
Learning Query Reformulations for Personalized Web Search Using a

Probabilistic Inference Network

Erika Torres-Verdin and Manfred Huber

Department of Computer Science and Engineering
University of Texas at Arlington

Arlington, TX 76019
{etorresv, huber}@cse.uta.edu

Abstract
The continuous development of the Internet has resulted in
an exponential increase in the amount of available pages
and made it into one of the prime sources of information A
popular way to access this information is by submitting
queries to a search engine which retrieves a set of
documents. However, most search engines do not consider
the specific information needs of the user and retrieve the
same results for everyone, potentially resulting in poor
results due to the inherent ambiguity in keyword-based
search queries. One way to address this is by creating a
personalized profile that incorporates the search preferences
of the specific user. We present an intelligent system that is
capable of learning such a search profile given a set of
queries. The search profile is represented with a
probabilistic network that incorporates semantic information
about the user’s use of keywords in the queries. This profile
is then used to automatically modify the original queries
created by a specific user to improve the degree of relevance
between the user’s search interests and the retrieved
documents. To learn the profile, we create and implement a
gradient-based learning algorithm that uses the results of
initial user searches to determine query modifications that
improve search performance. The proposed intelligent
system is a client-side application which operates with an
arbitrary keyword-based search engine and which adapts to
the preferences of the user as well as to the characteristics of
the search engine. We demonstrate the system by learning a
search profile that is used to suggest query modifications
within a specific domain of interest.

Introduction

In their search for information people often consult
different sources and establish data preferences according
to their needs. The Internet has rapidly become one of the
largest knowledge bases available and a common way to
find information is by submitting a query to a search
engine, which in turn retrieves a set of related documents.
While people with well-defined information needs often
have a clear idea as to the kind of knowledge they are
looking for, they still find it difficult to express this idea in

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a few keywords. Moreover, it is frequently a very difficult
task to formulate a search query that retrieves precisely the
documents that match a particular interest. This paper
describes a client-side application that learns a particular
user’s search profile in the form of a probabilistic network
and uses it to suggest custom query modifications based on
previous queries and search results. The decision to build
the search profile on the client-side was driven largely by
the improved degree of privacy and flexibility resulting
from a storage and derivation of the profile on the user’s
computer rather than at the location of the search engine.
To learn the profile, the system generates a modified query
for every user query, submits both of them to the search
engine and allows the user to classify some of the results as
either relevant or irrelevant. It then extracts the most
representative words from the classified documents and
includes them into the network. Using this, and without
involving the user, the system then generates a set of new
modified queries which it submits to the search engine. It
then scores the results by comparing the retrieved URLs
with the URLs of the previously classified documents.
Using this information, the network is then trained with the
best modified query using a gradient-based algorithm. In
this way, the network learns and stores the best query
modification for every original query.
There have been a number of related research works whose
main objective is to help users find interesting web pages.
Much of the work on client side personalization has
focused on result reranking or on query augmentation. In
reranking approaches (Teevan, Dumais, and Horvitz, 2005;
Radlinski and Dumais, 2006) search results from the user
query are reordered on the client side in order to move the
results that best match the interest of the user to the top.
Reranking is performed based on a personalized profile
derived either only from previously rated search results or
from a wide range of information sources such as files on
the client computer or the user’s navigation history. While
these techniques provide excellent privacy and work with
existing search engines, the fact that they do not directly
influence the search results returned to the client device
also poses a number of challenges. In particular, reranking
approaches in general require the retrieval of a significant
number of search results in order to ensure that they
contain a sufficient number of relevant documents.

