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Abstract

We consider the connection between the recommenda-
tions’ selection process and the form in which these rec-
ommendations are then presented to the users. On the
one hand, a user of an e-commerce site typically pro-
vides her preferences as a (very rough) weak ordering
over a small subset of all the available items. On the
other hand, the recommendations selected for a user
are presented to her as this or another projection of a
strict ordering over the whole space of items. Aiming
at bridging the gap between these two properties of the
systems, we suggest and evaluate techniques for rank
aggregation in this setting.

Introduction
A recommender system reasons about historical behavior of
a community of users to suggest to a user items that the sys-
tem estimates to be of the user’s interest. The motivation
for our work came from an observation that, while a sig-
nificant amount of work has been devoted to the question
of estimating user preferences (that is, to the collaborative
filtering (CF) and information filtering (IF) algorithms), to
our knowledge, this question has been typically considered
somewhat in isolation, independently of the concrete way
this estimated information is then put in use by the system.
For instance, the recommendations selected for a user are
presented to her in this or another concrete form, and prob-
ably the most typical such form is a strict ordering (i.e., a
linear list) over a subset of all items available in the system.
If so, then one may wonder whether the way the recommen-
dations are presented to the user should not influence the
very process of estimating the preferences of that user.

Having this perspective in mind, in this paper we con-
sider the problem of generating a linear list of recommen-
dations for a user. On the technical side, we cast this prob-
lem into an optimization problem of aggregating a collection
of weak user orderings over subsets of items into a single
strict ordering over the entire set of items. We consider and
empirically evaluate different algorithmic approaches to this
problem. Targeting the most problematic for recommender
systems situations, the problem is discussed in the settings
of user cold-start and item cold-start (Schein et al. 2002;
Park et al. 2006).

Preliminaries
Given a universe of some items I = {o1, . . . , oN}, we say
that � is an ordering with respect to I if � is an ordering
relation over a subset I ′ ⊆ I. First, if the ordering � ad-
dresses all the items in I, then � is said to be complete, oth-
erwise � is said to be partial. In what follows, partial and
complete orderings are denoted by � and �. Second, if for
each pair of items o, o′ ∈ I ′ we have o � o′ ⇒ o′ 6� o, then
� is said to be strict, otherwise � is said to be weak. By �
and � we denote strict partial and strict complete orderings.

Let U = {u1, . . . , uM} be a set of users rating the items
I in terms of some discrete rating scale L = {0, . . . ,M} ⊂
N. Each user ui provides the system with a rating function
σi : Ii 7→ L from a subset Ii ⊆ I. This rating function
is assumed to communicate to the system information about
the user’s preference ordering �i over Ii, that is,

σi(o) > σi(o′) ⇒ o �i o′

o 6�i o′ ⇒ σi(o) 6> σi(o′)
(1)

Note that, in practical information systems, the rating scale
L is usually very rough, and each user typically rates only a
small subset of the entire set of items I. Hence, in general,
the individual orderings �1, . . . ,�M should be expected to
be both weak and partial.

In this work, we focus on the troubled user cold-start
and item cold-start situations. In user cold-start, the system
strives to provide recommendations to an effectively anony-
mous user. In item cold-start, the system strives recommend-
ing effectively anonymous (opinions-wise) items. If the user
interface of the system requires the recommendations to be
presented as a linear list of items, in the absence of any ad-
ditional information,
• the system has to base its recommendations on the rating

functions σ1, . . . , σM of the previous users, and
• strive to generating a strict, complete ordering �† over I

that maximizes the agreement with these rating functions.
This agenda boils down to solving an optimization problem

�† = argmin
� over I

D(�, {σ1, . . . , σM}) (2)

for some justifiable measure of distance D between a single
strict, complete ordering over a set, and a collection of rating
functions from subsets of this set.
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Rank Aggregation for User Cold-Start
For now, let us consider the user cold-start setting only,
and assume the system contains no completely cold items,
that is, I =

⋃M
i=1 Ii. Considering Eq. 2, the first ques-

tion is how should we measure distance between a strict,
complete ordering � over I, and a collection of rating func-
tions {σ1, . . . , σM} from subsets of I to L? Recalling the
ordinal semantics of the user ratings (Eq. 1), this question
can be reduced to measuring distance between �, and the
weak, partial orderings �1, . . . ,�M induced by the respec-
tive ratings {σ1, . . . , σM}. As various measures of distance
between orderings have been studied in statistics (Diaconis
1988), this already simplifies our task. For instance, the pop-
ular Kendall distance between a pair of strict, complete or-
derings �,�′ over I is given by K (�,�′) = |{(oi, oj) |
i < j, oi � oj , oj �′ oi}|, and this distance measure extends
in a natural way to a [0, 1]-normalized distance between one
and many strict, complete orderings as

