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Abstract 
The continuous development of the Internet has resulted in 
an exponential increase in the amount of available pages 
and made it into one of the prime sources of information A 
popular way to access this information is by submitting 
queries to a search engine which retrieves a set of 
documents. However, most search engines do not consider 
the specific information needs of the user and retrieve the 
same results for everyone, potentially resulting in poor 
results due to the inherent ambiguity in keyword-based 
search queries. One way to address this is by creating a 
personalized profile that incorporates the search preferences 
of the specific user. We present an intelligent system that is 
capable of learning such a search profile given a set of 
queries. The search profile is represented with a 
probabilistic network that incorporates semantic information 
about the user’s use of keywords in the queries. This profile 
is then used to automatically modify the original queries 
created by a specific user to improve the degree of relevance 
between the user’s search interests and the retrieved 
documents. To learn the profile, we create and implement a 
gradient-based learning algorithm that uses the results of 
initial user searches to determine query modifications that 
improve search performance. The proposed intelligent 
system is a client-side application which operates with an 
arbitrary keyword-based search engine and which adapts to 
the preferences of the user as well as to the characteristics of 
the search engine. We demonstrate the system by learning a 
search profile that is used to suggest query modifications 
within a specific domain of interest. 

Introduction    

In their search for information people often consult 
different sources and establish data preferences according 
to their needs. The Internet has rapidly become one of the 
largest knowledge bases available and a common way to 
find information is by submitting a query to a search 
engine, which in turn retrieves a set of related documents. 
While people with well-defined information needs often 
have a clear idea as to the kind of knowledge they are 
looking for, they still find it difficult to express this idea in 
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a few keywords. Moreover, it is frequently a very difficult 
task to formulate a search query that retrieves precisely the 
documents that match a particular interest. This paper 
describes a client-side application that learns a particular 
user’s search profile in the form of a probabilistic network 
and uses it to suggest custom query modifications based on 
previous queries and search results. The decision to build 
the search profile on the client-side was driven largely by 
the improved degree of privacy and flexibility resulting 
from a storage and derivation of the profile on the user’s 
computer rather than at the location of the search engine. 
To learn the profile, the system generates a modified query 
for every user query, submits both of them to the search 
engine and allows the user to classify some of the results as 
either relevant or irrelevant. It then extracts the most 
representative words from the classified documents and 
includes them into the network. Using this, and without 
involving the user, the system then generates a set of new 
modified queries which it submits to the search engine. It 
then scores the results by comparing the retrieved URLs 
with the URLs of the previously classified documents. 
Using this information, the network is then trained with the 
best modified query using a gradient-based algorithm. In 
this way, the network learns and stores the best query 
modification for every original query.  
There have been a number of related research works whose 
main objective is to help users find interesting web pages. 
Much of the work on client side personalization has 
focused on result reranking or on query augmentation. In 
reranking approaches (Teevan, Dumais, and Horvitz, 2005; 
Radlinski and Dumais, 2006) search results from the user 
query are reordered on the client side in order to move the 
results that best match the interest of the user to the top. 
Reranking is performed based on a personalized profile 
derived either only from previously rated search results or 
from a wide range of information sources such as files on 
the client computer or the user’s navigation history. While 
these techniques provide excellent privacy and work with 
existing search engines, the fact that they do not directly 
influence the search results returned to the client device 
also poses a number of challenges. In particular, reranking 
approaches in general require the retrieval of a significant 
number of search results in order to ensure that they 
contain a sufficient number of relevant documents. 
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Moreover, most of them require all of these documents to 
be downloaded completely in order to facilitate their 
reordering. To address this problem, server-side techniques 
have been added that increase the diversity of the returned 
results in order to improve the likelihood that relevant 
documents are contained within the top search results 
(Radlinski and Dumais, 2006).  Also, systems have been 
proposed which use only a simple summary snippet rather 
than the entire document for reranking. The goals of much 
of the approach presented in this paper are to derive a 
personalization that does not require any server-side 
modifications and that is aimed at minimizing the amount 
of document downloads by retrieving complete documents 
only when they are specifically rated by the user. As a 
result, its goal is to maximize the number of relevant 
documents among the top ranked query results retrieved by 
the search engine. To achieve this, it uses query 
reformulation in order to adjust the user query such that it 
leads the search engine to return the highest number of 
relevant results possible within the top ranked documents.   
Query expansion techniques (Xu and Croft, 2000) and a 
wide range of works in relevance feedback (Salton and 
Bukley, 1990) are focused on adding words to the existing 
terms of a query. A common characteristic of many of these 
techniques is that they do not consider the search history of 
the user but are rather built based on a set of documents. 
Significant work has focused on building intelligent agents 
that assist users while they are browsing the Internet; some 
examples are Syskill and Webert (Pazzani and Billsus, 
1997), WebWatcher (Joachims, Freitag, and Mitchell, 
1997), Letizia (Lieberman, 1995), WAWA (Shavlik et al., 
1999). Different research projects have focused on learning 
a search profile and executing personalized web search 
such as Lira (Babalanovic and Shoham, 1995), WebMate
(Chen and Sycara, 1998), or Almathea (Moukas, 1996). 
Work in the area of personalized search categories 
proposes to map the user queries to a small set of 
categories based on the user profile and general knowledge 
(Liu, Yu, and Meng, 2002). Although the output of our 
system is a modification of an original query, the reasoning 
to suggest query modifications is different from previous 
query expansion techniques because it is based on the 
search profile of a particular user and it allows a 
reformulation of the query that might re-order or 
potentially remove terms present in the original query of 
the user. Our system is also different from the agents 
Syskill & Webert, Letizia, Web Watcher and WAWA 
because is focused on searching and not on browsing. 
Among these systems, Syskill & Webert is the only one that 
considers representing the user’s information need with a 
query. However, this agent needs to analyze the contents of 
all the documents retrieved by the search engine in order to 
evaluate the quality of a modified query. Our system only 
needs to analyze the URLs of the documents retrieved by 
the search engine to evaluate the performance of a modified 
query. This performance is quantified with a metric that 
permits to rank different queries according to their score. 
Among personalized agents Web Mate is the most similar 

