
A Stereotypes-Based Hybrid Recommender System for Media Items

Guy Shani and Amnon Meisles and Yan Gleyzer
Department of Computer Science

Ben Gurion University, Israel
{shanigu,am,ygleyzer}@cs.bgu.ac.il

Lior Rokach and David Ben-Shimon

Department of Computer Science, Department of Information Systems Engineering

Ben Gurion University, Israel

{liorrk,dudibs}@bgu.ac.il

Abstract

Many Recommender Systems use either Collaborative Filter-
ing (CF) or Content-Based (CB) techniques to receive recom-
mendations for products. Both approaches have advantages
and weaknesses. Combining the two approaches together can
overcome most weaknesses. However, most hybrid systems
combine the two methods in an ad-hoc manner.

In this paper we present an hybrid approach for recommen-
dations, where a user profile is a weighted combination of
user stereotypes, created automatically through a clustering
process. Each stereotype is defined by an ontology of item
attributes. Our approach provides good recommendations for
items that were rated in the past and is also able to handle new
items that were never observed by the system.

Our algorithm is implemented in a commercial system for
recommending media items. The system is envisioned to
function as personalized media (audio, video, print) service
within mobile phones, online media portals, sling boxes,
etc. It is currently under development within Deutsche
Telekom Laboratories - Innovations of Integrated Communi-
cation projects.

Introduction

Recommender Systems — systems that recommend items
to users — can be found in many modern web sites for
various applications such as helping users find web pages
that interest them, recommending products to customers in
e-commerce sites, recommending TV programs to users of
interactive TV and showing personalized advertisements.

There are two dominating approaches (see e.g. Mon-
taner (Montaner et al. 2003)) to creating recommendation
systems. The Collaborative Filtering (CF) approach con-
siders the recommended items only by a unique identifier
and recommends items that were purchased together, ignor-
ing any attribute of the item. Content-Based (CB) recom-
mendations are generated based on an item profile — a set
of attributes of an item — discarding purchase information.
Each of these methods has its pros and cons but it seems that
a hybrid approach can overcome most of the disadvantages
of the two methods.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Modern systems avoid querying the database (of either
user-item ratings of item or item descriptions) directly and
adopt a statistical model (e.g. Decision Tree, SVD ma-
trix, Dependency Network) to allow scaling up to millions
of users and items. Stereotypes (also known as commu-
nities) are a way to define an abstract user that has gen-
eral properties similar to a set (community) of real users.
Stereotypes are used in recommender systems for varying
purposes, ranging from initial user profile creation to gener-
ating recommendations (Montaner et al. 2003).

All methods use some type of a user profile (or user
model) for recommendation. CF systems usually maintain
a vector of rated items while CB systems maintain a rated
set of item attributes. We suggest creating a set of stereo-
type content-based profiles and using an affinity vector of
stereotypes as the user profile.

In this paper we present a recommendation system,
called MediaScout, that is currently being implemented for
Deutsche Telekom Laboratories and intended to be used in
mobile phones in Germany for recommending media items
such as clips and movie trailers for viewing over the cellular
phone. We therefore use media data as examples in this pa-
per but note that our system can be used for other purposes as
well. The system is designed to allow mobile, portal or sling
box users to obtain most appropriate content (both based on
user preferences). As an example, MediaScout provides an
entertain me option for a user (e.g., waiting for a bus), which
when selected delivers content that fits user’s personal pref-
erences through her mobile phone.

We suggest to classify new users to clusters through an
interactive questionnaire, generated automatically from the
stereotypes after each update. Existing users are automati-
cally classified to new stereotypes through the update pro-
cess and do not need to undergo the questionnaire again.

Recommender Systems

With the explosion of data available online, recommender
systems became very popular. While there are many types
of recommender systems ranging from manually predefined
un-personalized recommendations to fully automatic gen-
eral purpose recommendation engines, two dominating ap-
proaches have emerged - Collaborative Filtering and Con-

76



tent Based recommendations1.

Collaborative Filtering

Collaborative filtering stems from the idea that people look-
ing for recommendations often ask for the advise of friends.
Over the internet the population that can supply advises is
very large. The problem hence shifts into identifying what
part of this population is relevant for the current user.