100

Moreover, most of them require all of these documents to
be downloaded completely in order to facilitate their
reordering. To address this problem, server-side techniques
have been added that increase the diversity of the returned
results in order to improve the likelihood that relevant
documents are contained within the top search results
(Radlinski and Dumais, 2006). Also, systems have been
proposed which use only a simple summary snippet rather
than the entire document for reranking. The goals of much
of the approach presented in this paper are to derive a
personalization that does not require any server-side
modifications and that is aimed at minimizing the amount
of document downloads by retrieving complete documents
only when they are specifically rated by the user. As a
result, its goal is to maximize the number of relevant
documents among the top ranked query results retrieved by
the search engine. To achieve this, it uses query
reformulation in order to adjust the user query such that it
leads the search engine to return the highest number of
relevant results possible within the top ranked documents.
Query expansion techniques (Xu and Croft, 2000) and a
wide range of works in relevance feedback (Salton and
Bukley, 1990) are focused on adding words to the existing
terms of a query. A common characteristic of many of these
techniques is that they do not consider the search history of
the user but are rather built based on a set of documents.
Significant work has focused on building intelligent agents
that assist users while they are browsing the Internet; some
examples are Syskill and Webert (Pazzani and Billsus,
1997), WebWatcher (Joachims, Freitag, and Mitchell,
1997), Letizia (Lieberman, 1995), WAWA (Shavlik et al.,
1999). Different research projects have focused on learning
a search profile and executing personalized web search
such as Lira (Babalanovic and Shoham, 1995), WebMate
(Chen and Sycara, 1998), or Almathea (Moukas, 1996).
Work in the area of personalized search categories
proposes to map the user queries to a small set of
categories based on the user profile and general knowledge
(Liu, Yu, and Meng, 2002). Although the output of our
system is a modification of an original query, the reasoning
to suggest query modifications is different from previous
query expansion techniques because it is based on the
search profile of a particular user and it allows a
reformulation of the query that might re-order or
potentially remove terms present in the original query of
the user. Our system is also different from the agents
Syskill & Webert, Letizia, Web Watcher and WAWA
because is focused on searching and not on browsing.
Among these systems, Syskill & Webert is the only one that
considers representing the user’s information need with a
query. However, this agent needs to analyze the contents of
all the documents retrieved by the search engine in order to
evaluate the quality of a modified query. Our system only
needs to analyze the URLs of the documents retrieved by
the search engine to evaluate the performance of a modified
query. This performance is quantified with a metric that
permits to rank different queries according to their score.
Among personalized agents Web Mate is the most similar

to our system in the sense that it also considers the different
meanings of a word to suggest modified queries. However
our representation of the relation between the query terms
and their senses is different because we use a probabilistic
network instead of a list of words. This network is not only
used to characterize the relationships between words and
their senses; its main objective is to represent a
personalized web search context. Analogous to Syskill &
Webert, Web Mate requires analyzing all the documents
retrieved by a search engine to evaluate query performance
and does not provide a score to rank different queries. Web
Mate represents the different search domains with vector of
words that do not consider the word sense disambiguation
problem. Our system is capable to represent every context
of interest with a different probabilistic network that also
incorporates the different senses of a word. Our system is
different from all the search agents described before in its
attempt to capture the meaning of the query words
presented by the user and then translate them into a search-
engine-specific query that will retrieve a larger number of
relevant documents than the original query. In terms of the
learning algorithm, the main contribution is its ability to
learn the search profile represented in the network using
only the results from the automatically issued modified
queries in terms of the retrieved URLs previously classified
as relevant and irrelevant. Also, this algorithm does not
follow a traditional supervised learning approach since the
network does not actually output a search query but rather
ranks and rates words as to their efficacy to retrieve
relevant documents when used in a particular search
engine.
The remainder of the paper first describes the construction
of the network for a personalized search profile and the
procedure to infer modified queries from it. The next
section then describes the algorithm used to learn a profile
before the approach is illustrated by learning search
profiles for different information needs. The system is then
compared with other approaches and the last section finally
concludes and gives directions for future work.

Building The Search Profile

The search profile of a particular user is represented with a
probabilistic network. Every time the user presents a new
query to the system the structure of the network is changed
to include the words in the query and their different
meanings as identified by an electronic dictionary. In
addition, the most representative words of the documents
classified by the user as relevant and their respective
meanings are added. In order to select the most
representative features every original query and its
associated relevant and irrelevant documents are stored in a
small database. The user does no need to classify all of the
retrieved documents, but it is important to notice that the
larger number of classified documents, the easier it will be
for the system to infer the user’s intention. The contents of
these documents are analyzed to remove HTML tags and

101

stop words to select the most significant words. The first
selection criterion requires that the ratio of relevant to
irrelevant documents is better that the original ratio. The
second criterion selects words whose entropy loss value
(Rosenfeld, 1996) is above a particular threshold defined as
a percentage of the highest entropy loss value. In order to
break ties, words with identical entropy loss values are
grouped and the ones that together best cover the relevant
documents are chosen.

The Network Topology
The structure of the probabilistic network consists of three
different types of nodes arranged in three levels (Figure 1).

Figure 1. Network Topology.

The first level of the network is composed of the input
nodes which represent the words in the original user query.
The second level contains the meaning nodes that represent
the senses of the query words and of the terms extracted
from the relevant documents. These senses are obtained
from WordNet (Fellbaum, 1998) and are selected according
to their associated frequency count (Fellbaum, 1998). The
purpose of meaning nodes is to “understand” to which of
the particular senses of a word the user is referring in
his/her query. The third level of the network is composed
of the output nodes that represent the keywords in the
modified query suggested by the network. An important
difference between the output nodes and the meaning nodes
is that the values of the former represent utilities and not
strictly beliefs. The value of an output node indicates the
utility of a word in expressing a particular meaning to the
search engine and in successfully retrieving relevant
documents. The output nodes with a utility higher than a
particular threshold set as a percentage of the highest utility
are used to create the output query associated with an input
query. The words in the output query are ordered in
descending order of their utility.