to our system in the sense that it also considers the different 
meanings of a word to suggest modified queries. However 
our representation of the relation between the query terms 
and their senses is different because we use a probabilistic 
network instead of a list of words. This network is not only 
used to characterize the relationships between words and 
their senses; its main objective is to represent a 
personalized web search context. Analogous to Syskill & 
Webert, Web Mate requires analyzing all the documents 
retrieved by a search engine to evaluate query performance 
and does not provide a score to rank different queries. Web 
Mate represents the different search domains with vector of 
words that do not consider the word sense disambiguation 
problem. Our system is capable to represent every context 
of interest with a different probabilistic network that also 
incorporates the different senses of a word.  Our system is 
different from all the search agents described before in its 
attempt to capture the meaning of the query words 
presented by the user and then translate them into a search-
engine-specific query that will retrieve a larger number of 
relevant documents than the original query. In terms of the 
learning algorithm, the main contribution is its ability to 
learn the search profile represented in the network using 
only the results from the automatically issued modified 
queries in terms of the retrieved URLs previously classified 
as relevant and irrelevant. Also, this algorithm does not 
follow a traditional supervised learning approach since the 
network does not actually output a search query but rather 
ranks and rates words as to their efficacy to retrieve 
relevant documents when used in a particular search 
engine. 
The remainder of the paper first describes the construction 
of the network for a personalized search profile and the 
procedure to infer modified queries from it. The next 
section then describes the algorithm used to learn a profile 
before the approach is illustrated by learning search 
profiles for different information needs. The system is then 
compared with other approaches and the last section finally 
concludes and gives directions for future work. 

Building The Search Profile 

The search profile of a particular user is represented with a 
probabilistic network. Every time the user presents a new 
query to the system the structure of the network is changed 
to include the words in the query and their different 
meanings as identified by an electronic dictionary. In 
addition, the most representative words of the documents 
classified by the user as relevant and their respective 
meanings are added. In order to select the most 
representative features every original query and its 
associated relevant and irrelevant documents are stored in a 
small database. The user does no need to classify all of the 
retrieved documents, but it is important to notice that the 
larger number of classified documents, the easier it will be 
for the system to infer the user’s intention. The contents of 
these documents are analyzed to remove HTML tags and 
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stop words to select the most significant words. The first 
selection criterion requires that the ratio of relevant to 
irrelevant documents is better that the original ratio. The 
second criterion selects words whose entropy loss value 
(Rosenfeld, 1996) is above a particular threshold defined as 
a percentage of the highest entropy loss value. In order to 
break ties, words with identical entropy loss values are 
grouped and the ones that together best cover the relevant 
documents are chosen. 