CF methods identify similarity between users based on
items they have rated and recommend new items similar
users have liked. CF algorithms vary by the method they use
to identify similar users. Originally Nearest-Neighbor ap-
proaches based on the Pearson Correlation, computing sim-
ilarity between users directly over the database of user-item
ratings were implemented. Modern systems tend to learn
some statistical model from the database and then use it for
recommending previously rated items to a new audience.
Model-based approaches usually sacrifice some accuracy in
favor of a rapid recommendation generation process (Breese
et al. 1998), better scaling up to modern applications.

The main advantage of CF is that it is independent of the
specification of the item and can therefore provide recom-
mendations for complex items which are very different yet
are often used together. The major drawback of this ap-
proach is the inability to create good recommendations for
new users that have not yet rated many items, and for new
items that were not rated by many users (known as the cold-
start problem).

Content-Based recommendation

The ideas of content-based (CB) recommendations originate
in the field of information filtering, where documents are
searched given some analysis of their text. Items are hence
defined by a set of features or attributes. Such systems de-
fine a user using preferences over this set of features, and
obtain recommendations by matching user profiles and item
profiles looking for best matches. Some researchers (Mon-
taner et al. 2003) separate methods that learn preferred at-
tributes from rated items (called content-based) from meth-
ods that ask the user to specify her preferences over item
attributes (called demographic filtering), but we refer to all
methods that recommend based on item attribute preferences
as content-based recommendation.

Content-based approaches rarely learn statistical models
and usually match user profiles and item profiles directly.
User and item profiles are very sensitive to profile definitions
— which attributes are relevant and which attributes should
be ignored. It is also difficult to create an initial profile of
the user, specifying the interests and preferences of the user;
Users are reluctant to provide thorough descriptions of the
things they like and do not like. It is also possible that users
are unaware of their preferences. For example, a user cannot
know whether she likes an actor she never seen. In fact the
acquisition of user preferences is usually considered a bot-
tleneck for the practical use of these systems. Content-based
recommendations may also result in very expected items and

1Some researchers (e.g. (Burke 2002)) further divide these
classes, but we restrict ourselves to the definitions below.

may not be able to direct the user towards items she is un-
aware of but may like.

Nevertheless, CB systems can easily provide valid recom-
mendations to new users, assuming that their profile is spec-
ified, even if they never used the system before. CB engines
can provide recommendations for new items that were never
rated before based on the item description and are therefore
very useful in environments where new items are constantly
added.

Hybrid approaches

The disadvantages CF and CB can be reduced by combin-
ing the two approaches into a hybrid method (Burke 2002).
Many hybrid approaches use two recommendation algo-
rithms and combine their results in some manner, such as
combining the results by their relevance, mixing the output
of the two algorithms, switching from CB into CF once the
cold-start phase is over, or using the output of one algorithm
as input to the second algorithm.

For example, the PVT system (Smyth and Cotter 1999)
that operates in a similar setting of online recommendations
to TV shows, maintains content-based user profiles and op-
erates two distinct recommendation engines. The CB en-
gine recommends based on program similarity to the pro-
grams the user has liked so far, and the CF engine finds the
k nearest neighbors based on user profile similarity and rec-
ommends programs that the neighbors liked. The final list
of recommendations is then created by combining the two
lists.

It seems that a more appropriate combination would be to
create an algorithm that is by nature a hybrid of CF and CB,
not an ad-hoc combination of two independent algorithms.

Stereotypes

Modeling users by stereotypes (or communities) is a well
studied concept (Rich 1998). Stereotypes are a generaliza-
tion of users — an abstract user entity that provides a general
description for a set of similar users (a community).

In CF systems stereotypes are described by a set of rat-
ings over items, and user similarity can be identified by
their affinity to various stereotypes. In CB systems stereo-
types are a set of preferences over item attributes, and users
can belong to a single stereotype (Rich 1998) or to multi-
ple stereotypes (Orwant 1995). Recommendations are com-
puted based on the stereotype and then normalized given the
user affinity to a stereotype.

Feedback

In order to adapt and refine recommendations to changes in
user tastes, most recommender systems rely on some mech-
anism of feedback from users. Feedback is usually in the
form of a rating over an item that can be either numeric (on
a scale of, e.g., 1 to 5) or binary (like/dislike).