Network Connections
Every time a new keyword appears in an original query the
topology of the network changes by adding new nodes and
connections. A keyword in an original query is symbolized
by an input node and a meaning node for each of its senses
as identified by WordNet is introduced. The input node
representing the keyword is connected to all its meaning

nodes. In addition, it is connected to all meaning nodes that
symbolize the senses of keywords that appear in the same
query. For example, with the query “apple producer”, the
input node “apple” is connected to all nodes representing
its senses and also to all nodes representing the senses of
“producer”. For each of the meaning nodes, output nodes
representing all the words associated with this meaning
according to WordNet are created and connected to it.
Some of the output nodes are not related to the senses of
the keywords in a query since they represent the words that
have been extracted from the relevant documents. For these
nodes WordNet is consulted to find and link the set of
corresponding meaning nodes. Then, existing input nodes
are connected to this set of meaning nodes by linking all
the input nodes to the additional meaning nodes

Initialization of the Values of the Nodes
Once the network topology is determined, the values of the
CPT (Conditional Probability Table) entries of each node
have to be initialized. For input nodes this value indicates
the presence of the keywords in the input query. For
meaning and output nodes the word frequencies provided
by WordNet are used to set the initial CPT values.

Initialization of the Input Nodes. The input nodes are set
to T (TRUE) or F (FALSE) according to the words that
appear in the input query. For example, in a network with
input nodes “A”, “B” and “C”, the first two are set to T
and the third to F if the user query “AB” is presented.

Initialization of the Meaning Nodes. CPT’s for the
meaning nodes are initialized according to the relative
frequency that WordNet assigns to each of the senses.
a) Meaning nodes with one parent: Suppose that there are
two input nodes, “apple” and “producer”, respectively.
According to WordNet the word “apple” has one meaning
and the word “producer” has three meanings. The ratios of
the frequency of each sense of “apple” and “producer” are
summarized in Table 1 and transformed into probabilities.
P (apple1=T | apple=T) = 2/2
P(producer1=T | producer=T) =9/16
P (producer2=T | producer=T) =5/16
P(producer3=T | producer=T)=2/16

Word Sense Frequency Ratio
Apple Apple1 2/2

Producer1 9/16

Producer2 5/16 Producer

Producer3 2/16

Table 1. Frequency ratios of the Meaning Nodes

b) Meaning nodes with two or more parents: If two or
more input nodes represent words that have a common
meaning according to WordNet then the value of the word
with the highest frequency is used to initialize the meaning
node. When the input nodes do not share a common
meaning, we only consider the words for which WordNet
gives an answer. For example, in the query “apple

102

producer”, the input nodes “apple” and “producer” are
linked to the meaning nodes “apple1”, “producer1”,
“producer2” and “producer3”. WordNet does not provide
a sense that links the word “apple” with the senses of
“producer” or “producer” with the senses of “apple”.
The meaning nodes “producer1”, “producer2” and
“producer3” are thus initialized considering only the
information for the word “producer”. The same applies for
the meaning node “apple1”. When WordNet does not
provide a frequency count for a meaning, as in the case of
brand names, the probabilities are initialized to a low value
such as 0.01.

Initialization of the Output Nodes. Output nodes are
initialized in a similar way as meaning nodes. However it is
important to remember that the values of output nodes
represent utilities, normalized to values between 0 and 1. In
the case of output nodes with one parent, WordNet is
consulted to determine how frequently the corresponding
words have the sense assigned to them trough the meaning
nodes. These frequencies are translated into probabilities.
For an output node with more than one parent the utility
value is calculated as a combination of all possible states
(T/F) of the parents using the Noisy-OR gate (Pearl, 1988).

Prediction of a Query Modification Using
Previously Learned Queries
The values of the CPTs were initialized using only the
information provided by WordNet. The user’s queries
present new evidence to the network that is used to update
the CPTs. Once the network has learned the target output
for one or more queries, these can be used to predict the
output of a new query. The prediction is not
straightforward because only the CPT entries of meaning
nodes corresponding to combinations of input nodes used
in the given query are updated while all others remain
unchanged. The case of the output nodes is different
because they do not directly depend on the input nodes, and
the learning algorithm (presented in the Learning a Search
Profile Section) updates all the values of their CPT entries.
Suppose that the small network in Figure 2 has learned the

Figure 2. Probabilistic network and CPT for node D

best query modification for the original queries Q1=AB and
Q2=BC and it has to predict the best modification for the
query Q3=AC. In this situation, the CPT entry of node D
for {A=T, B=F, C=T} has to be predicted using the CPT
entries corresponding to {A=T, B=T, C=F} and {A=F,

B=T, C=T}. We can obtain Q3 from Q2 and Q1 using the
following equations:

()
()

