates
are stored in a data base. Based on the plant state and the
optimal action, the assistant extracts from the data base the
most adequate template, which is presented to the user.

The second component (VarRel) is more critical under the
current situation and which is modified by the correct ac-
tion. A simplified representation of the state space includes
2 variables or dimensions and the expected value of some of
the states obtained by solving the MDP. For the state in the
variables an optimal action corresponds as an arrow point-
ing to next state. For instance, the (VarRel) is V1, which is
the variable in the Y axis in the state space, modified by the
optimal action.

The Built-in explanation method starts with a representa-
tion of the optimal policy as a temporal evolution of the main
variables of the process. An example of evolution of some
of the variables and the optimal actions are shown in Fig. 4.
In this case there are 4 main variables, G, Pd, Fms, Ffw,
where G = Generation; Pd = Dome pressure; Fms = Main
steam flow, and; Ffw = Flow water feedback. The variable
A depicts the actions executed at different times. Therefore,
an expert domain analyze and selects from this policy rep-
resentation the source of the explanation. For example, for
the first action that is highlighted in the figure, the VarRel is
Pd which has reached a maximum value, and it starts to de-
crease as a result of this action and the associated UnidExp

will explain this to the operator.

Figure 4: Temporal evolution of the 4 main variables and the
action. The relevant variable, Pd for the state-action at the
start of the interval is highlighted.

In summary, we have designed as a first stage an expla-
nation mechanism based on an optimal policy derived from
an MDP, and explanation units defined by a domain expert.
Using this mechanism, whenever the IAOT detects an error
by the user, it gives him advice by displaying the correct ac-
tions and the associated explanation. In the next section we
show empirical evidence that these explanations help in the
learning process.

Preliminary Results
To evaluate the effect of the explanations on learning, we
performed a controlled experiment with 10 potential users
with different levels of experience in power plant operation.
The set of participants was divided in two groups: 1. Test
group (G1): it uses the IAOT with an explanation mode, and
has five participants in a three-level profile (novice, inter-
mediate and advanced); 2. Control group (G2): it uses the
IAOT without explanations, only advice. Group G2 has a
five participants with the same three-level profile.

Figure 5: User interface. In the background it is the simula-
tor, controls and advisor.

Each participant has to control the plant to reach the op-
timal state under an emergency condition using a simulator
and with the aid of the IAOT. Fig. 5 shows the system in-
terface, including an UnidExp. A record is kept for each
session, including if the user reached the goal or how much
did he achieved. During each session, the suggested actions
and detected errors are given to the user, and for G1, also an
explanation.

A case was presented to each user according to his level,
and was given up to 5 opportunities to reach the desired
state with the help of the IAOT (G1 with explanations Fig.
6 left side and G2 without explanation Fig. 6 right side).
Then, without the aide of the assistant, the user has to op-
erate the plant (simulator) under a similar situation. Again
each participant was given 5 opportunities. For each user in
both groups we obtained the percentage of task completion
achieved in each opportunity. We adjusted a line to each
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group to show the tendencies. Fig. 6 summarizes the re-
sults, showing a point corresponding to the percentage of
task completion for each participant’s opportunity (y axis)
and the number of opportunities (x axis). A line (obtained
with minimum squares) depicts the general tendency of each
group. There is a difference between both groups, with a bet-
ter tendency for the group with explanations (left) to reach
faster the proposed goals during a training session.

We consider that these results give evidence that explana-
tions help in the learning of skills such as those required to
operate an industrial plant. The hypothesis is that explana-
tions provide a deeper understanding of the process, so the
advice can be generalized to similar situations. Of course
this needs to be validated with further experiments.

Figure 6: Graphs comparing the performance of both
groups. Left: test group (G1). Right: control group (G2).

