
Improving E-Commerce Recommender Systems
by the Identification of Seasonal Products

Henrik Stormer
Department of Informatics

University of Fribourg
Bd de Perolles 90

1700 Fribourg
Switzerland

henrik.stormer@unifr.ch

Abstract

In recent years, the number of recommender systems
used in online shops has strongly increased and is be-
coming an important success factor for electronic com-
merce applications. A recommender system can be uti-
lized to suggest similar related or potentially interest-
ing products for a given customer or a set of products
for a marketing campaign. This paper shows how sea-
sonal products can be identified and included in the rec-
ommendation process to improve the quality of a rec-
ommender system. The approach was tested using real
life data from two companies selling working protection
and tools.

Introduction

In recent years, recommender systems have been vastly im-
proved and are becoming an important success factor for a
number of companies. A recommender system is a person-
alized information filtering technology that can be used to
either identify a set of products that will be of interest to a
certain user or to predict whether a particular user will like
a particular product. Recommender systems have been ap-
plied to different areas, for example in the field of books
(Linden, Smith, & York 2003), music (McCarthy & Anag-
nost 1998; Chao, Balthrop, & Forrest 2005) and movies
(Ling et al. 2005).

This paper concentrates on recommender systems for
electronic commerce. In this case, similar related or po-
tentially interesting products are suggested for a given cus-
tomer. A number of online shops already integrated a recom-
mender system in their web appearance, well known exam-
ples are Amazon (Linden, Smith, & York 2003) or CDNow
(Schafer, Konstan, & Riedl 1999).

The optimization presented in this paper is based on the
identification of seasonal products. Seasonal products are
products that are sold mostly during a part of the year, for
example in winter. Today’s E-commerce recommender sys-
tems do typically not include seasonal information. This
means, that a seasonal product like a winter coat could be
recommended to a customer in summer. It is obvious that
such a recommendation will lead the customer to question

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the quality of the system in general. This paper shows that
including seasonal information is a promising way to im-
prove the quality of a recommender system.

The remainder of the paper is divided into 4 sections and
is structured as follows: The next Section provides an in-
troduction to recommender systems. Section 3 shows how
seasonal products can be identified using transaction data.
Section 4 evaluates the proposed method using two different
real shop data sets. Finally, Section 5 concludes the paper
and presents an outlook.

Recommender Systems
The purpose of recommender systems is to recommend
products according to the users preferences. The broad area
of recommender systems was introduced in the mid-1990s
by some early papers on collaborative filtering (Resnick et
al. 1994). Since then the term recommender system has
become more common because it comprises content-based
filtering, collaborative filtering as well as hybrid approaches.

Recommender systems can be classified in three groups
based on the approach used to generate the recommenda-
tions (Adomavicius & Tuzhilin 2005):

1. Content-based filtering approach

2. Collaborative filtering approach

3. Hybrid approach

For the content-based filtering approach attributes are as-
signed to each product. By using information retrieval tech-
niques on those attributes it is possible to derive the similar-
ity between the products, so that two products with common
attributes have a grade of similarity (Basu, Hirsh, & Co-
hen 1998). The advantage of content-based filtering is the
possibility of precisely defining relations between products,
namely for the purpose of cross or up selling. However this
advantage comes up at a high price. On the one hand, this
approach requires the manual definition of a great number of
additional information, e.g. keywords and attributes for each
product. This information should always be up-to-date. On
the other hand, the content-based filtering uses complicated
data mining techniques to generate the personalized infor-
mation.

In contrast to content-based filtering, the collaborative fil-
tering approach only needs information about the users’ in-
teraction and transaction such as products ratings, orders

92

or clickstream information in order to provide recommen-
dations. All of this information is continuously provided
by the users when browsing the websites, buying or rating
products. Another major difference is that the collaborative
filtering approach is based on customer context information.
So the strength of this approach is its full automation and its
user-based semantic. However this approach requires a cer-
tain amount of data in order to provide valuable results, i.e.
the number of customers and more important the quantity of
users’ transactions (often called the cold start problem and
the first-rater problem).