()
()FCTBTATDP

TCFBTATDP

QTDP

QTDP

====
====

=
=
=

,,

,,

|

|

1

3

Assuming that all input queries are equally likely and that
all input nodes are independent given the meaning node D,
Bayes Law can be applied to obtain:

() ()
()

()
()TDFCP

TDTCP

TDTBP

TDFBP
QTDPT|QDPz

==
==⋅

==
==⋅=≅==

|

|

|

|
)

1
|(

31

() ()
()

()
()TDTBP

TDFBP

TDFAP

TDTAP
QTDPT|QDPz

==
==⋅

==
==⋅=≅==

|

|

|

|
)|(232

Using P(D=T|Q1) and P(D=T|Q2), the unknown ratios of
Equations 3 and 4 can be found where ratios that have
never been observed are assumed to be 1. x = P(D=T|Q3)
can then be estimated from z1 and z2 in a way similar to
estimating a constant quantity x from n noisy measurements
zi (i=1,..,n) of x. To estimate x=P(D=T|Q3) from z1 and z2,
the following formula (Kalman Filter) is used:

where x̂ is the estimate of x and
2

1σ and
2

2σ represent the

errors (variance) in z1 and z2, respectively. The following

illustrates the estimation of the variances using
2

1σ as an

example. Let the ratios from Equations 3 and 4,
()
()TDTBP

TDFBP

==
==

|
| and ()

()TDFCP

TDTCP

==
==

|

| , be J and K,

respectively. In the absence of other information, J and K
can be assumed to be the expected values of two
independent random variables, J’ and K’, that represent
ratios of probability values for different combinations of
input nodes. If it is also assumed that the errors in these
predictions are small compared to their expected values,
i.e. JJ <<'σ and KK <<'σ , then the variance of J’ and K’

can be estimated as 22
' JJ ⋅= βσ and 22

' KK ⋅= βσ , where

β is a small constant. The standard deviation of z1 is then
2

''1
2)|(
1 KJz QTDP σσ ⋅== and the variance 2

''KJσ is

[] []'' 2
'

2
'

2
'

2
'

2
'' KEJE KJKJKJ ⋅+⋅+⋅= σσσσσ where E[J’] and

E[K’] are the expected values of J’ and K’ respectively. In
this case E[J’]=J and E[K’]=K. Although Equations 3 and
4 contain only two ratios, the approach can also be applied
in cases with more rations and a new query can thus be
predicted given any number of learned queries. As the
network learns more queries, the value estimates for the
CPT entries should improve, leading to better query
modifications over time.

A B C
P(D|ABC)

T F
T T T Not Learned Not Learned

T T F Learned Learned

T F T Not Learned Not Learned

T F F Not Learned Not Learned

F T T Learned Learned

F T F Not Learned Not Learned
F F T Not Learned Not Learned

(1)

()
()

()
()TCTBFATDP

TCFBTATDP

QTDP

QTDP

====
=====

=
=

,,|

,,|

|

|

2

3 (2)

(3)

(4)

22
2

2
1

2
1

12
2

2
1

2
2ˆ zzx ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
σσ

σ
σσ

σ

103

Learning the Search Profile

The system presented here is an intelligent agent that learns
a search profile from queries created by a particular user
and the classification that he/she assigns to some of the
retrieved documents. For every original query the user does
not actually provide information as to what the best query
reformulation would be but rather only gives information
about the quality of a subset of the retrieved documents.
The tasks of the learning algorithm have therefore to be: (i)
discover which query modifications would be the best; (ii)
determine if all the best modified queries can be achieved
within the network, i.e. establish what meaning nodes
would best represent the intention in the original queries
and how these nodes can be best represented in the output
nodes to form modified queries that successfully retrieve
relevant documents when they are actually submitted to a
particular search engine.
The procedure to learn a search profile is as follows. For
every original query the system internally creates a set of
query modifications using the different meanings of the
words in the query and the terms extracted from the
classified documents. Every query modification is
submitted to the search engine and the URL’s of the
retrieved documents are compared with those of the
classified documents to calculate an expectation of relevant
documents. The learning process then consists of updating
the CPTs in the network such that given the words in the
user’s query (input nodes) the system produces the best
modified query (output nodes). The CPTs of the network
are updated using a gradient-based algorithm using a set of
training examples indicating the direction of change of the
CPT values. The training data consists of a set of original
queries, their modifications, and a quality score. To train
the network, a mapping mechanism is essential that
converts desired output queries to utility values for the
output nodes. The main steps of the learning process are:
a) Set up a measure to score the quality of the modified
queries derived from the user’s original queries.
b) Map the target queries to values of the output nodes of
the network. Use these values to construct a training set.
c) Use a gradient-based learning algorithm to update the
CPTs of the network with the training examples from b).