As users are usually reluctant to rate items explicitly,
some research focused on obtaining implicit ratings — es-
timating the user ratings through her observable operations.
For example, in the domain of web browsing, if the user
scrolled down the article, or clicked on a link inside the arti-
cle, then we can assume that the article was useful for her. If

77



the user, however, only read the title and then went back to
the former page, we can assume that the web page was not
useful.

MediaScout

This paper presents the MediaScout system, designed to de-
liver media content recommendations over mobile phones.
The system uses a stereotype approach combining elements
from both content-based and collaborative filtering ap-
proaches. We explain below how the system is constructed,
how new users are introduced to the system, how recom-
mendations are generated and how to update the model.

Stereotype Model

We take the content-based approach here, defining an ontol-
ogy over media items, defined by an expert in the field. It is
reasonable to assume that an expert will be able to identify
the key features relevant for people when they choose which
movie to see. A media item profile is an instantiation of this
ontology, and a stereotype profile assigns relevance values
for various attribute values of the ontology. For example, a
movie profile may have Bruce Willis and Samuel L. Jackson
as actors, and a stereotype profile may assign to Bruce Willis
as an actor the value 0.97 and to Mel Gibson as an actor the
value 0.85 while assigning to Mel Gibson as a director the
value 0.67.

Receiving recommendations for stereotypes can be done
by matching item profiles with the stereotype profile, result-
ing in relevance values over media items.

A user in our domain is modeled by an affinity list of
stereotypes. A user may belong for example to one stereo-
type with relevance 0.8 and to another stereotype with rele-
vance 0.7.

Initialization

Our initial stereotypes are manually defined by an expert.
An expert in the field of movies is able to identify several
types of movie watchers, such as people who like action
movies and people who prefer Sci-Fi. Identifying the rel-
evant actors, directors and other attributes of these stereo-
types will also be done by the expert.

When a new user registers into the system we need to cre-
ate an affinity vector of stereotypes for her. Research in the
area has mainly focused on using a set of examples (e.g. a
number of movies the user likes) or through a form spec-
ifying the user interests. Such approaches are problematic
— while rating observed movies is a painless process, us-
ing only a set of rated movies can cause the system to later
recommend only movies similar to the ones the user rated.
Asking users to fill lengthy forms is usually considered a te-
dious chore and users tend to either avoid it or answer ques-
tions arbitrarily (e.g. always picking the first answer).

Smyth and Cotter (Smyth and Cotter 1999), for example,
request a new user to fill a form specifying the features she
likes and programs she likes and dislikes. They note that
users were willing to fill the easier parts of the part but re-
luctant to look for programs within the lists.

Methods that ask the user to specify her preferences over
item attributes are also known as preference elicitation or
preference based search. Viappiani et al. (Paolo Viappi-
ani and Evaluating 2006) describes a preference elicitation
method and an example-based critiquing, that avoids the
problems of preference fluency, domain knowledge and user
effort.

Figure 1: MediaScout questionnaire example.

We propose to combine these two approaches by ask-
ing the user a set of simple questions, such as whether she
likes an actor, picking a favored movie out of a set of 2 or
3 movies. An example of such a question can be seen in
Figure 1. We choose an anytime approach — the user may
answer as many questions as she likes. Whenever the user
stops answering questions we have some classification of the
user into stereotypes. The advantages of the anytime ap-
proach have been noted in the past (Pearl Pu and Torrens.
).

Our approach is based on a decision tree, with questions at
the decision nodes. Each node, both leaves and inner nodes,
is assigned an affinity vector of stereotypes. If the user does
not wish to answer more questions, the current affinity vec-
tor will be assigned to her. The more questions the user
answers the more specific her affinity vector becomes.

Recommendations

Once the system obtains a user profile definition in the form
of an affinity vector, we can generate recommendations for
this user, based on the relevant stereotypes.

First, we need to compute recommendations for the
stereotypes. As a stereotype describes a content-based pro-
file, explicitly stating preferences over the possible values of
item attributes, we activate a matching engine that computes
the relevance of a media item to a stereotype. As the num-
ber of stereotypes is not expected to be too high, these lists
can be persistent in the database. Moreover, it is expected
that many items will have low relevance to stereotypes so
the lists can be truncated after some threshold.