The third class of recommender systems uses a hybrid ap-
proach which is a combination of the content-based and the
collaborative filtering (Burke 2002). This approach com-
bines the advantages of having a precise description of the
relationships between the objects based on the keywords and
on the users’ interactions. This allows pertinent recommen-
dations from the beginning with a continuous improvement
over time by gathering and using more and more users’ in-
formation.

Another well known classification distinguishes between
the way to pre-calculate results (Adomavicius & Tuzhilin
2005):

1. Memory-based approach

2. Model-based approach

The process for calculating recommendations consists of an
offline and online part. In the offline stage, data from the
customer’s profile is read and processed to improve the per-
formance when calculating recommendations in the online
part. Memory-based algorithms do not pre-calculate any re-
sults. This is sometimes called lazy learning. Model-based
approaches try to create a model in the offline stage. The
algorithm presented in this paper falls into this class. Other
approaches are based on Bayesian networks (Breese, Heck-
erman, & Kadie 1998) or statistical techniques (Hofmann
2004).

The algorithm presented in this paper falls in the collab-
orative filtering and model-based classes. The collabora-
tive filtering approach can be implemented by user-based or
item-based methods. Both take as input the rating matrix
with the customers in the row dimension and the products
in the column dimension. This two-dimensional matrix rep-
resents the relationships between users and products. Each
element at the intersection of a product and a customer will
contain a value between −1 and +1 representing the judg-
ment of the customer for the product where −1 denotes a
strong dislike and +1 a strong affection. The following Ta-
ble shows an example containing three products and three
users:

DVD DVD DVD
Lost in The Bourne The Life

Translation Supremacy Aquatic

Mr. Smith ∅ +0.5 ∅
Mr. Johnson −0.5 −1 +0, 5
Mrs. Miller +1 +0.5 ∅

In the example, Mr. Miller is a big fan of the product DVD
Lost in Translation and rated it with the highest value (+1).

However, Mr. Johnson does not like the product and there-
fore rated it low (−0.5).

When applying the user-based method, in a first step, sim-
ilarities between users are calculated. This calculation can
be achieved by applying different mathematical formulas. In
this paper, the similarity between the users is assessed using
the cosine method ((Resnick et al. 1994)). Once the simi-
larities between all users have been calculated a new matrix
with the customers on both dimensions and the similarities
as entries is returned:

Mr. Mr. Mrs.
Smith Johnson Miller

Mr. Smith −1 +1
Mr. Johnson −1 −0.8
Mrs. Miller +1 −0.8

Based on this matrix, it is possible to assign each user to a
group of most similar users (nearest neighbors). This group
is then used in a second step to derive the product recom-
mendations. The principle of the recommendation is pretty
obvious; if Mr. Smith is very similar to Mrs. Miller and if
Mrs. Miller strongly likes a product that Mr. Smith hasn’t
bought yet, the chance that Mr. Smith also likes this product
is rather high. The user-based method returns personalized
recommendation as each user receives propositions based on
his profile. In our example, it is likely that Mr. Smith is fond
of the product DVD Lost in Translation because he is very
similar to Mrs. Miller who has rated this product high.

In contrast to the user-based method, the item-based
method directly derives the similarities between the prod-
ucts. Once again, several mathematical approaches can
be used to calculate these similarities. In this paper, the
methodology of (Deshpande & Karypis 2004) has been cho-
sen.

A deeper description of algorithms for user-based and
item-based collaborative filtering as well as an analysis can
be found in the paper of (Sarwar et al. 2000).

Seasonal Products

What are Seasonal Products?