Query performance measure
Let S be the sample space of all combinations of relevant
and irrelevant documents retrieved by a search engine in
response to a query. Each element of S is a set of
documents, denoted by sr, where r is the number of relevant
documents: S={s0,s1,…,sN}. Given no further information,
the prior probability of each outcome set, P(sr), is given by:

() rMrrMr
r qp

rMr

M
qp

r

M
sP −−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

)!(!

!

where M and M-r are the total number of documents and
the number of irrelevant documents respectively. The
constants p and q are the probabilities of relevant and
irrelevant documents, respectively. We use P(sr) to
estimate the prior probability of every set of documents to
be retrieved by a modified query. The values of p and q are
obtained from the set of documents retrieved by the
original query. Suppose that we submit the modified query
to the search engine and the relevance of some of the
retrieved URLs is already known because the associated
documents have been classified previously. Although, the
classification of the remaining URLs is unknown, we can
estimate the performance of the modified query by
considering the classified URLs as k randomly picked
documents from the total set of URLs retrieved by the
modified query. Given that among the k selected
documents x are relevant and y are irrelevant, the posterior
probability of sr is:

() () ()
()observedareyxP

sPsobservedareyxP
observedareyxsP rr

r _,

_,
_,

⋅
=

The expectation, Z, of the number of relevant documents
retrieved by a modified query is calculated as:

()∑
=

⋅=
N

r
r observedareyxsPrZE

0

_,)(

Using this expectation formula we can score queries and
the best modified query will be the one whose expectation
E(Z) of obtaining relevant documents is the largest.

Learning the best modification
The creation of training examples from an original query
and its best modification (target query) proceeds as
follows:
1) Set the input nodes that represent the words in the input
query to True and the rest of the input nodes to False.
2) Obtain the current output query from the network.
3) Compare the output query with the target query
4) If the output query and the target query are the same the
algorithm is completed, otherwise update the values of the
output nodes until the network produces the target query.
The output query produced by the network is composed of
the output nodes whose value is above the threshold
threshold = percentage × highest_output_value. The words
in the output query are set in decreasing order of their
output node values. The target query is mapped to a set of
output node values calculated as the closest value for each
output node Oi in the target query that would put it in the
correct position with respect to the other words in the target
query. The difference between Oi and the rest of the output
nodes in the target query is calculated individually using
the formulas in Figure 3.

104

Figure 3. Cases used to update the output nodes

The cases in Figure 3 follow the same general formula
Value(Oi)=Value(Oi)+α[(targetValue±ε)-Value(Oi)] where
α is the learning rate and ε is a margin used to make the
output node values more stable.
Each individual difference between an output node Oi and
another output node that must appear in the target query is
stored in a vector of differences named Delta:
Delta={Δ1,Δ2,Δ3,…,ΔN}. Finally, the average of all Δj’s is
used to update the output nodes:

() () ()()DeltaofsizeDeltaSumOvalueOvalue ii __/α+= , where
size_of_Delta is the number of Δj’s in Delta. Every time the
value of an output node is changed, the CPTs of the
network are updated using a gradient-based algorithm
(presented in the next section).

Learning the profile
Every time a training example is presented to the network,
the output nodes must be updated to produce the desired
output query given an input query. The error in the values
of the output nodes is defined as: Error=Target Value –
Current Value. To reduce this error we apply gradient-
descent on the square error of every output node.
A training example for the network has the form:
Input: I1=T, I2= T, I3=F
Output: O1 = V1, O2 = V2, O3 = V3…..ON = VN.
where Oi is an output node and Vi its desired value.
Let Oi be an output node of the network, Πi the set of all
parent nodes of Oi and Πij the jth assignment of the states
(true or false) of Πi. We define P(Oi=T) as:

() () ()ij
j

ijii

N

PTOPTOP ∏⋅∏=== ∑
=

2

1

where N is the number of parents of Oi and 2N is the total
number of possible assignments of states to the parents of
Oi. The problem to be solved is to modify P(Oi=T)
according to the training examples. We can see P(Oi=T) as
a function with parameters P(Oi=T|Πij) and constants
P(Πij). P(Oi=T) can be updated by following the gradient:

()
() ()ij

iji

i P
TOP

TOP ∏=
∏=∂

=∂

The result is multiplied by ΔOi which indicates the
magnitude by which the value should change. We define
ΔOi as P(Oi=T)target-P(Oi=T)current and update P(Oi|Πij)
using:

() () ()
()

() ()[]ijiiji

iji

i
iijiiji

POTOP

TOP

OP
OTOPTOP

∏⋅Δ⋅+∏==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∏=∂
∂⋅Δ⋅+∏==∏=

α

α

where α is the learning rate.
Each conditional probability is then normalized such that
P(Oi=T|Πij) + P(Oi=F|Πij) = 1.0 and P(Oi=T|Πij) ∈ [0, 1].
After updating the output nodes, the CPT entries of the
meaning nodes have to be updated. Let Mk be a meaning
node that is a parent of the output node Oi for which we
calculated P(Oi=T). We derivate P(Oi) with respect to
P(Mk=T) for every child node Oi of Mk and then calculate
the average of these L partial derivatives:

