
Truth Maintenance Task Negotiation in Multiagent Recommender System for
Tourism

Fabiana Lorenzi
Instituto de Informatica, UFRGS

Caixa Postal 15064 CEP 91.501-970
Porto Alegre, RS, Brasil

Universidade Luterana do Brasil
Av. Farroupilha, 8001 - CEP 92420280, Canoas, RS, Brasil

lorenzi@ulbra.br

Ana L.C. Bazzan and Mara Abel
Instituto de Informatica, UFRGS

Caixa Postal 15064 CEP 91.501-970
Porto Alegre, RS, Brasil

Abstract

This paper describes a multiagent recommender ap-
proach based on the collaboration of multiple agents
exchanging information stored in their local knowledge
bases. A recommendation request is divided into sub-
tasks handled by different agents, each one maintaining
incomplete information that may be useful to compose
a recommendation. Each agent has a Distributed Truth
Maintenance component that helps to keep the integrity
of its knowledge base. Further, we show a case study in
the tourism domain where agents collaborate to recom-
mend a travel package to the user. In order to help the
coordination among the agents during the recommenda-
tion, the Distributed Constraint Optimization approach
is applied in the search process.

Introduction
Recommender systems are being used in e-commerce web
sites to help customers in selecting products more suitable
to their needs. In the last years, the internet has grown ex-
ponentially and the information overload problem has ap-
peared. In order to aggregate information and to match the
recommendations with the information people is looking for,
Recommender Systems have been developed (Resnick et al.
1994).

Despite recommender systems being efficient, for some
recommender applications it is possible that a single infor-
mation source does not contain the complete information
needed for the recommendation. For example, in the tourism
domain, the travel package recommendation is composed by
several information components such as flights, hotels and
entertainment and specific knowledge to assemble all the
components is necessary. Due the distributed nature of the
information, multiagent systems (MAS) are promising to re-
trieve, filter and use information relevant to the recommen-
dation. MAS can be used to avoid unnecessary processing
and can be built to deal with dynamic changes in the infor-
mation source.

We propose a multiagent recommender approach where
the agents work in a distributed and cooperative way, shar-
ing and negotiating knowledge with the global objective of
recommending the best travel package to the user. In order to

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

achieve this goal, this approach uses distributed truth main-
tenance system (TMS) as in (Huhns & Bridgeland 1991)
and a distributed constraint optimization (DCOP) (Modi et
al. 2003) applied in the tourism domain to be validated in a
real-world application. The distributed TMS helps to keep
the integrity of knowledge base of each agent, while the dis-
tributed constraint optimization approach is used to help the
coordination among the agents during the search processes.

Multiagent Recommender Systems
The multiagent recommender system uses agents to help in
the solution process, trying to improve the recommendation
quality. The agents cooperate and negotiate in order to sat-
isfy the users, interacting among themselves to complement
their partial solutions or even to solve conflicts that may
arise.

In (Macho, Torrens, & Faltings 2000) the authors present
a multiagent recommender system that arranges meetings
for several participants taking into account constraints for
personal agendas. In this system, three different agents were
proposed: the personal assistant agent that is the interface
between the user and the MAS. The flight travel agent that is
connected to a database of flights; and the accommodation
hotel agent that is reponsible to find an accommodation on
the cities involved in the meeting.

Another example of multiagent case-based recommender
system is CASIS (Lorenzi, Santos, & Bazzan 2005). The
authors proposed a metaphor from swarm intelligence to
help the negotiation process among agents. The honey bees’
dancing metaphor is applied with case-based reasoning ap-
proach to recommend the best travel to the user. The rec-
ommendation process works as follows: the user informs
his/her preferences; the bees visit all cases in the case base
and when they find the best case (according to the user’s
preferences) they dance to that case, recruiting other bees to
that case; and the case with the most number of bees dancing
for it is the one recommended to the user. The advantage of
this application is that the bees always return something to
recommend to the user. Normally, case-based recommender
systems use pure similarity to retrieval the best cases. The
recommendation results depend on the defined threshold and
sometimes the system does not find cases that match the
threshold. Despite the controversy that sometimes is bet-
ter not recommend instead of recommend wrong products,

122



this is not true in the tourism domain. CASIS system always
returns some recommendation, which is specific for the cur-
rent season, given the dynamic nature of the approach). The
disadvantage of this system is that the case-base is central-
ized. It is not possible to search information distributed in
other sources.