Automatic explanations generation
Although manually generated explanations are useful, these
are difficult to obtain, and to generalize to other plant sub-
systems or other domains. So we are interested in gener-
ating them automatically. For this, we consider at least 3
sources of knowledge: (i) a factored representation of the
transition models in the MDP, (ii) an structured represen-
tation of the optimal policies and value functions, and (iii)
domain knowledge stored in a knowledge base. Addition-
ally, we have defined a set of general explanation templates
based on the explanation units provides by the experts. Thus,
our proposal for an automatic explanation mechanism, con-
sists on extracting the relevant aspects from the knowledge
sources to fill-in an explanation template. This process is
illustrated in Fig. 7.

From the expert’s explanations, we observe that an impor-
tant aspect on all explanation units is a ”relevant variable”.
That is the state variable that is most critical under the cur-
rent situation, and which is usually affected by the optimal
action. So, as a first step towards explanation generation, we
developed a method to identify the relevant variable.

Relevant variable selection
The algorithm for determining the relevant variable consid-
ers two phases: (i) variable reduction, and (ii) variable rank-
ing. For this we consider a structured representations of the

Figure 7: Proposal for an automatic explanations generation
from a MDP factored representation.

transition function and the value functions for the MDP. The
transition functions are represented as two-stage dynamic
Bayesian networks (DBN) (Dearden & Boutillier 1997), one
per action; see Fig. 8. The value function (as an example of
a reward function structure) is represented as a decision tree
(DT) (Reyes, Ibarguengoytia, & Sucar 2004), see Fig. 9.

In the first phase, the variables that are not relevant to the
optimal action for the current state are eliminated using the
following algorithm.

Variable reduction algorithm
Given the DBN for the transition function under action

”a”, and the DT for the value function:

1. Eliminate all the variables that are non-connected (iso-
lated) nodes in the DBN.

2. Eliminate all the variables that depend only on the same
variable in the DBN (i.e., Xt+1 depends only on Xt), and
that do not change significantly (the conditional probabil-
ity table is close to an identity matrix).

3. Eliminate all the variables that do not appear in the DT
for the value function.

If after this stage, there remains more than one variable,
we consider the second phase, variable ranking. To rank
the variables, two aspects are considered: (a) the qualitative
change of the variable in the transition model, and (b) the
impact of the variable in the utility function.

To evaluate the qualitative change, we instantiate the vari-
ables at time t in the DBN, and via probability propagation,
we estimate the values at time t+1. Then we obtain the dif-
ference for each variable (δ X = Xt+1 - Xt), and qualify this
into a set of qualitative changes (for ex., no change, a small
change or a large change), according to a percentage of the
nominal values.

To evaluate the impact on the utility function, we use as a
heuristic the distance of the variable to the root of the tree.
That is, variables that are in upper levels of the utility tree
are more important.

Finally, we combined the two measures (using a weighted
linear combination) to obtain a single measure of relevance

32



Figure 8: An example of a DBN representation of the tran-
sition function for an action.

Figure 9: An example of a value function represented as a
decision tree.

of a variable, for the current state and its optimal action. The
top variable according to this ranking will be considered the
relevant variable for the explanation.

We are currently evaluating this approach by comparing
the relevant variable selected by our method to the one pro-
posed by the expert for each explanation unit.

Conclusions and future work
In this work a new MDP-based approach for an automatic
generation mechanism based on a structured representation
of the transition and utility functions is presented. We de-
scribed an algorithm to select the relevant variable, which
is a key component of the explanations defined by the ex-
pert. Adequate explanations are selected based on the op-
timal policy. A catalog of explanation units is defined for
each domain. Each explanation unit contains an explana-
tions list for the action-state and a relevant variable. A con-
trolled user study shows that explanations have a positive
impact on learning. The results show a better performance
for the users with explanations with respect to those without.

As a future work, we are developing an Explanation
Model to complement the automatic mechanism. The built-
in explanations provided by the expert will be compared

with those generated by the automatic mechanism. The use
of a factored representation is presented as a proposal.
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