()
()
L

TMP

TOPL

i k

i∑
= =∂

=∂
1

Each of these partial derivatives is again multiplied by ΔOi

of every child node Oi of Mk:
()
()

L

TMP

TOP
O

M

L

i k

i
i

k

∑
= =∂

=∂⋅Δ
=Δ 1

The value ΔMk is calculated for every meaning node, Mk

that is a parent of the output node whose value needs to be
updated. The last part of the algorithm consists of updating
the conditional probabilities of the meaning nodes
considering the relationship with the input nodes. We
define P(Mk=T) in a similar manner as P(Oi=T):

() () ()kj
j

kjkk

R

PTMPTMP ∏⋅∏=== ∑
=

2

1

where R is the number of parents, Πk, of meaning node Mk

and 2R is the total number of possible assignments, Πkj, of
states of the parents of Mk. Now the partial derivatives of
the previous equation with respect to P(Mk=T|Πkj) is:

()
() ()kj

kjk

k P
TMP

TMP ∏=
∏=∂

=∂

Finally we update P(Mk=T|Πkj) :

A and B are output nodes that symbolize words that must appear in the
target query
Value (A) is the utility value of node A
Value (B) is the utility value of node B
Case 1:
Target Output: Value (A) > Value (B)
Current Output: Value (A) < Value (B)
 If (Value (B) ≥ Threshold)
 Value (A) = Value (A) + α ((Value (B) + ε) − Value (A))
 Else if (Value (B) < Threshold)
 Value (A) = Value (A) + ((Threshold + ε) – Value (A))
Case 2:
Target Output: Value (A) < Value (B)
Current Output: Value (A) > Value (B)
 If (Value (B) ≥ Threshold and Value (A) ≥ Threshold)
 Value (A) = Value (A) + α ((Value (B) − ε) − Value (A))
 Else if (Value (B) < Threshold and Value (A) ≥ Threshold)
 Value (A) = Value (A) + α ((Threshold − ε) − Value (A))
 Else if (Value (A) < Threshold)
 Value (A) = Value (A) + ((Threshold + ε) – Value (A))
Case 3:
Target Output: Value (A) < Value (B)
Current Output: Value (A) < Value (B)
Since the current output is equal to the target output Value(A) is not updated.
Case 4:
C is an output node that is NOT part of the target output, but it appears in the
current output.
Target Output: Value (C) < Threshold

105

() () ()
()⎥⎥⎦

⎤

⎢
⎢
⎣

⎡

∏∂
=∂⋅Δ⋅+∏==∏=

kjk

k
kkjkkjk

MP

TMP
MTMPTMP α

Again, each conditional probability of the meaning nodes
must be normalized so that P(Mk=T | Πkj) ∈ [0,1] and the
entries corresponding to a particular conditioning case Πkj

must sum to 1. Given these equations we can now learn and
store the best modified queries without user involvement.

Experiments

We have designed two experiments to evaluate different
characteristics of the system. In the first experiment, search
profiles for two persons with different search preferences
were created using the same input queries. The second
experiment evaluates the quality of the network’s query
modification produced for a novel input query. The
network creates this output query based on the previously
learned queries. In both experiments, the threshold for
words extracted from the relevant documents was set to
0.5, and the threshold for output nodes was set to 0.6.

First Experiment
Here we built two different search profiles using the same
set of original user queries, one for a fruit producer
interested in apples (User 1), and one for a user of Apple
Macintosh computers (User 2). The network is trained to
learn the best query modification for each profile.

Table 2 and Table 3 show the original and the best
modified queries with their performance (given by the ratio
of relevant to total retrieved documents) for User 1 and
User 2, respectively. The results show that our system is
capable of learning appropriate query modifications for
specific users without requiring the user to provide
feedback on any but the original query results. The learned
queries here always outperformed the original queries,
indicating that the internally derived score estimate
adequately represents the relative quality of the queries.

Second Experiment
The search domain for the second experiment is the World
Cup soccer tournament. The goal of this experiment is to
evaluate the ability of the system to generalize from
previous queries to the user’s intent with a new query. The
domain was chosen to provide sufficient ambiguity in terms
of contexts that share common keywords (such as rugby,
cricket, American football, or non World Cup soccer). In
this experiment, one query at a time was presented and the
original queries, the modifications generated by the
network based on past queries, and the best learned queries
were evaluated. Table 4 compares the performance of all
three sets of results for the four original queries used. The
results show that the quality of network-generated modified
queries significantly improves as more queries are learned,
in this case outperforming the original query after the
second training query. This is an expected result since at
the beginning the network has no knowledge of the user’s
interests.