Truth Maintenance Systems
Truth Maintenance Systems (TMS) (also called belief revi-
sion or reason maintenance systems) are algorithms that help
to maintain the knowledge base integrity. The first proposed
TMS is the Justification Based Truth Maintenance System
(JTMS) presented by Doyle (Doyle 1979). The JTMS is di-
vided in two components: a problem solver which draws in-
ferences (beliefs) and a TMS which records these inferences
(called justifications). Every datum has a status associated
to it: in (believed) or out (not believed). The TMS believes
in a datum if it has an argument for the node and the beliefs
in the nodes involved in the argument. The created justifica-
tions can be use to provide an explanation to the user. The
disadvantage of this algorithm is that only one point of the
search space can be examined at a time (specific context).

The evolution of TMS leaded to the Assumption-based
TMS (ATMS) presented by deKleer (de Kleer 1986). The
ATMS is based on manipulating assumption sets. In the
ATMS algorithm, every datum is labeled with the sets of
assumptions and they are computed by the ATMS from the
justifications supplied by problem solver. In this approach,
the belief status can be a set of assumptions instead of just
labels of type IN or OUT. This brings flexibility to the al-
gorithm because it is possible to deal with multiple beliefs
status.

A Distributed TMS (DTMS) was proposed in (Huhns &
Bridgeland 1991), which aimed at seeking local consistency
for each agent and global consistency for the data shared by
the agents. Given a network of several agents, they interact
by exchanging data. Each agent has two kinds of data in
its knowledge base: shared and private. A private data be-
comes a shared one when the agent informs another agent.
The concern of this approach is to maintain the consistency
of the shared data, because they affect the problem-solving
process of another agent. In this approach, the IN label was
refined in two additional labels: internal and external. An
internal data is one that is believed to be true and has a valid
justification. An external data is believed to be true but it
does not need to have a valid justification. Thus, the jus-
tification of an external data is “the other agent told me”.
An advantage of this approach is that the TMS is only trig-
gered when there is a change in belief status of shared data,
which means it does not introduce overhead for monotonic
reasoning among agents. The authors presented an exam-
ple of DTMS algorithm where two agents (an investor and
a stockbroker) interact. The investor agent asks to the other
agent to recommend a stock.

A multiagent truth maintenance system can be considered
as a distributed version of a truth maintenance system. In
Multiagent TMS, there are multiple agents and each one has
its own truth maintenance system. Each agent has uncertain
data that can be IN or OUT (believed or not believed) and

each shares some data with other agents. Each agent must
determine the label of its data consistently, and shared data
must have the same label.

A Multiagent System with Truth Maintenance
Applied to the Tourism Domain

Planning a travel is not an easy task for the travel agent. He
needs to know every detail about the destination chose by
the passenger and all details involving the whole trip such as
the timetable of attractions, hotels or flights.

Architecture of the Agents
Using this travel recommendation example, we have created
a basic multiagent scenario with a group of agents in the
community with a common global goal (the recommenda-
tion) and separate individual goals (the component that each
one needs to search). A community C consists of n agents
a1, a2, ..., an, each located inside a predefined range of ac-
tion R. There are two different types of agents within the
community: the Assembler - Asm and the Searcher - Src.

Asm agents are responsible for the communication with
the user and to show the final recommendation. It creates a
list of tasks (flights, hotels and attractions) that is sent to the
Src agents. The community may have several Asm agents
and each one creates a different recommendation tailored to
each user. Scr agents are responsible for choosing a task
from a list.

The Src agent is represented by Src = (P,LocalKB,
TMS). P is the agent’s profile defined as P = (id,
active, tcurrent, tsolved, tfreq, confind); id is the iden-
tification of the agent, active indicates if the agent is inside
or outside the community, tactual is the current chosen task,
tsolved is a list of the 10 recently solved tasks, tfreq is a list
with the 10 most frequently solved tasks and confind is the
confidence index of the agent in that type of task.

The confidence index helps the agent to specialize in some
type of task and to help the maintenance of the agent’s
knowledge base. The specialization of the agent in a type
of task improves the system’s performance but more impor-
tant than that, it leads to a more efficient recommendation
because the agent becomes an expert in that type of recom-
mendation.

This confidence index is calculated taking into account
the frequency of the task’s type, the tsolved list and the tfreq
list. The agent calculates the confidence index every time
it has to choose a task to perform and it checks which task
available is better for it. After perform the task, the agent
checks if that task has increased or not its confidence index
and it decides to keep or not the task in its lists. This behav-
ior is important to avoid that the agent specializes itself in
seasonal recommendations.