Once a request for a recommendation for user u with

78



affinity vector v is received, we compute the relevance of
media item i to user u as follows:

relevance(i, u) =
∑

s∈stereotypes

v(s)relevance(i, s) (1)

where relevance(i, s) is the persisted relevance of item i
to stereotype s. Note that this process is much faster than
matching each user with all items in the database using the
matching engine, and therefore can scale up much better.

We would also like to surprise the user sometimes with
unexpected content. It is useful to try and explore the user
preferences by presenting new media content that the user
is unaware of, as many users cannot accurately define what
they like (e.g. (ten Hagen et al. 2003; Ziegler et al. 2005)).
Presenting to the user a list of 5 recommendations we can
both maintain a high level of acceptance and explore, by al-
ways fixing the first 3 recommendations to the most likely
items as predicted by Equation 1, and exploring over the last
2 items only. Exploration is done over two different axes
— using an ǫ-greedy exploration we select items that have
lower relevance given the relevance list. More exploration
is done by sometimes randomly boosting the relevance of a
random stereotype in the relevance equation. Figure 1a il-
lustrates the list of recommendations that the user gets when
she presses the ”EntertainMe” button.

Feedbacks

Our system supports both positive and negative feedbacks.
As we believe that users find it easier to specify binary,
like/dislike feedbacks rather than numeric values, we use
binary feedback, but our system can be easily adapted for
numeric feedbacks as well.

We use two different types of feedbacks — explicit and
implicit ratings. For explicit ratings the user can select while
watching a media item whether she likes or dislikes it. When
a user is presented with a list of 5 items and selects the 3rd
item we assume that she did not like the first two items, and
notify the system of a negative response for the first two
items. Our media content domain uses streaming technol-
ogy to show media content to users. The server is therefore
aware whether the user watched the item fully or decided to
stop after a few seconds. If the user decided to stop watch-
ing after a few seconds we assume that she did not like the
media item and the system is notified of a negative rating.

After a user requests the MediaScout for recommenda-
tions, the system displays a list of recommendations. When
the user selects a recommendation she may view it (pressing
the ”play” button) and provide positive or negative feedback
using the the combobox below (see Figure 1b).

The gathered feedbacks (implicit and explicit) are used for
both model update methods we discuss in the next section.

Model Update

In most environments the relevant items list for a user need
to be updated every so often due to the insertion of new
items, changes in the information we have over the user
(through feedback for example) and general new trends of
user tastes. Our system implements three update phases de-
signed to refine the stereotype model.

(a) (b)

Figure 2: MediaScout recommendation list.

Affinity vector update A rapid online update, executed
after each feedback received from the user.

When a feedback from a user (either positive or negative)
is received, we attempt to update the affinity vector accord-
ingly. We look for the rated item in the relevance lists of the
stereotypes. If an item rated positively is relevant to a stereo-
type, we boost the relevance of the stereotype to the user. If
an item was rated negatively by the user, we lower the rel-
evance of stereotypes that recommended it to the user. We
use a decaying λ learning factor so that the user affinity vec-
tor will eventually converge. λ is reset once the stereotype
model is rebuilt (see below).

Recommendation lists recomputation Due to the addi-
tion of new items into the database, it is required to recom-
pute the persisted recommendation lists of the stereotypes.
We compute new relevance values for new items, and merge
them into the persisted lists of recommendations. As we pre-
fer to recommend to the user new items, we also decrease the
relevance of items currently in the lists by a constant factor
(known as ’aging’ the items). Note that recomputation of
existing item relevance is unneeded.

The frequency of this recomputation depends on the ap-
pearance of new items in the database. In our case it is suf-
ficient to execute the recomputation only once a day.

Stereotype model reconstruction As the initial stereo-
type model is created by an expert and the initial user affin-
ity vectors are manually created through a questionnaire,
we introduce an automatic stereotype discovering phase de-
signed to find new stereotypes automatically and compute
new affinity vectors for users. This automatic construction
ignores the current user model of affinity vectors of stereo-
types.

To create new stereotypes we use a clustering algorithm.
Cluster-analysis is a process that receives as input a set of
objects, user profiles in our case, and generates clusters
(groups) of similar users. The users within a group have
high similarity and the users between groups are less simi-
lar. The number of clusters can be manually predefined or
can be automatically induced by the clustering algorithm.