The Network Topology  
The structure of the probabilistic network consists of three 
different types of nodes arranged in three levels (Figure 1).  

Figure 1. Network Topology. 

The first level of the network is composed of the input 
nodes which represent the words in the original user query. 
The second level contains the meaning nodes that represent 
the senses of the query words and of the terms extracted 
from the relevant documents. These senses are obtained 
from WordNet (Fellbaum, 1998) and are selected according 
to their associated frequency count (Fellbaum, 1998). The 
purpose of meaning nodes is to “understand” to which of 
the particular senses of a word the user is referring in 
his/her query. The third level of the network is composed 
of the output nodes that represent the keywords in the 
modified query suggested by the network. An important 
difference between the output nodes and the meaning nodes 
is that the values of the former represent utilities and not 
strictly beliefs. The value of an output node indicates the 
utility of a word in expressing a particular meaning to the 
search engine and in successfully retrieving relevant 
documents. The output nodes with a utility higher than a 
particular threshold set as a percentage of the highest utility 
are used to create the output query associated with an input 
query. The words in the output query are ordered in 
descending order of their utility.  

Network Connections  
Every time a new keyword appears in an original query the 
topology of the network changes by adding new nodes and 
connections. A keyword in an original query is symbolized 
by an input node and a meaning node for each of its senses 
as identified by WordNet is introduced. The input node 
representing the keyword is connected to all its meaning 

nodes. In addition, it is connected to all meaning nodes that 
symbolize the senses of keywords that appear in the same 
query. For example, with the query “apple producer”, the 
input node “apple” is connected to all nodes representing 
its senses and also to all nodes representing the senses of 
“producer”. For each of the meaning nodes, output nodes 
representing all the words associated with this meaning 
according to WordNet are created and connected to it. 
Some of the output nodes are not related to the senses of 
the keywords in a query since they represent the words that 
have been extracted from the relevant documents. For these 
nodes WordNet is consulted to find and link the set of 
corresponding meaning nodes. Then, existing input nodes 
are connected to this set of meaning nodes by linking all 
the input nodes to the additional meaning nodes  

Initialization of the Values of the Nodes  
Once the network topology is determined, the values of the 
CPT (Conditional Probability Table) entries of each node 
have to be initialized. For input nodes this value indicates 
the presence of the keywords in the input query. For 
meaning and output nodes the word frequencies provided 
by WordNet are used to set the initial CPT values. 

Initialization of the Input Nodes. The input nodes are set 
to T (TRUE) or F (FALSE) according to the words that 
appear in the input query. For example, in a network with 
input nodes “A”, “B” and “C”, the first two are set to T
and the third to F if the user query “AB” is presented.   

Initialization of the Meaning Nodes. CPT’s for the 
meaning nodes are initialized according to the relative 
frequency that WordNet assigns to each of the senses.  
a) Meaning nodes with one parent: Suppose that there are 
two input nodes, “apple” and “producer”, respectively. 
According to WordNet the word “apple” has one meaning 
and the word “producer” has three meanings. The ratios of 
the frequency of each sense of “apple” and “producer” are 
summarized in Table 1 and transformed into probabilities. 
P (apple1=T | apple=T) = 2/2                 
P(producer1=T | producer=T) =9/16     
P (producer2=T | producer=T) =5/16    
P(producer3=T | producer=T)=2/16     

Word Sense Frequency Ratio 
Apple Apple1 2/2 

Producer1 9/16 

Producer2 5/16 Producer 

Producer3 2/16 

Table 1. Frequency ratios of the Meaning Nodes

b) Meaning nodes with two or more parents: If two or 
more input nodes represent words that have a common 
meaning according to WordNet then the value of the word 
with the highest frequency is used to initialize the meaning 
node. When the input nodes do not share a common 
meaning, we only consider the words for which WordNet 
gives an answer. For example, in the query “apple 
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producer”, the input nodes “apple” and “producer” are 
linked to the meaning nodes “apple1”, “producer1”, 
“producer2” and “producer3”. WordNet does not provide 
a sense that links the word “apple” with the senses of 
“producer” or “producer” with the senses of “apple”. 
The meaning nodes “producer1”, “producer2” and 
“producer3” are thus initialized considering only the 
information for the word “producer”. The same applies for 
the meaning node “apple1”. When WordNet does not 
provide a frequency count for a meaning, as in the case of 
brand names, the probabilities are initialized to a low value 
such as 0.01.  