The problem of seasonal products, that are highly desirable
in one month but of no interest in another month has been
presented by other researchers (Schafer, Konstan, & Riedl
2001). However, up to our knowledge, no approach exist
that shows how to include seasonal products in a recom-
mender system. For this task, two main points have to be
fulfilled:

1. A seasonal product has to be identified.

2. A recommender system should include only the products
that are sold during the current season.

The identification of a seasonal product (the first step) can
be done automatically or manually. In the latter case, an
administrator has to define seasonal periods, in which the
product should be promoted. Typically, a seasonal product
has a high and a low season. In the high season, most of the
sales are made whereas in the low season, customers do not
order the product.

93

Jan.

0

Feb. March April May June July Aug. Sep. Oct. Nov. Dec.

5

10

15

20

Number
Of
Buys

88PBWA

Wintermercedes

Figure 1: Two seasonal products.

Our tests have shown that the automatic identification
of the high and low season (if there are seasons) is harder
than the second part, because once the low season has been
retrieved for all seasonal products, a product list can be
changed by removing all products with a low season. The
next section deals with the problem of identifying a seasonal
product.

Identifying Seasonal Products

Figure 1 shows two seasonal products. The first product,
called Wintermercedes, is a working glove that is, as the
name indicates, mostly used in winter times. Figure 1 shows
that the high season of the glove is within the period of
September to March. The second product is another working
glove, called 88PBWA. This product is typically sold during
summer, namely within the period of March to October.

To calculate the seasonal influences, a number of param-
eters could be evaluated:

Quantities: The number of sold quantities during one
month, as shown in Figure 1.

Turnover: The turnover of the product within one month.

Different Users: The number of different users that bought
the product during one month.

If the price of the product has not changed during the last
year, quantities and turnover are similar. The parameters can
easily be retrieved from the online shop or ERP database.
Typically, the last twelve months are used, if older data is
available, it should also be included. However, care must be
taken to not tamper the data by including some months more
often than others.

For our tests, we used the ordered quantities as shown in
Figure 1. The function si(mj) returns the sold quantities
of product i for month mj . For example, product Winter-
mercedes presented in Figure 1 has sold 15 times in Novem-
ber, therefore sWintermercedes(11) = 15.

Although it has been mentioned that identifying seasonal
products could improve a recommender system (Schafer,
Konstan, & Riedl 2001), there exist little work in this area.
In economics, seasonal influences are seen as problematic
and it has been attempted to remove it from the data (Zellner
1979) or to find strategies that include seasonality (Kawasaki
2006). For the determination of seasonal products, a num-
ber of marketing approaches have been described (McMath
1994). One example is the work of Radas and Shugan
(Radas & Shugan 1998), who provide a complex algorithm
using mathematical estimation functions to determine sea-
sonal products. However, their approach aims to predict the
future sales of the product whereas for a recommender sys-

94

tem, it is sufficient to find the low and high seasons of a
product (if they exist).

In our test, a simple approach was used that calculates the
ratio between orders in one month compared to all orders.
For each month, we summed up the quantities from this
month, the preceding and the following month. Then, the ra-
tio to all orders was calculated. Figure 1 shows that product
Wintermercedes has been sold 83 times in 2006. To calcu-
late the ratio for July, the quantities of June (1 product sold),
July (0 products sold) and August (0 products sold) were
added to a total of 1 product sold within the three month.
The ratio is 1/83 or 1.2% of all sales. The month ratio (MR)
is therefore calculated using formula:

mr(pi, mj) =
si(mj − 1) + si(mj) + si(mj + 1)

∑
12

k=1
si(mk)

where pi denotes product i and the denominator calculates
the sum of all orders for product i within the last twelve

months, for example
∑

12

k=1
sWintermercedes(mk) = 83.

This calculation can be done for each product (1 ≤ i ≤
|P |) and each month (1 ≤ j ≤ 12). However, it turned
out that two parameters should be defined to optimize the
calculation:

Minimum Order Threshold (MOR): The minimum or-
der threshold defines the number of minimum orders that
are needed to analyze the product. If a product has been
sold only very few times within the last 12 month, a pre-
diction of whether this product is a seasonal one and iden-
tifying the low and high seasons is not possible.