79



In hard clustering, the objects are divided into crisp clus-
ters, where each object belongs to exactly one cluster. In
soft (fuzzy) clustering, the objects belong to more than one
cluster, and associated with each of the objects are member-
ship grades which indicate the degree to which the object
belongs to the different clusters. For each cluster, a central
stereotype profile (centroid) is generated. The centroid is
a weighted average of the users’ profiles that belongs to the
cluster based on their membership grades.

In this application we use the FCM (Fuzzy C-Means) al-
gorithm (e.g. (Kolen and Hutcheson 2002)), mainly due to
its efficient implementation that scales up well to a large
number of users. Moreover the FCM uses the probabilistic
constraint that the memberships of an object across clusters
sum to 1. This constraint suits our approach for weighting
stereotypes.

Instead of using the usual distance metric of FCM, we
suggest to evaluate the similarity of two users with the Pear-
son’s Correlation metric (see, e.g. (Breese et al. 1998)),
that compares the similarity of ratings for items (positive
and negative). Our experiments show it to produce superior
results to standard vector distance metrics such as L2.

The heavy update phase includes four steps:

• User Representation Construction: for each user we com-
pute a profile similar to the stereotype profiles — a list of
preferred values for each possible attribute in the ontol-
ogy. This profile is automatically computed by observing
the list of media items rated positively. For each value
of an attribute of an item, we add the value into the user
profile. For example, if the user has liked a movie with
Bruce Willis, we add Bruce Willis to the list of actors pre-
ferred by the user. This can be thought of as merging the
media items together into a single profile. This profile is
used only for the update process, not for computing rec-
ommendations for the user.

• Clustering User Profiles: we now use a clustering algo-
rithm to create clusters of similar users using a distance
metric over the similarity of user profiles computed in the
former step. We use a soft-clustering algorithm, resulting
in a list of cluster centroids and for each user, its distances
from the centroids of clusters.

• Stereotype Construction: we use each cluster as a new
stereotype. To create the stereotype profile, we merge
users that are close to the cluster centroid more than a
predefined threshold. A cluster (stereotype) profile is de-
fined by the attribute values the users close to its centroid
have favored. This merging is weighted by the distance
of users from the centroid so that closer users have higher
impact.

• Affinity Vector Reconstruction: for each user, we define
her new affinity vector as the membership grades to the
clusters. Note that these grades are already computed by
FCM and there is no need for additional computations.
The user shall no longer refer to the manually gener-
ated stereotypes, only to the new, automatically generated
ones.

We still maintain the manually generated stereotypes and

use them to define new users. New users will not have affin-
ity to the automatically generated stereotypes until they will
undergo a model reconstruction phase. Alternatively one
can automatically learn a new decision tree for the question-
naire from the preferences database by using tree induction
algorithms.

Discussion

Our system combines features from various approaches to
recommendations. Our initial user affinity vector construc-
tion is content-based oriented in that we try to identify at-
tributes of the content of the media item (e.g. actors, direc-
tor, genre) that the user prefers.

Our heavy update incorporates aspects of content-based
(CB) and collaborative filtering (CF). Merging media item
attributes to create a user profile of preferred attributes of
media elements is classic CB, while clustering users to-
gether is more CF oriented. When we create the stereotypes
through clustering, we average over a number of users. The
resulting recommendations are not based only on items the
user has seen and liked, but also on items that similar users
have seen and liked, which is a CF approach to recommen-
dations.

The task of classifying new users to stereotypes is a ma-
jor concern for us. We ask users to go through a question-
naire, providing answers to questions to provide information
as to their preferences. Our approach is anytime, allowing
the user to stop answering questions whenever she chooses.
If a user stops anywhere within the questionnaire, we still
have a classification of the user to stereotypes.

Our questionnaire is also easy to use; Questions are short
and require the user to select one of a handful of items (e.g.
a movie), or attribute values (e.g. and actor). Answers are
also provided through images of the available options that
the user has to click upon.

The disadvantages of the various approaches are solved.
The cold start problem is handled using expert knowledge.
The difficulty of having the user properly specify her pref-
erences is eased through our interactive any-time question-
naire. Moreover, even if the profile is inaccurate, it will be
refined through our light and heavy updates to better reflect
the user preferences. The common problem of CB systems
that can recommend to the user only items similar to the
ones she has seen and liked does not exist here because users
also receive recommendations based on data regarding pref-
erences of similar users.