Initialization of the Output Nodes. Output nodes are 
initialized in a similar way as meaning nodes. However it is 
important to remember that the values of output nodes 
represent utilities, normalized to values between 0 and 1. In 
the case of output nodes with one parent, WordNet is 
consulted to determine how frequently the corresponding 
words have the sense assigned to them trough the meaning 
nodes. These frequencies are translated into probabilities. 
For an output node with more than one parent the utility 
value is calculated as a combination of all possible states 
(T/F) of the parents using the Noisy-OR gate (Pearl, 1988). 

Prediction of a Query Modification Using 
Previously Learned Queries  
The values of the CPTs were initialized using only the 
information provided by WordNet. The user’s queries 
present new evidence to the network that is used to update 
the CPTs. Once the network has learned the target output 
for one or more queries, these can be used to predict the 
output of a new query. The prediction is not 
straightforward because only the CPT entries of meaning 
nodes corresponding to combinations of input nodes used 
in the given query are updated while all others remain 
unchanged. The case of the output nodes is different 
because they do not directly depend on the input nodes, and 
the learning algorithm (presented in the Learning a Search 
Profile Section) updates all the values of their CPT entries. 
Suppose that the small network in Figure 2 has learned the  

Figure 2. Probabilistic network and CPT for node D

best query modification for the original queries Q1=AB and 
Q2=BC and it has to predict the best modification for the 
query Q3=AC. In this situation, the CPT entry of node D
for {A=T, B=F, C=T} has to be predicted using the CPT 
entries corresponding to {A=T, B=T, C=F} and {A=F, 

B=T, C=T}. We can obtain Q3 from Q2 and Q1 using the 
following equations: 
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Assuming that all input queries are equally likely and that 
all input nodes are independent given the meaning node D, 
Bayes Law can be applied to obtain:  
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Using P(D=T|Q1) and P(D=T|Q2), the unknown ratios of 
Equations 3 and 4 can be found where ratios that have 
never been observed are assumed to be 1. x = P(D=T|Q3)
can then be estimated from z1 and z2 in a way similar to 
estimating a constant quantity x from n noisy measurements 
zi (i=1,..,n) of x. To estimate x=P(D=T|Q3) from z1 and z2, 
the following formula (Kalman Filter) is used: 

where x̂  is the estimate of x and 
2

1σ and 
2

2σ represent the 

errors (variance) in z1 and z2, respectively. The following 

illustrates the estimation of the variances using 
2

1σ  as an 

example. Let the ratios from Equations 3 and 4,  
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respectively. In the absence of other information, J and K
can be assumed to be the expected values of two 
independent random variables, J’ and K’, that represent 
ratios of probability values for different combinations of 
input nodes. If it is also assumed that the errors in these 
predictions are small compared to their expected values, 
i.e. JJ <<'σ  and KK <<'σ , then the variance of J’ and K’

can be estimated as 22
' JJ ⋅= βσ and 22

' KK ⋅= βσ , where 

β is a small constant. The standard deviation of z1 is then 
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E[K’] are the expected values of J’ and K’ respectively. In 
this case E[J’]=J and E[K’]=K. Although Equations 3 and 
4 contain only two ratios, the approach can also be applied 
in cases with more rations and a new query can thus be 
predicted given any number of learned queries. As the 
network learns more queries, the value estimates for the 
CPT entries should improve, leading to better query 
modifications over time. 
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Learning the Search Profile 