Ratio Threshold (RT): The ratio threshold defines for
which months a product should be removed from the re-
sult set. In the example above, product Wintermercedes
would be removed in July if the ratio threshold is lower or
equal to 0.012.

An Algorithm for Seasonal Product Filtering

Using both parameters, the following algorithm is proposed
to improve a recommender system by regarding seasonal de-
pendencies:

INCLUDESEASONALDEPENDENCIES(topN, month)

1 forall pi ← topN
2 do
3 if si >= MOR
4 then
5 if MR(pi, month) < RT
6 then
7 REMOVEFROMLIST(topN, pi)

The function expects two input parameters: The first one
called topN (topN = p1, p2, . . . , pn) denotes the top-N list
retrieved by a standard recommender system. The second
one called month (1 ≤ month ≤ 12) gives the month at
which the top-N list should be calculated. The algorithm
checks if the minimum order threshold is equal or greater
then the number of orders for the product. If this is the case,
the function MR is called to calculate the month ratio. If the
ratio is lower than the ratio threshold, the product is removed

from the top-N list. The function RemoveFromList deletes
product pi from the top-N list, this is not described in this
paper.

Evaluation

For the evaluation, two different data sets were used.
One from the German company Kiel & Co. GmbH
www.kielundco.de, the other from the Swiss company
Bruetsch Ruegger AG www.brw.ch. Kiel & Co. is of-
fering working protection like gloves, trousers and shoes;
Bruetsch Ruegger is selling tools like drills, micrometers
and screwdrivers. The data sets have the following number
of elements:

Number Number Number of
of Users of Products Transactions

Bruetsch
Ruegger 13′420 8′064 385′610

Kiel & Co. 2′367 1′153 6′707

The Kiel & Co. data set is much smaller compared to
Bruetsch Ruegger. Especially the relatively small number
of transactions is responsible for problems when identifying
seasonal products.

We started by analyzing the impact of the minimum order
and ratio thresholds and ran a number of tests on both data
sets. The results are presented in Table 1. Using a constant
ratio threshold of 0.001, the minimum order threshold was
changed from 4 orders (all products with less than 4 buys
within the last year would not be included) to 20. Obvi-
ously, the number of removed products is decreased and the
number of products below the threshold is increased. With
a border of 20, almost half of the products from Bruetsch
Ruegger would not be included in the calculation because
they have less than 20 buys. For Kiel & Co., more than two
third of all products would not be included in the calculation
if the minimum order quantity is 4. Additionally, the number
of months a product would be removed shrinks from 5508
to 1658 for Bruetsch Ruegger and from 792 to 33 for Kiel &
Co.

Another test has been done with different ratio and a con-
stant minimum order threshold of 4. With a ratio threshold
of 0.1(=10%), almost half of the products would be removed
from the result set at least in one month for Bruetsch Rueg-
ger whereas for Kiel & Co. only 300 products would be
removed at least once. It is important to note that the reason
for this low value lies in the fact that the data set of Kiel &
Co. would not consider 736 of all products.

Afterwards, the algorithm was evaluated by splitting the
data sets of both transaction data in two parts: a test set con-
taining 500 randomly selected non-zero entries of the rating
matrix and a training set with the remaining entries.