LocalKB is the knowledge base (KB) of the agent.
Each agent has in its KB the following attributes: idt,
typet, timecommit, requirements, solution. Idt is the
task’s identification, typet is the task’s type (initially lim-
ited to flight, hotel or attractions), timecommit is the time
the agent took to perform the task, requirements represent
the user’s preferences, i.e., the user’s query. Every time the

123



agent saves a new task in its KB it saves the whole user’s
query as well. Solution represents the information the agent
knows to solve that task.

The agent’s KB is increased according to the number of
tasks the agent solves and saves and it is necessary to control
the size of its knowledge base. As bigger the KB becomes,
worst is the search performance. In the other hand, a small
KB forces the agent to search in the community or into the
web, which also decreases the search performance. The con-
fidence index helps the agent to decide which task should be
saving in its KB.

TMS is the reason maintenance system component, re-
sponsible for maintaining the integrity of the transferred in-
formation among the agents and their KBs. The attributes
of the TMS are: agent, knows, solution, that means which
other agent knows the solution to the task it has to perform.
This TMS component helps in the search process. When the
agent does not have information in its own knowledge base,
it can communicate to other agents to discover if any agent
has the information it needs. Inconsistencies can appear dur-
ing this communication and the knowledge bases can lost
integrity.

Truth Maintenance System Component The distributed
scenario described in the previous subsection deals with the
problem of missing information during the recommendation
process, allowing that each agent communicates to other
agents ands ask for information needed. However this com-
munication leads to another problem: the lost of integrity
of each knowledge base. To avoid this problem, each agent
has a TMS component that is responsible for keeping the
integrity of the agent’s knowledge base.

The TMS component also helps to keep the integrity of
the recommendation. Sometimes agents have to guess infor-
mation during the recommendation process. We adopted the
ATMS (de Kleer 1986), creating a rule base - R, consisting of
causal and logical rules derived from prior experience of the
travel agents, a premise set - I that are the user’s preferences,
and an assumption set - A, that contains the assumptions of
the agents. Based on these model components, the agents
derive propositions - rec that represent parts of the final rec-
ommendation that will be presented by the Asm agent.

Figure 1: ATMS representation in the multiagent scenario

Figure 1 shows a piece of the ATMS representation.
The first proposition (rec1) depends on two preferences in-
formed by the user: the city destination (I1) and the depar-

ture day (I3). The second proposition (rec2) finds the best
hotel for the user. The premises day and time of arrival come
from the flight’s information. If the user did not inform the
type of accommodation then the agent uses the assumption
A1, assuming that the type of accommodation is economic.
The proposition rec3 depends on the destination, the dura-
tion and the flight’s information. To search for the best at-
tractions, for example, the agent needs information about
the flights (duration of the package for example). Trying not
to delay the recommendation process, this agent assumes a
standard duration and starts its process, looking for attrac-
tions in the destination that fit in the period the user wants
to stay there. The fact of assuming some information is very
common in the real travel recommendation process. In the
most cases the passenger is not sure about what he wants to
do exactly, he depends on the travel agent recommendation.
Figure 2 shows some examples of rules that have been de-
fined to the travel package recommendation process. Each
rule is used to lead to a proposition.

Figure 2: Example of rules

Contradictions between the derived propositions in the
recommendation process and what is demanded during the
communication between the agents are viewed as signals
that the set of assumptions should be modified. For exam-
ple, if a proposition was derived with the information that
the Louvre museum opens from Tuesday to Sunday but the
agents are looking for a museum that opens on Monday,
there is a contradiction and new assumptions that are com-
patible with the information needed should be generated us-
ing the ATMS. Assumptions are important because they af-
fect the travel package recommendation and retracting these
assumptions may change the recommendation. In the pre-
vious example, the agent has assumed that the user wants
to stay in economic accommodation but if this hypothesis is
not right and the user wants a first class hotel, there is a con-
tradiction and the assumption should be retracted and a new
hotel should be recommended.

Search Process
In a multiagent scenario like this it is necessary that agents
coordinate their actions, especially when they need to com-
municate to each other and exchange information. The Src
agents do not have a global view, goals and knowledge
are local, making it difficult to cooperate. For this reason,
we propose the combination of the TMS with the DCOP.
This combination ensures that agents will coordinate their
decision-making in this domain. A DCOP consists of n vari-
ables V = x1;x2; ...;xn, each assigned to an agent, where
the values of the variables are taken from a discrete domain
D1;D2; ...;Dn, respectively. The agents choose values for

124



the variables trying to optimize a global objective function.
Two agents are considered neighbors if they have a con-
straint between them. In our scenario, two agents only have
a constraint between them if they are inside the community.
The constraint between agents corresponds to the informa-
tion the Src agent needs and the information it gets from
other agent.