The system presented here is an intelligent agent that learns 
a search profile from queries created by a particular user 
and the classification that he/she assigns to some of the 
retrieved documents. For every original query the user does 
not actually provide information as to what the best query 
reformulation would be but rather only gives information 
about the quality of a subset of the retrieved documents. 
The tasks of the learning algorithm have therefore to be: (i) 
discover which query modifications would be the best; (ii) 
determine if all the best modified queries can be achieved 
within the network, i.e. establish what meaning nodes 
would best represent the intention in the original queries 
and how these nodes can be best represented in the output 
nodes to form modified queries that successfully retrieve 
relevant documents when they are actually submitted to a 
particular search engine.  
The procedure to learn a search profile is as follows. For 
every original query the system internally creates a set of 
query modifications using the different meanings of the 
words in the query and the terms extracted from the 
classified documents. Every query modification is 
submitted to the search engine and the URL’s of the 
retrieved documents are compared with those of the 
classified documents to calculate an expectation of relevant 
documents. The learning process then consists of updating 
the CPTs in the network such that given the words in the 
user’s query (input nodes) the system produces the best 
modified query (output nodes). The CPTs of the network 
are updated using a gradient-based algorithm using a set of 
training examples indicating the direction of change of the 
CPT values. The training data consists of a set of original 
queries, their modifications, and a quality score. To train 
the network, a mapping mechanism is essential that 
converts desired output queries to utility values for the 
output nodes. The main steps of the learning process are:   
a) Set up a measure to score the quality of the modified 
queries derived from the user’s original queries.  
b) Map the target queries to values of the output nodes of 
the network. Use these values to construct a training set.  
c) Use a gradient-based learning algorithm to update the 
CPTs of the network with the training examples from b). 

Query performance measure 
Let S be the sample space of all combinations of relevant 
and irrelevant documents retrieved by a search engine in 
response to a query. Each element of S is a set of 
documents, denoted by sr, where r is the number of relevant 
documents: S={s0,s1,…,sN}. Given no further information, 
the prior probability of each outcome set, P(sr), is given by: 
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where M and M-r are the total number of documents and 
the number of irrelevant documents respectively. The 
constants p and q are the probabilities of relevant and 
irrelevant documents, respectively. We use P(sr) to 
estimate the prior probability of every set of documents to 
be retrieved by a modified query. The values of p and q are 
obtained from the set of documents retrieved by the 
original query. Suppose that we submit the modified query 
to the search engine and the relevance of some of the 
retrieved URLs is already known because the associated 
documents have been classified previously. Although, the 
classification of the remaining URLs is unknown, we can 
estimate the performance of the modified query by 
considering the classified URLs as k randomly picked 
documents from the total set of URLs retrieved by the 
modified query. Given that among the k selected 
documents x are relevant and y are irrelevant, the posterior 
probability of sr is:  
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The expectation, Z, of the number of relevant documents 
retrieved by a modified query is calculated as:  
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Using this expectation formula we can score queries and 
the best modified query will be the one whose expectation 
E(Z) of obtaining relevant documents is the largest.  

Learning the best modification 
The creation of training examples from an original query 
and its best modification (target query) proceeds as 
follows: 
1) Set the input nodes that represent the words in the input 
query to True and the rest of the input nodes to False. 
2) Obtain the current output query from the network.  
3) Compare the output query with the target query 
4) If the output query and the target query are the same the 
algorithm is completed, otherwise update the values of the 
output nodes until the network produces the target query. 
The output query produced by the network is composed of 
the output nodes whose value is above the threshold 
threshold = percentage × highest_output_value. The words 
in the output query are set in decreasing order of their 
output node values. The target query is mapped to a set of 
output node values calculated as the closest value for each 
output node Oi in the target query that would put it in the 
correct position with respect to the other words in the target 
query. The difference between Oi and the rest of the output 
nodes in the target query is calculated individually using 
the formulas in Figure 3. 
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Figure 3. Cases used to update the output nodes

The cases in Figure 3 follow the same general formula 
Value(Oi)=Value(Oi)+α[(targetValue±ε)-Value(Oi)] where 
α is the learning rate and ε is a margin used to make the 
output node values more stable.  
Each individual difference between an output node Oi and 
another output node that must appear in the target query is 
stored in a vector of differences named Delta: 
Delta={Δ1,Δ2,Δ3,…,ΔN}. Finally, the average of all Δj’s is 
used to update the output nodes: 

( ) ( ) ( )( )DeltaofsizeDeltaSumOvalueOvalue ii __/α+= , where 
size_of_Delta is the number of Δj’s in Delta. Every time the 
value of an output node is changed, the CPTs of the 
network are updated using a gradient-based algorithm 
(presented in the next section).  