This approach is well known and used in by a number of
other evaluations (Herlocker et al. 2004). The algorithm
was run using the training set. Afterwards, the quality of the
algorithm was measured by looking at the test set elements.
For each test set element of user i that bought product j, we
calculated the top-N recommendations for i. In our test set,

95

Minimum Order Products Products Removed Number of
Threshold below Threshold at least Once Removed Months

4 1′312 1′665 5′508
6 1′615 1′369 4′248
8 1′863 1′150 3′498
10 2′085 972 2′873
12 2′274 866 2′552
14 2′447 764 2′274
16 2′611 667 1′985
18 2′754 611 1′861
20 2′908 547 1′658

Ratio Products Products Removed Number of
Threshold below Threshold at least Once Removed Months

0.001 1′312 1′665 5′508
0.005 1′312 1′669 5′520
0.01 1′312 1′685 5′545
0.05 1′312 2′173 6′688
0.1 1′312 3′483 10′433

Minimum Order Products Products Removed Number of
Threshold below Threshold at least Once Removed Months

4 736 220 792
6 818 141 429
8 872 91 250
10 905 66 153
12 930 50 110
14 956 34 56
16 978 24 44
18 989 21 39
20 998 18 33

Ratio Products Products Removed Number of
Threshold below Threshold at least Once Removed Months

0.001 736 220 792
0.005 736 220 792
0.01 736 221 793
0.05 736 247 862
0.1 736 300 1′070

Table 1: Changing the minimum order and ratio threshold has an impact on the result set of Bruetsch Ruegger (top) as well as
Kiel & Co. (bottom).

96

N was always set to 20. If product j was within the top 20
products, we called this element a hit. If not, we called it
a miss. The average hit-rate (AHR) can be calculated using
formula:

ahr =
Number of hits

Number of elements in test set

As already stated, the test set contained 500 elements and
therefore the denominator was set to 500.

To better weight the position of a hit within the recom-
mendation list, a number of researchers proposed to calcu-
late the average reciprocal hit rank (ARHR) (i.e. (Desh-
pande & Karypis 2004)), that is calculated using formula:

arhr =
1

n

h∑

i=1

1

pi

where pi is the position of hit i. If the hit is always on the
first position of the top-N list, ARHR is equal to AHR. Oth-
erwise, ARHR is smaller because a hit at position i is not
weighted by 1 but by 1/i.

Within the test, we calculated AHR and ARHR without
including seasonal dependencies first. For the calculation of
product similarities, the well known approach by Deshpande
and Karypis was used (Deshpande & Karypis 2004). Desh-
pande and Karypis define the number of different customers
that bought a product as Freq, thus Freq(i) is the number
of nonempty entries in the rating matrix for product’s i vec-
tor. The following formula is used to calculate the equality
between two product options pi and pj :

similarity(pi, pj) =

∑
∀q:Mq,j >0

Mq,j

Freq(i)× (Freq(j))α

where Mi,j is cell (i, j) of the rating matrix and α a parame-
ter between 0 and 1. According to the tests from (Deshpande
& Karypis 2004), a good value for α is between 0.3 and 0.6.
The calculation was done with α set to 0.5.

In order to ensure that the results are not sensitive to the
particular test set, the calculation was performed with ten
different runs, each time using a different random partition-
ing into training and test set:

AHR ARHR

Bruetsch Ruegger 0.151(= 15.1%) 0.0509

Kiel & Co. 0.62(= 62%) 0.2705

Afterwards, the test was changed. For each element of the
test set, we extracted the month it was bought. Then, we
alternated the ratio threshold with values of 0.1, 0.01, and
0.001 and the minimum order threshold with values of 4,
10, and 16 as described in section (MOT and RT denote
minimum order threshold resp. ratio threshold):