The special feature here is that the cost function defined
works as a local similarity between the neighbor agents. To
an agent, getting the lower cost means finding a neighbor
with the information it needs. It means that the higher the
difference between the agents, the higher the cost. The Src
agents that are performing the tasks to a specific recom-
mendation must find the most similar information in other
agents. Each agent communicates to its neighbors to search
for a perfect match or at least the most similar information.
The cost function is the sum of the distance between the in-
formation each agent (au) is looking for, represented by iau

and the information the other agent (as) has, represented by
(ias

) :

cost =
∑

sim(iau
, ias

)

where sim(iau
, ias

) represents the local similarity be-
tween the features. In numeric features, this value is given
by the Euclidean distance between the values. In symbolic
features the local similarity is {1 : iau = ias ; 0}. This pro-
cedure in the cost function ensures that the agent will always
return some information to the Asm agent.

The Recommendation of a Travel Package
Let us consider that the user has chosen Paris as destination
to his vacation and he would like to travel on 10th March.
The first step in the recommendation process is the creation
of the list of tasks. Agent Asm creates the list and let it avail-
able to the community. After this, each Src agent picks a
task. The agent takes into account the index of confidence
with the task to choose it. For example, agent2 has per-
formed more tasks about hotels so it prefers the task hotel
because it has a bigger probability of having information
about hotels in its knowledge base than information about
flights or attractions.

Considering a scenario with three agents, agent1 chose
the flight task, agent2 chose hotel task and agent3 chose at-
traction task. The information about flights is necessary to
define the attractions and the hotels. It means that agent2
and agent3 should wait for the information of agent1. In the
other hand, if the agents wait for this information to start
their search processes, the performance of the final recom-
mendation would be damage. Thus, agent2 and agent3 start
their searches making some assumptions. Agent2 assumed
that the user is looking for three-star hotels and agent3 as-
sumed that the user would like to stay in Paris for a week
(the duration of a standard travel package). After the search
processes, the agents return to the Asm agent the information
found.

Agent3 found just one attraction about Paris in its knowl-
edge base. However, it had assumed that the user will stay
a week in the city, so it needs more attraction to fulfill the

days. It has to communicate to the agents in the commu-
nity to find out if some of them has the information about
attractions in Paris.

Concluding Remarks
This paper presented a preliminary report that proposes and
analyzes the utilization of distributed TMS approach applied
in a recommender system in the tourism domain. This com-
bination can yield good recommendations, considering this
as a complex domain that needs specific knowledge dis-
tributed over different sources. The agents in this scenario
are considered experts, i.e., travel agents that work together
to compose a recommendation to the passenger. The con-
fidence index was added in the agent’s model to helps the
agent to become an expert in a specific type of task. Another
interested point is that the ideas presented here are being val-
idated in a real scenario. A knowledge acquisition was done
and the agents’ knowledge bases were created with knowl-
edge from a real travel agency.

References
de Kleer, J. 1986. An assumption-based tms, extending
the atms, and problem solving with the atms. Artificial
Intelligence 28(2):127–224.
Doyle, J. 1979. A truth maintenance system. Artificial
Intelligence 12(3):231–272.
Huhns, M. N., and Bridgeland, D. M. 1991. Multiagent
truth maintenance. IEEE Transactions on Systems, Man,
and Cybernetics 21(6):1437–1445.
Lorenzi, F.; Santos, D. S.; and Bazzan, A. L. C. 2005.
Negotiation for task allocation among agents in case-base
recommender systems: a swarm-intelligence approach. In
Aimeur, E., ed., Proceedings of the Workshop Multi-Agent
Information Retrieval and Recommender Systems - Nine-
teenth International Conference on Artificial Intelligence
(IJCAI 2005), 23–27.
Macho, S.; Torrens, M.; and Faltings, B. 2000.
A multi-agent recommender system for planning meet-
ings. In Workshop on Agent-based recommender systems
(WARS’2000).
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2003.
An asynchronous complete method for distributed con-
straint optimization. In Second international joint confer-
ence on Autonomous agents and multiagent systems, 161–
168. New York, NY, USA: ACM Press.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and
Riedl, J. 1994. Grouplens: An open architecture for collab-
orative filtering of netnews. In Proceedings ACM Confer-
ence on Computer-Supported Cooperative Work, 175–186.

125