Experimental Evaluation

Unfortunately, we cannot yet report results from our accep-
tance tests. To examine the predictive power of the proposed
algorithm, we run a prediction test comparing our approach
to a number of other algorithms to show its capabilities.

Dataset Used

In order to make our results reproducible, we provide here
the results over a public domain dataset. We used the Movie-
Lens 2 database, consisting of 5868 users who rated at least

2www.movielens.org

80



20 movies. The total number of movies in the database is
3288. As our approach requires movie content data, such
as actors directors and genres, we used the online Movie
Database (IMDB3) to collect content for our database. Fol-
lowing Breese et al. (Breese et al. 1998), we transformed
the ratings, originally in the range of 1 to 5 into binary, like-
dislike ratings.

We trained our model over 1000 users using the following
method: going over all the movies a user liked, we summed
the number of times each attribute value (such as a specific
actor name) appeared, divided by the popularity of the at-
tribute value. For example, if the user liked 3 movies with
Harrison Ford, out of a total of 23 movies with Harrison Ford
in our database, then the user’s rating for Harrison Ford is
3

23
. Each attribute class (e.g. Actors) ratings for each user

were then scaled to be in the [0..1] range.

This process resulted in a set of user profiles, that were
then clustered as described in Section . We then computed
the recommendations lists for the resulting stereotypes using
the matching engine.

Evaluation Measures

For each user that was not included in our training set we
used a part of the movies she liked in order to generate a
profile as explained above. We then used the same matching
engine (used also by the clustering algorithm) to compute
the relevance of this user to each of the clusters — resulting
in an affinity vector. We computed a set of recommenda-
tions for the user based on this affinity vector. To assess the
relevance of the resulting recommendations list, we checked
the location of the movies the user liked but were not used
in the profile construction. A grade to the recommendations
list for user a was computed (following (Breese et al. 1998))
as follows:

Ra =
∑

i∈I

1

2i/α
(2)

where I is the set of locations of the test movies the user
liked in the recommendations list. The above metric assume
that each successive item in the list is less likely to be viewed
with an exponential decay. α is the viewing halflife and in
this experiment was set to 10. The grade was then divided
by Rmax — the maximal grade, when all test movies appear
at the top of the list.

Following Breese et al. we ran three different tests trying
to estimate the accuracy of the prediction given the amount
of input data. In the first test (”all but 1”) a single movie
was selected from the movies liked by the test user and held
out. The user profile was then generated using the rest of the
movies, and we then computed a recommendation list for
this user and graded it, based on the location of the missing
item in the recommendation list. The two other tests con-
sisted of building a user profile using 5 (”given 5”) or 10
(”given 10) movies and grading based on the location of the
rest of the movies the user liked in the recommendation lists.

3www.imdb.com

Compared Algorithms

We compared our approach to a number of other algorithms.
First, we compared our results to Pearson’s Correlation —
a well known Collaborative Filtering algorithm that is con-
sidered to provide the best CF recommendations (see, e.g.
(Breese et al. 1998)). Pearson’s Correlation is used to es-
tablish the highest possible score available. We also com-
pared our approach to random recommendations — the low-
est possible grade.

Our true competition, however, is versus a straight for-
ward, content based approach. To create such recommenda-
tions, we create test stereotypes as explained above, and then
compute direct matching between all movies in the database
and the profile. Movies in the recommendation list are ar-
ranged in decreasing match value.

Comparative Results

Table 1: Predicting MovieLens movies.
Method All but 1 Given 5 Given 10
Correlation 4.9 30.3 36.7
Stereotype 3.6 25.1 25.5
Profile 1.7 11.0 11.5
Random 0.37 4.96 4.95

Unseen movies

Stereotype 9.2 24.7 26.7
Profile 3.8 11.1 11.4
Random 1.6 6.8 7.0

Table 1 shows the grades obtained by the Pearson’s Corre-
lation (denoted Correlation), our own stereotype-based rec-
ommendations (denoted Stereotype) which has arbitrarily
used 40 stereotypes, standard content based matching (de-
noted Profile) and random recommendations (denoted Ran-
dom) over the MovieLens dataset.