Learning the profile 
Every time a training example is presented to the network, 
the output nodes must be updated to produce the desired 
output query given an input query. The error in the values 
of the output nodes is defined as: Error=Target Value – 
Current Value. To reduce this error we apply gradient-
descent on the square error of every output node. 
A training example for the network has the form: 
Input:  I1=T, I2= T, I3=F
Output: O1 = V1, O2 = V2, O3 = V3…..ON = VN.  
where Oi is an output node and Vi its desired value. 
Let Oi be an output node of the network, Πi the set of all 
parent nodes of Oi and Πij the jth assignment of the states 
(true or false) of Πi. We define P(Oi=T) as:  
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N

PTOPTOP ∏⋅∏=== ∑
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where N is the number of parents of Oi and 2N is the total 
number of possible assignments of states to the parents of 
Oi. The problem to be solved is to modify P(Oi=T)
according to the training examples. We can see P(Oi=T) as 
a function with parameters P(Oi=T|Πij) and constants 
P(Πij). P(Oi=T) can be updated by following the gradient: 
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The result is multiplied by ΔOi which indicates the 
magnitude by which the value should change. We define 
ΔOi as P(Oi=T)target-P(Oi=T)current and update P(Oi|Πij)
using: 
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where α is the learning rate. 
Each conditional probability is then normalized such that 
P(Oi=T|Πij) + P(Oi=F|Πij) = 1.0 and P(Oi=T|Πij) ∈ [0, 1]. 
After updating the output nodes, the CPT entries of the 
meaning nodes have to be updated. Let Mk be a meaning 
node that is a parent of the output node Oi for which we 
calculated P(Oi=T). We derivate P(Oi) with respect to 
P(Mk=T) for every child node Oi of Mk and then calculate 
the average of these L partial derivatives:  
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Each of these partial derivatives is again multiplied by ΔOi

of every child node Oi of Mk: 
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The value ΔMk is calculated for every meaning node, Mk

that is a parent of the output node whose value needs to be 
updated. The last part of the algorithm consists of updating 
the conditional probabilities of the meaning nodes 
considering the relationship with the input nodes. We 
define P(Mk=T) in a similar manner as P(Oi=T): 
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where R is the number of parents, Πk, of meaning node Mk

and 2R is the total number of possible assignments, Πkj, of 
states of the parents of Mk. Now the partial derivatives of 
the previous equation with respect to P(Mk=T|Πkj) is: 
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Finally we update P(Mk=T|Πkj) : 

A and B are output nodes that symbolize words that must appear in the 
target query 
Value (A) is the utility value of node A 
Value (B) is the utility value of node B 
Case 1:  
Target Output: Value (A) > Value (B) 
Current Output: Value (A) < Value (B) 
     If (Value (B) ≥ Threshold) 
          Value (A) = Value (A) + α ((Value (B) + ε) − Value (A)) 
    Else if (Value (B) < Threshold) 
           Value (A) = Value (A) + ((Threshold +  ε) – Value (A)) 
Case 2:  
Target Output: Value (A) < Value (B) 
Current Output: Value (A) > Value (B) 
     If (Value (B) ≥ Threshold and Value (A)  ≥ Threshold) 
          Value (A) = Value (A) + α ((Value (B) − ε) − Value (A)) 
     Else if (Value (B) < Threshold and Value (A)  ≥ Threshold) 
          Value (A) = Value (A) + α ((Threshold − ε) − Value (A)) 
     Else if (Value (A) < Threshold) 
           Value (A) = Value (A) + ((Threshold +  ε) – Value (A)) 
Case 3: 
Target Output: Value (A) < Value (B) 
Current Output: Value (A) < Value (B) 
Since the current output is equal to the target output Value(A) is not updated. 
Case 4:  
C is an output node that is NOT part of the target output, but it appears in the 
current output. 
Target Output: Value (C)  <  Threshold
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Again, each conditional probability of the meaning nodes 
must be normalized so that P(Mk=T | Πkj) ∈ [0,1] and the 
entries corresponding to a particular conditioning case Πkj

must sum to 1. Given these equations we can now learn and 
store the best modified queries without user involvement. 

Experiments 

We have designed two experiments to evaluate different 
characteristics of the system. In the first experiment, search 
profiles for two persons with different search preferences 
were created using the same input queries. The second 
experiment evaluates the quality of the network’s query 
modification produced for a novel input query. The 
network creates this output query based on the previously 
learned queries. In both experiments, the threshold for 
words extracted from the relevant documents was set to 
0.5, and the threshold for output nodes was set to 0.6. 