User query Modified query Modified query
score

Rel/Total

Original query
ratio

Rel/Total

Modified query
ratio

Rel/Total
Apple consumer Apple consumer information 7.7/15 5/15 13/15
Apple information Apple information apples 9.8/18 8/18 15/18
Apple producer Apple producer growers 9.2/19 8/19 19/19
Apple virus Apple virus delicious 10/18 7/18 15/17

Table 2 Results for the search profile of User 1

User query Modified query
Modified query

score
Rel/Total

Original query
ratio

Rel/Total

Modified query
ratio

Rel/Total
Apple consumer Apple consumer information Mac 9.6/17 8/17 17/17
Apple information Apple information computer 10.9/18 10/18 18/18
Apple producer Apple producer Mac 9.4/15 8/15 14/15
Apple virus Apple virus OS 11.6/17 10/17 17/17

Table 3 Results for the search profile of User 2

106

Comparison With Other Approaches

We evaluate the performance of our system by comparing
the quality of the documents retrieved through the modified
queries learned by the network with the quality of those
retrieved by applying other approaches.
We applied the following techniques in order to compare
our system:

• Relevance feedback.
• Personalized categories.
• Document clustering.

In all the cases we compare the ratio of documents
classified as relevant to the total number of classified
documents.

Relevance Feedback
To compare our technique against a method based strictly
on relevance feedback, we submit every user’s original
query to the search engine. For each query, the user
classifies the retrieved documents as relevant and
irrelevant. We extract the three most representative words
of the relevant documents according to their entropy loss
value. We create three different expanded queries and
select the best one for comparison. These three queries
have the following form:

• Original query + best term
• Original query + best term + second best term
• Original query + best term + second best term + third

best term
Figure 4 shows the performance of the modified queries
learned by our system and the queries expanded using
relevance feedback for the domain of apples as fruits.
Figure 5 shows the results for the queries related to the
soccer World Cup.

Personalized Categories
To obtain a comparison with a purely category-based,
server-side search approach we submit each original query
to the search engine and use Google Personalized Beta
(http://labs.google.com/personalized) to restrict the
retrieved documents to be within a personalized set of
categories selected by the user. For the queries associated
to the fruit apple, the category Health and the subcategory

Figure 4. Comparison between our approach and Relevance
Feedback using the queries related to the fruit apple.

Figure 5. Comparison between our approach and Relevance
Feedback using the queries related to the soccer World Cup.

Nutrition are selected. We select the subcategory Soccer
inside the category Sports for the queries referring to the
soccer World Cup.
Figure 6 and Figure 7 show the performance for the queries
associated to the fruit apple and the soccer World Cup
respectively.

5.3 Document Clustering
In this case we use all documents retrieved by a set of
queries belonging to the same search domain to create two
clusters of documents: relevant and irrelevant. In other
words we consider the whole set of documents as if they
were retrieved by a single query and classify them as
relevant and irrelevant. Similar to the procedure followed
for the relevance feedback method, we extract the most

User query User query
ratio

Network query Network query
ratio

Best modified query Best modified
query ratio

World Cup 8/17=0.47 Cup 1/20=0.05 World Cup players 14/20=0.7
World Cup match 8/19=0.42 World Cup players match 6/18=0.33 World Cup match results 13/20=0.65
Football match 1/10=0.1 World Cup match results 13/20=0.65 World Cup football

matches
14/19=0.737

Football 2/20=0.1 World Cup football 12/19=0.63 World Cup football info 15/20=0.75

Table 4. Ratios of relevant documents to total documents for the user query, network query and modified query

107

Figure 6. Comparison between our system and Google
Personalized Beta using the queries related to the fruit apple.

Figure 7. Comparison between our system and Google
Personalized using the queries related to the soccer World Cup

representative words of the relevant documents and use
them to create three different expanded queries for each
original query and select the best one for comparison. In
this way all the queries of the search domain are expanded
with the same three words. In this comparison we use the
documents retrieved by the queries referring to the fruit
apple and use the three most representative words of this
search domain to expand every original query. For the
soccer World Cup domain the query modifications were
learned iteratively meaning that every query modification
incorporates the information of the previously learned
queries. For the first query (World Cup), we only use the
set of classified documents associated to this query; for the
second query (World Cup match) we use the documents
retrieved by the previous query and the current query; for
the third query (football match) we use the documents
retrieved by the first two queries and the current query and
for the fourth query (football) we use the documents
retrieved by all the queries. The comparison of the
performance between our system and the document
clustering approach is shown in Figure 8 and Figure 9.
According to the comparison results we conclude that the
quality of the queries learned by our system and the queries
produced through relevance feedback is almost the same
for the queries that refer to the fruit apple. However, the
performance of the queries produced by our system is
better for the domain of the soccer World Cup. In this case
the original queries were modified using the information
provided by the previously learned queries. In all the cases

Figure 8. Comparison between our system and Document
Clustering using the queries related to the fruit apple.