As we can see, while our hybrid approach provides less
accurate results than the Correlation algorithm, it is much
better than the direct, content-based movie matching against
a user profile. In fact, direct matching is closer to random
recommendations than to our approach. This clearly demon-
strates how data collected over similar users (CF type data)
can help us to strengthen content based recommendations.

As our engine uses an hybridized approach, it would be
also appropriate to compare it to a recommendation ap-
proach that combines a CF algorithm and a CB algorithm.
There are a number of ways two recommendation engines
can be combined, creating a hybrid (Burke 2002):

• Combined list: create an interleaved list of the two en-
gines.

• Weighted combination: compute the hybrid rating for a
movie as a linear combination of the two engines.

• Waterfall: execute one engine, receiving a list of recom-
mended items, order the items in the list using the second
engine.

We implemented all approaches, using Correlation as the CF
engine and Profile as the CB engine. In all cases, the results

81



of the hybrid engine were inferior to using Correlation alone,
and in most cases (except for the weighted combination) also
inferior to our Stereotype approach. A closer look at the
actual lists also shows that the correct ratings always came
from the Correlation algorithm and that in the best cases the
Profile engine simply did not alter the original Correlation
list much.

Predicting New Movies

As we mention earlier, a well known problem with CF al-
gorithms is their inability to predict new items that the algo-
rithm was not trained upon. To test whether our algorithm
can handle unobserved items using the item contents, we
executed a second experiment. We divided the movies in
the database into a training set (3/4 of the movies — 2466
movies) and a test set (822 movies). For each user in the
users test set, we computed its profile using the movies in
the movies train set and tried to predict the movies in the
movies test set.

In this scenario Correlation cannot predict any missing
movie, since it does not contain the test movies in its
database. Thus, we compared only the Stereotype, Profile
and Random methods.

As the results in Table 1 show, our stereotype approach
is much better than the direct matching approach for this
scenario too. This provides a strong evidence towards our
system capability to handle unobserved items too, avoid the
cold start problem.

In the case of unseen items, the hybrid of two recommen-
dation engines cannot help, as the CF engine supplies no re-
sults and therefore all the above approaches reduce to only
executing the CB engine.

Model Size

The previous results have been obtained by executing the
system with 40 stereotypes. We examine the sensitivity of
the results to the number of stereotypes. Table 2 presents
the results for previously seen movies and previously unseen
movies. Each table specify the results obtained for 10, 20, 30
and 40 stereotypes. The results indicate that for previously
seen movies the number of stereotypes has a minor effect.
For all three cases (All but 1, Given 5 and Given 10) 20
stereotypes provide the best results.

For previously unseen movies one can identify a small
but consistent trend. The performance improves as one in-
creases the number of stereotypes. This implies that for
recommendation systems with frequent introduction of new
items (such in the case of media clips that can be found
in YouTube) one should set the number of stereotypes to a
relatively large number to achieve higher predictive perfor-
mance.

Related Work

As was noted by Burke (Burke 2002), most hybrid recom-
mendation systems combine two algorithms, a CB algorithm
and a CF algorithm by either filtering the input of one algo-
rithm into the other (Melville et al. 2002), executing the two
systems in parallel and combining their lists or other forms

Table 2: Using different model sizes.
# Stereotype All but 1 Given 5 Given 10

10 3.55 24.71 25.22
20 3.76 25.27 25.72
30 3.70 24.88 25.27
40 3.67 25.12 25.53

Unseen movies

10 8.44 22.68 24.55
20 8.73 23.51 25.39
30 9.03 24.18 26.15
40 9.24 24.71 26.74

of combinations. There is only a handful of algorithms that
combine features from various approaches together (Bala-
banovic and Shoham 1997). Schein et al. (Schein et al.
2002) also use content information over items in conjunction
with user ratings. They learn sets of actors a user prefers,
and then try to find a movie that best suites that set of actors.

Our questionnaire approach for initialization dates back to
Rich (Rich 1998), but we are unaware of other systems that
implement a decision tree based, anytime, interactive ques-
tionnaire similar to the one we use. Also, many systems are
designed to recommend web pages, where expert data is less
easy to mine, and as such, an expert input for initialization
is not very common.