Bruetsch Kiel & Co.
Ruegger

MOT=4 & AHR=0.171 AHR=0.629
RT=0.1 ARHR=0.071 ARHR=0.276

MOT=4 & AHR=0.179 AHR=0.63
RT=0.01 ARHR=0.072 ARHR=0.272

MOT=4 & AHR=0.177 AHR=0.63
RT=0.001 ARHR=0.072 ARHR=0.272

MOT=10 & AHR=0.192 AHR=0.622
RT=0.1 ARHR=0.072 ARHR=0.271

MOT=10 & AHR=0.189 AHR=0.622
RT=0.01 ARHR=0.069 ARHR=0.271

MOT=10 & AHR=0.187 AHR=0.621
RT=0.001 ARHR=0.065 ARHR=0.2709

MOT=16 & AHR=0.1514 AHR=0.62
RT=0.1 ARHR=0.052 ARHR=0.2708

MOT=16 & AHR=0.151 AHR=0.62
RT=0.01 ARHR=0.051 ARHR=0.2706

MOT=16 & AHR=0.151 AHR=0.62
RT=0.001 ARHR=0.051 ARHR=0.2705

In the best case (MOT=10 and RT=0.1), the hit rate of
Bruetsch Ruegger improved from 15.1% to 19.2%. This is
an improvement of 4.1%. The reciprocal hit rate improved
by 0.02.

For Kiel & Co., as the data set is much smaller, the best
case is with MOT=4 and RT=0.01 (improvement of around
1%). ARHR also improved only marginally (around 0.006).

It can be seen from the results that with a high value of
MOR and a low value of RT, the influence on the result is
marginally. This is because less seasonal products are iden-
tified. However, if the MOR value is too low, possible hits
are also removed. This can discovered by comparing the
values MOT=4 and RT=0.1 with MOT=10 and RT=0.1 for
Bruetsch Ruegger.

It is also important to note that all values are better than
the calculation without seasonal filtering. Of course, be
choosing a higher value of RT than 0.1 or a lower value of
MOT than 4, it is possible to create a scenario in which the
seasonal filtering returns worse results.

Computation

An important aspect of the presented method is the inclusion
in existing recommender systems. It is possible to divide this
task in two parts. In the offline part, the inclusions of each
product in month j are calculated using a similar function as
IncludeSeasonalSimilarities defined above:

97

OFFLINECALCULATION()

1 forall pi ← P
2 do
3 if si >= MOR
4 then
5 for j ← 1 to 12
6 if MR(pi, j) < RT
7 then
8 MARKPRODUCT(pi, j)

Instead of checking only the product from the topN list, all
products are included by iterating over the set of products
P . Then, for each month (1 ≤ j ≤ 12), it is evaluated
if product pi would be removed in month j. If this is the
case, function MarkProduct is called. This function could
store the result in a database, for example by creating a ta-
ble called seasonalCalcuation containing columns for the
product (productId) and boolean values for all 12 months
(month1,...,month12).

In the online part, the results from the offline calculation
can be used to remove the products from the topN list ef-
ficently. If the topN list for the product with ID 15 should
be retrieved in December, the following example SQL State-
ment could be used:

select productId2 from itemSimilarity,

seasonalCalculation

where itemSimilarity.productId2=

seasonalCalculation.productId

and itemSimilarity.productId1=15

and seasonalCalculation.month12=true

order by itemSimilarity.similarity

desc

This command assumes the database table itemSimilarity
containing for each product (productId1) the similiarities
(similarity) to all other products (productId2). The results
from the seasonalCalculation are joined with this table to
delete all products that would be excluded.

This approach has been implemented and tested. For both
data sets, the performance did not decrease as most of the
calulation is done offline.

Discussion and Outlook

This paper showed a way to determine seasonal products and
showed that removing a seasonal product during a low sea-
son improves a real life recommender algorithm. The main
advantage of the presented approach is its simplicity which
makes it easy to integrate in existing E-commerce recom-
mender systems.

The main drawback of the presented approach is the his-
torical transaction data needed to determine a seasonal prod-
uct. If the product is new or was not sold well during the last
year the determination is not possible.

In interesting idea to improve the determination of sea-
sonal products is the usage of a content-based approach to

find products with special properties, for example by ex-
tracting keyword from the product description. Term like
’winter’, ’christmas’ or ’sun’ could indicate possible sea-
sonal products. Additionally, if two products are similar
according to their properties and one is a seasonal product
where the low season could be determined, it is likely that
the other one has a similar low season. However, this as-
sumption needs to be proofed.