First Experiment 
Here we built two different search profiles using the same 
set of original user queries, one for a fruit producer 
interested in apples (User 1), and one for a user of Apple 
Macintosh computers (User 2). The network is trained to 
learn the best query modification for each profile.  

Table 2 and Table 3 show the original and the best 
modified queries with their performance (given by the ratio 
of relevant to total retrieved documents) for User 1 and 
User 2, respectively. The results show that our system is 
capable of learning appropriate query modifications for 
specific users without requiring the user to provide 
feedback on any but the original query results. The learned 
queries here always outperformed the original queries, 
indicating that the internally derived score estimate 
adequately represents the relative quality of the queries.  

Second Experiment 
The search domain for the second experiment is the World 
Cup soccer tournament. The goal of this experiment is to 
evaluate the ability of the system to generalize from 
previous queries to the user’s intent with a new query. The 
domain was chosen to provide sufficient ambiguity in terms 
of contexts that share common keywords (such as rugby, 
cricket, American football, or non World Cup soccer). In 
this experiment, one query at a time was presented and the 
original queries, the modifications generated by the 
network based on past queries, and the best learned queries 
were evaluated. Table 4 compares the performance of all 
three sets of results for the four original queries used. The 
results show that the quality of network-generated modified 
queries significantly improves as more queries are learned, 
in this case outperforming the original query after the 
second training query. This is an expected result since at 
the beginning the network has no knowledge of the user’s 
interests. 

User query Modified query Modified query 
score 

Rel/Total 

Original query 
ratio 

Rel/Total 

Modified query 
ratio 

Rel/Total 
Apple consumer Apple consumer information 7.7/15 5/15 13/15 
Apple information Apple information apples 9.8/18 8/18 15/18 
Apple producer Apple producer growers 9.2/19 8/19 19/19
Apple virus Apple virus delicious 10/18 7/18 15/17

Table 2 Results for the search profile of User 1 

User query Modified query 
Modified query 

score 
Rel/Total 

Original query 
ratio 

Rel/Total 

Modified query 
ratio 

Rel/Total 
Apple consumer Apple consumer information Mac 9.6/17 8/17 17/17
Apple information Apple information computer 10.9/18 10/18 18/18
Apple producer Apple producer Mac 9.4/15 8/15 14/15
Apple virus Apple virus OS 11.6/17 10/17 17/17

Table 3 Results for the search profile of User 2

106



Comparison With Other Approaches 

We evaluate the performance of our system by comparing 
the quality of the documents retrieved through the modified 
queries learned by the network with the quality of those 
retrieved by applying other approaches.  
We applied the following techniques in order to compare 
our system:  

• Relevance feedback.  
• Personalized categories. 
• Document clustering. 

In all the cases we compare the ratio of documents 
classified as relevant to the total number of classified 
documents. 

Relevance Feedback 
To compare our technique against a method based strictly 
on relevance feedback, we submit every user’s original 
query to the search engine. For each query, the user 
classifies the retrieved documents as relevant and 
irrelevant. We extract the three most representative words 
of the relevant documents according to their entropy loss 
value. We create three different expanded queries and 
select the best one for comparison.  These three queries 
have the following form: 

• Original query + best term 
• Original query + best term + second best term 
• Original query + best term + second best term + third 

best term 
Figure 4 shows the performance of the modified queries 
learned by our system and the queries expanded using 
relevance feedback for the domain of apples as fruits. 
Figure 5 shows the results for the queries related to the 
soccer World Cup.

Personalized Categories 
To obtain a comparison with a purely category-based, 
server-side search approach we submit each original query 
to the search engine and use Google Personalized Beta 
(http://labs.google.com/personalized) to restrict the 
retrieved documents to be within a personalized set of 
categories selected by the user. For the queries associated 
to the fruit apple, the category Health and the subcategory   

Figure 4. Comparison between our approach and Relevance 
Feedback using the queries related to the fruit apple.

Figure 5. Comparison between our approach and Relevance 
Feedback using the queries related to the soccer World Cup.  