Figure 9. Comparison between our system and Document
Clustering using the queries related to the soccer World Cup.

our system performs better than the personalized version of
Google. This may happen because Google only supplies
personalized results for the first 10 retrieved documents
and because the search categories are defined by Google
and they may not exactly match the user’s information
need. The performance of the queries created with the
document clustering approach and the queries formulated
by our system are similar to those obtained by applying
relevance feedback. Even though in the “apple fruit”
domain the document clustering approach outperforms our
system in some queries, the results for the soccer World
Cup domain again suggests that incorporating the user’s
search profile is useful to increase the performance of the
modified queries. It is also important to mention that
neither the document clustering nor the relevance feedback
techniques provide a mechanism to store the best
modification of every original query. This means that every
time a query is presented the process of document mining
has to be repeated no matter if the query was presented
before.

Discussion and Conclusions

We have designed and implemented a system that is
capable of learning a personalized search profile from
queries created by a particular user and the documents that
he/she has classified. The search profile is represented with
a probabilistic network that is updated using a gradient-

108

based learning algorithm. The initial experimental results
suggest that the network is able to predict good query
modifications as it learns more about the user’s search
interest. This is especially helpful for ambiguous queries
such as football match and football whose original
performance is very low compared the queries produced by
the network. We also demonstrate that the system is able to
learn different search profiles based on the same input
queries. This suggests that the quality of search results
might be further improved by building separate profiles for
different user categories.
One concern that might arise is the complexity of the
network. However, this can be reduced by removing
unused output and meaning nodes. In addition, when the
CPTs become very large, they may be substituted with a
neural network which encodes the CPTs in its weights.

References

Babalanovic, M., Shoham, Y.. (1995), “Learning
Information Retrieval Agents: Experiments with
Automated Web Browsing”, AAAI SS IGDR.

Chen, L. and Sycara, K., (1998), “WebMate: A Personal
Agent for Browsing and Searching”, In Proc. 2nd
International Conference on Autonomous agents.

Fellbaum, C.. (1998), “WordNet: An Electronic Lexical
Database”, MIT Press.

Glover, E.J., Flake, G.W., Lawrence, S., Birmingham,
W.P., Kruger, A., Giles, C.L., Pennock, D.M. (2001),
“Improving Category Specific Web Search by Learning
Query Modifications”, SAINT.

Joachims, T., Freitag, D., Mitchell, T. (1997), “Web
Watcher: A Tour Guide for the World Wide Web“, IJCAI.

Lieberman, H. (1995), “Letizia: An Agent That Assists
Web Browsing”, IJCAI.

Liu, F., Yu, C., Meng, W. (2002), “Personalized Web
Search by Mapping User Queries to Categories”, CIKM.

Moukas, A. (1996), “Amalthaea: Information Discovery
and Filtering Using A Multiagent Evolving Ecosystem” In
Proceedings of the Conference on the Practical
Applications of Intelligent Agents and Multiagent
Technology.

Pazzani, M., Billsus, D. (1997), “Learning and Revising
User Profiles: The Identification of Interesting Websites”,
Machine Learning 27, 313-331.

Pearl, J. (1988), “Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference”, Morgan
Kaufmann Publishers, Inc.

Radlinski, F., Dumais, S. (2006), “Improving Personalized
Web Search using Result Diversification”. In Proceedings
of the 29th annual international ACM SIGIR Conference
on Research and Development in Information Retrieval,
pp. 691-692.

Rosenfeld, R. (1996), “Adaptive Statistical Language
Modeling: A Maximum Entropy Approach”. CMU Thesis.

Salton, G., Buckley, C. (1990), “Improving Retrieval
Performance by Relevance Feedback”. Journal of the
American Society for Information Science, 41(4):288-297.

Shavlik, J., Calcari, S., Eliassi-Rad, T., Solock, J. (1999),
“An Instructable, Adaptive Interface for Discovering and
Monitoring Information on the World-Wide Web”. In
Proceedings of the International Conference on Intelligent
User Interfaces.

Teevan, J., Dumais, S, Horvitz, E. (2005), “Personalizing
Search via Automated Analysis of Interests and Activities”.
In Proceedings of the 28th annual international ACM
SIGIR Conference on Research and Development in
Information Retrieval, pp. 449-456.

Xu, J., Croft, W.B.. (2000), “Improving the Effectiveness
of Information Retrieval with Local Context Analysis”
ACM Trans Inf Sys, 18(1):79-112.

109

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