We are planning to integrate the described seasonal fil-
tering in the online shop of Bruetsch Ruegger. They already
have a recommender system that can easily be extended. We
also think that filtering seasonal products improves the opin-
ion of a customer towards the recommender system as sea-
sonal products are not recommended in the low season.

Acknowledgements

The author wishes to thank all persons involved in the
PersECA II project. Without them, this paper would not
have been possible. Additionally, thanks to the companies
Bruetsch Ruegger AG and Kiel & Co. GmbH for providing
the datasets needed for the evaluatation.

References

Adomavicius, G., and Tuzhilin, A. 2005. Towards the next
generation of recommender systems: A survey of the state-
of-the-art and possible extentions. IEEE Transactions on
Knowledge and Data Engineering 17(6):734–749.

Basu, C.; Hirsh, H.; and Cohen, W. 1998. Recommen-
dation as classification: Using social and content-based in-
formation in recommendation. In Proceedings of the 1998
workshop on recommender systems, 11–15.

Breese, J. S.; Heckerman, D.; and Kadie, C. 1998. Em-
pirical analysis of predictive algorithms for collaborative
filtering. In Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence.

Burke, R. 2002. Hybrid recommender systems, survey and
experiments. User Modeling and User Adapted Interaction
12(4):331–370.

Chao, D. L.; Balthrop, J.; and Forrest, S. 2005. Adaptive
radio: Achieving consensus using negative preferences. In
Proceedings of the International ACM SIGGROUP Con-
ference on Supporting Group Work, 120–123.

Deshpande, M., and Karypis, G. 2004. Item-based top-n
recommendation algorithms. ACM Transactions on Infor-
mation Systems 22(1):143–177.

Herlocker, J. L.; Konstan, J. A.; Terveen, L. G.; and Riedl,
J. T. 2004. Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information Sys-
tems (TOIS) 22(1):5–53.

Hofmann, T. 2004. Latent semantic models for collabo-
rative filtering. ACM Transactions on Information Systems
22(1):89–115.

Kawasaki, Y. 2006. A structural time series model facil-
itating flexible seasonality. In Proceedings of the Confer-
ence on Seasonality, Seasonal Adjustment and Their Impli-
cations for Short-term Analysis and Forecasting.

98

Linden, G.; Smith, B.; and York, J. 2003. Amazon.com
recommendations. IEEE Internet Computing 3:76–80.

Ling, K.; Beenen, G.; Ludford, P.; Wang, X.; Chang, K.;
; Li, X.; Frankowski, D.; Terveen, L.; Rashid, A. M.;
Resnick, P.; and Kraut, R. E. 2005. Using social psy-
chology to motivate contributions to online communities.
Journal of Computer-Mediated Communication 10(4).

McCarthy, J. F., and Anagnost, T. D. 1998. Musicfx: An
arbiter of group preferences for computer supported collab-
orative workouts. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, 363–372.

McMath, R. 1994. Product proliferation. Mediaweek 4:34–
35.

Radas, S., and Shugan, S. M. 1998. Seasonal marketing
and timing new product introductions. Journal of Market-
ing Research 35(3):296–315.

Resnick, P.; Iacovou, N.; Suchack, M.; Bergstrom, P.; and
Riedl, J. 1994. Grouplens: An open architecture for col-
laborative filtering of netnews. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work.

Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2000.
Analysis of recommendation algorithms for ecommerce. In
Proceedings of the ACM Conference for Electronic Com-
merce.

Schafer, J. B.; Konstan, J.; and Riedl, J. 1999. Recom-
mender systems in e-commerce. In Proceedings of the
ACM Conference on Electronic Commerce.

Schafer, J. B.; Konstan, J. A.; and Riedl, J. 2001. E-
commerce recommendation applications. Data Mining and
Knowledge Discovery 5(1–2):115–153.

Zellner, A., ed. 1979. NBER-Census Conference on Sea-
sonal Economic Time Series. Government Printing Office.

99