K (�, {�1, . . . ,�M}) =
1

M
(|I|

2

) M∑
i=1

K (�,�i). (3)

This, however, turns out not to resolve our question en-
tirely. On the good side, the Kendall distance is meaningful
for both incomplete and weak orderings {�1, . . . ,�M} as
well. However, the issue of normalization in presence of or-
derings’ incompleteness is somewhat more tricky. Specif-
ically, suppose that user ui has ranked more items than
user uj . In this case, for a given strict, complete ordering
�, we may have K (�,�i) > K (�,�j) just because ui

has ranked more items, and this is definitely something we
would like to avoid. For that, we consider a specific lifting of
Eq. 3 to aggregation of weak, incomplete orderings, notably

K∗(�, {�1, . . . ,�M}) =
1
M

M∑
i=1

K (�,�i)
∆K (I,�i)

, (4)

where ∆K (I,�i) = max�′ over I K (�′,�i). While fur-
ther motivation for this particular form of lifting appear in a
wider version of the paper, note that K∗ is sensitive to the
amount of ranking information provided by each user, tak-
ing into account our uncertainty about the preferences of the
users over the items they never ranked.

Computing the extended Kendall distance have been thor-
oughly studied in recent works on rank aggregation for web
meta-search (Dwork et al. 2001) and data integration (Fagin
et al. 2004). In general, computing an optimal ordering �†

with respect to the extended Kendall distance as in Eq. 3 is
known to be NP-hard (Dwork et al. 2001), and this implies
hardness of optimizing Eq. 2 with respect to K∗. On the pos-
itive side, however, numerous effective approximation tech-
niques for the former task have been suggested (Dwork et al.
2001; Fagin et al. 2004). In addition, in the ratings-based
recommender systems of our interest, it is possible that sim-
ple adaptations of standard CF techniques will prove to be
effective for this task as well.

A simple such CF-based procedure corresponds to rank-
ing items based on their average rating across the users. As-
suming I =

⋃M
i=1 Ii, let σavg : I 7→ R be defined as

σavg(o) = 1
|Uo|

∑
ui∈Uo

σi(o), where Uo = {ui | ui ∈
U, o ∈ Ii}. If �avg is the weak, complete ordering induced
by the “averaging” function σavg, the procedure (referred
here as AVG-cf) picks a linearization of �avg as the approx-
imation �∗ of �†.

A priori, the major attractiveness of the AVG-cf proce-
dure (and of its possible variations) is in its simplicity. On
the other hand, a shortcoming of AVG-cf is that it assumes
common-sensuality of the rating scale L across the users.
Yet another issue with the AVG-cf procedure is that it does
not account for the number of ratings available per item, and
it is not clear how such an information can be taken here into
account in a semantically reasonable, non-parametric way.

Attempting to escape these limitations of the AVG-cf pro-
cedure brings us to consider qualitative rank aggregation
techniques, and, in particular, the Markov chain orderings
that have been studied in (Dwork et al. 2001). Let the states
of a stochastic system correspond to the items I, and let the
transition distributions of two Marcov chains over I (called
MC3 and MC4) be defined as follows.

• With probability ε > 0, pick an item o′ uniformly from I,
and move to o′. With probability 1− ε, if the current state
is item o, then the next state is chosen as follows:

MC3 First, uniformly pick a user ui ∈ Uo, then uniformly
pick an item o′ ∈ Ii. If o′ �i o then move to o′, else
stay in o.

MC4 First, uniformly pick an item o′ ∈ I. If o′ �i o for
a majority of the users that ranked both o and o′ (i.e.,
Uo ∩ Uo′ ), then move to o′, else stay in o.

Having applied the power-iteration method on the transition
matrices induced by one of these Markov chains, the ob-
tained (approximation to the) fixed-point distribution x of
the chain induces a weak, complete ordering �mc over I.
The overall procedure then picks a linearization of �mc as
the approximation �∗ of �†.

For our experiments we have used the EachMovie dataset
containing user ratings for movies over a period of several
years. Due to the large number of experiments we run in
this study, we choose to use a randomly-sampled subset of
490 movies, and then dropped all users who ranked less than
two movies from this set (as these users do not provide us
with any ordinal preference information). The user ratings
in this data set are integers L = {0, . . . , 5}, with higher
rating meaning more positive evaluation. For the evaluation
discussed here we have used a train set of 51889 users, and
a randomly selected test set of 672 users. The evaluation
included AVG-cf, and both Markov chain aggregations.

Surprisingly, while the orderings generated by the two ap-
proaches differed substantially from each other, the average
performance of all the methods (with respect to K∗) was ef-
fectively identical—precision (= 1 −K∗) 0.642 for AVG-cf
vs. 0.629 for MC3. Given that AVG-cf is not designed to op-
timize anything directly related to Kendall distance, it was
somewhat surprising to find its performance comparable to
this of the Markov chain ordering techniques. We believe
that this outcome was mainly due to the narrow grading scale
L that possibly was indeed common-sensual. In the next
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section, however, we show that AVG-cf-style and qualitative
rank aggregations do not always perform the same.