Nutrition are selected. We select the subcategory Soccer 
inside the category Sports for the queries referring to the 
soccer World Cup. 
Figure 6 and Figure 7 show the performance for the queries 
associated to the fruit apple and the soccer World Cup 
respectively.  

5.3 Document Clustering 
In this case we use all documents retrieved by a set of 
queries belonging to the same search domain to create two 
clusters of documents: relevant and irrelevant. In other 
words we consider the whole set of documents as if they 
were retrieved by a single query and classify them as 
relevant and irrelevant. Similar to the procedure followed 
for the relevance feedback method, we extract the most  

User query User query 
ratio 

Network query Network query 
ratio 

Best modified query Best modified 
query ratio 

World Cup 8/17=0.47 Cup 1/20=0.05 World Cup players 14/20=0.7 
World Cup match 8/19=0.42 World Cup players match 6/18=0.33 World Cup match results 13/20=0.65 
Football match 1/10=0.1 World Cup match results 13/20=0.65 World Cup football 

matches 
14/19=0.737 

Football 2/20=0.1 World Cup football 12/19=0.63 World Cup football info 15/20=0.75 

Table 4. Ratios of relevant documents to total documents for the user query, network query and modified query 
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Figure 6. Comparison between our system and Google 
Personalized Beta using the queries related to the fruit apple.

Figure 7. Comparison between our system and Google 
Personalized using the queries related to the soccer World Cup 

representative words of the relevant documents and use 
them to create three different expanded queries for each 
original query and select the best one for comparison. In 
this way all the queries of the search domain are expanded 
with the same three words.  In this comparison we use the 
documents retrieved by the queries referring to the fruit 
apple and use the three most representative words of this 
search domain to expand every original query. For the 
soccer World Cup domain the query modifications were 
learned iteratively meaning that every query modification 
incorporates the information of the previously learned 
queries. For the first query (World Cup), we only use the 
set of classified documents associated to this query; for the 
second query (World Cup match) we use the documents 
retrieved by the previous query and the current query; for 
the third query (football match) we use the documents 
retrieved by the first two queries and the current query and 
for the fourth query (football) we use the documents 
retrieved by all the queries. The comparison of the 
performance between our system and the document 
clustering approach is shown in Figure 8 and Figure 9. 
According to the comparison results we conclude that the 
quality of the queries learned by our system and the queries 
produced through relevance feedback is almost the same 
for the queries that refer to the fruit apple. However, the 
performance of the queries produced by our system is 
better for the domain of the soccer World Cup. In this case 
the original queries were modified using the information 
provided by the previously learned queries. In all the cases 

Figure 8. Comparison between our system and Document 
Clustering using the queries related to the fruit apple.

Figure 9. Comparison between our system and Document 
Clustering using the queries related to the soccer World Cup.

our system performs better than the personalized version of 
Google. This may happen because Google only supplies 
personalized results for the first 10 retrieved documents 
and because the search categories are defined by Google 
and they may not exactly match the user’s information 
need. The performance of the queries created with the 
document clustering approach and the queries formulated 
by our system are similar to those obtained by applying 
relevance feedback. Even though in the “apple fruit”
domain the document clustering approach outperforms our 
system in some queries, the results for the soccer World 
Cup domain again suggests that incorporating the user’s 
search profile is useful to increase the performance of the 
modified queries. It is also important to mention that 
neither the document clustering nor the relevance feedback 
techniques provide a mechanism to store the best 
modification of every original query. This means that every 
time a query is presented the process of document mining 
has to be repeated no matter if the query was presented 
before.  

Discussion and Conclusions 

We have designed and implemented a system that is 
capable of learning a personalized search profile from 
queries created by a particular user and the documents that 
he/she has classified. The search profile is represented with 
a probabilistic network that is updated using a gradient-
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based learning algorithm. The initial experimental results 
suggest that the network is able to predict good query 
modifications as it learns more about the user’s search 
interest. This is especially helpful for ambiguous queries 
such as football match and football whose original 
performance is very low compared the queries produced by 
the network. We also demonstrate that the system is able to 
learn different search profiles based on the same input 
queries. This suggests that the quality of search results 
might be further improved by building separate profiles for 
different user categories.  
One concern that might arise is the complexity of the 
network. However, this can be reduced by removing 
unused output and meaning nodes. In addition, when the 
CPTs become very large, they may be substituted with a 
neural network which encodes the CPTs in its weights. 
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