Clustering was also used in the past for learning predic-
tive models. Usually, clustering is performed over user or
item ratings (Xue et al. 2005; Rashid et al. 2006) in order
to reduce the complexity of computing the neighborhood of
users. Li and Kim (Li and Kim 2003) cluster items based
on content and then compute user ratings for items based on
item similarity.

The system that is perhaps the most similar to our own is
the Doppelganger system (Orwant 1995) — a generic user-
modeling system that collects various data over users, cre-
ates user models in the form of affinity vectors of stereotypes
(called communities). The system can be used to generate
recommendations and employs similar ideas about stereo-
types and clusterings. Doppelganger, however, does not
have our questionnaire initialization mechanism although it
uses some expert data to create initial communities. It does
not use an ontology, as it is considered usable for any type of
items, and can therefore supply less focused content-based
data and probably needs more information to generate good
user models. It also does not have our light update mecha-
nism for rapid online model updates.

Conclusion

MediaScout — a commercial recommender system for rec-
ommending media content to users of mobile phones was
presented. It combines ideas from various approaches to
recommendations such as expert systems, collaborative fil-
tering and content based recommendations, in a single hy-
brid algorithm. The algorithm exploits the advantages of the
various approaches while minimizing their disadvantages.

This paper also explains how new users are introduced to
the system through a questionnaire, explaining its automatic

82



creation and usage.

The system is currently under development for commer-
cial deployment within the Deutsche Telekom Laboratories
- Innovations of Integrated Communication projects, and is
expected to be used in mobile phones of Deutsche Telekom.

Acknowledgements

Our matching engine, used for matching user profiles and
item profiles was developed by Sandra Zilles of DFKI labs.
Our ontology definition and item collection was supplied by
CognIT a.s. The project is funded and managed by Deutsche
Telekom Laboratories at Ben-Gurion University.

References

M. Balabanovic and Y. Shoham. Fab: content-based, col-
laborative recommendation. Commun. ACM, 40(3):66–72,
1997.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical anal-
ysis of predictive algorithms for collaborative filtering. In
UAI’98, pages 43–52, 1998.

R. Burke. Hybrid recommender systems: Survey and ex-
periments. User Modeling and User-Adapted Interaction,
12(4):331–370, 2002.

J. F. Kolen and T. Hutcheson. Reducing the time complex-
ity of the fuzzy c-means algorithm. 10(2):263–267, 2002.

Q. Li and B. Kim. An approach for combining content-
based and collaborative filters. In 6th international work-
shop on Information retrieval with Asian languages, pages
17–24, 2003.

P. Melville, R. Mooney, and R. Nagarajan. Content-
boosted collaborative filtering. In AAAI, 2002.

M. Montaner, B. Lpez, and J. L. De La Rosa. A taxonomy
of recommender agents on the internet. Artificial Intelli-
gence Review, 19:285–330, 2003.

J. Orwant. Heterogeneous learning in the doppelgänger
user modeling system. User Model. User-Adapt. Interact.,
4(2):107–130, 1995.

Boi Faltings Paolo Viappiani and Pearl Pu. Evaluating.
Preference-based search tools: a tale of two approaches.
In AAAI-06, 2006.

Boi Faltings Pearl Pu and Marc Torrens. User-involved
preference elicitation. In IJCAI’03, pages 56–63.

A. Rashid, S. Lam, G. Karypis, and J. Riedl. Clustknn:
A highly scalable hybrid model and memorybased cf algo-
rithm. In WEBKDD, 2006.

E. Rich. User modeling via stereotypes. pages 329–342,
1998.

A. I. Schein, L. H. Ungar A. Popescul, and D. M. Pennock.
Methods and metrics for cold-start recommendations. In
SIGIR, 2002.

B. Smyth and P. Cotter. Surfing the digital wave: Gen-
erating personalised TV listings using collaborative, case-
based recommendation. Lecture Notes in Computer Sci-
ence, 1650:561–567, 1999.

S. ten Hagen, M. van Someren, and V. Hollink. Explo-
ration/exploitation in adaptive recommender systems. In
EUNITE03, Oulu, Finland, 2003.

G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and
Z. Chen. Scalable collaborative filtering using cluster-
based smoothing. In SIGIR, pages 114–121, 2005.

C. Ziegler, S. McNee, J. Konstan, and G Lausen. Improv-
ing recommendation lists through topic diversification. In
WWW, 2005.

83