Rank Aggregation for Item Cold-Start
While considering rank aggregation for user cold-start sit-
uations, we assumed that all the items in the data set have
been ranked by at least one previous user. This assump-
tion, however, is well-known to be unrealistic. Thus, next
we consider the item cold-start problem within our setting
of generating a strictly-ordered list of recommendations. As
nothing is known about a new to the system item o, it is cus-
tom to assume that user preferences over o will be close to
the preferences over items that look similar to o.

In what follows, let the items I be described in terms of
some attributes X = {x1, . . . , xn}; each item thus can be
seen as a vector in X = ×Dom(xi). For each item o ∈ I,
let knn(o) ⊆

⋃k
i=1 Ii be the set of (up to) k o’s nearest

neighbors (for some chosen value of k and a distance mea-
sure over X ) among the previously ranked items in I. A
straightforward extension of the AVG-cf procedure to the
item cold-start setting is given by modifying Eq. ?? to

σavg(o) =


P

ui∈Uo
σi(o)

|Uo| , o ∈
⋃k

i=1 IiP
o′∈knn(o) σavg(o′)

|knn(o)| , otherwise
, (5)

all other things being equal. Next we introduce three model-
based procedures that extend the qualitative rank aggrega-
tion techniques from the previous section.

Our first procedure AGR for a model-based rank aggrega-
tion is depicted in Figure 1. Informally, AGR corresponds
to extending the qualitative rank aggregation schemes to-
wards their generalization over the entire space of possi-
ble items X (and thus, in particular, to the cold items in I).
The first step of AGR constitutes exactly the qualitative ag-
gregation of orderings induced by the explicit user ratings
σ1, . . . , σM . In the second step, the procedure suggests a
real-valued ranking function σ̂ from the entire space X that
aims at generalizing the preference information captured by
the aggregative ordering �. Ultimately, such a function
should both satisfy the ordering constraints posed by �, that
is ∀o, o′ ∈

⋃k
i=1 Ii : o � o′ ⇒ σ̂(o) > σ̂(o′), and gener-

alize beyond the rated items
⋃k

i=1 Ii. In other words, such
a ranking function can be seen as a binary classifier over
pairs of items, with the target of classification being not a
class label, but a binary relation over the items (Herbrich,
Graepel, & Obermayer 2000; Joachims 2002). In machine
learning practice, this ranking function is selected, from a
family of ranking functions, to minimize the classification
(= ranking) error on the training pairs as above. Importantly,
such a minimization of classification error has a clear inter-
pretation in terms of minimizing ranking error in terms of
Kendall distance between the input ordering constraints and
the ordering induced by σ̂.

Here we consider the family of linear ranking functions
over the item attributes X . Finding such a function that
minimizes classification error on our training data is equiv-
alent to finding a weight vector ~wagr ∈ Rn so that the max-
imum number of the inequalities ∀o, o′ ∈

⋃k
i=1 Ii, o � o′ :

~wagr ·~o > ~wagr · ~o′, where � is the strict part of the aggrega-
tive ordering �, are satisfied. This optimization problem is
known to be NP-hard, yet it is possible to approximate its
solution by introducing a non-negative slack variable ξ for
each linear constraint, and then minimizing the sum of these
slack variables. On the other hand, as suggested by the-
ory and practice of classification Support Vector Machines
(SVM) (Cortes & Vapnik 1995), adding regularization for
margin maximization to the objective is likely to increase
the generalization power of the learned function ~wagr (that
is, σ̂) well beyond the training pairs of items. This setting
results in the optimization problem

minimize:
1
2

~wagr · ~wagr + C
∑

ξo,o′

subject to: ∀ξo,o′ : ξo,o′ > 0

∀o, o′ ∈
k⋃

i=1

Ii, o � o′ : ~wagr · ~o > ~wagr · ~o′ + 1− ξo,o′

(6)

that is equivalent to that of classification SVM on difference
vectors (~o− ~o′), and thus can be efficiently solved using one
of the standard tools for classification SVM.

At first view, the AGR procedure is appealing because
both steps (a) and (b) aim at minimizing the Kendall distance
between their inputs and outputs. However, the performance
of the AGR rank aggregation on the EachMovie dataset turns
out to be not very impressive. Our analysis showed that this
failure should be attributed to the combination of steps (a)
and (b) as in AGR. The pitfall in this combination is that
step (a) does generate a good ordering �, but this order-
ing is not forced to depend in any reasonable way on the
item-describing features X . As a result, step (b) then fails to
effectively generalize � by a ranking function from X .

Targeting this pitfall of AGR, next we push the aggre-
gation one step farther in the process. In the procedure
GAR (see Figure 1), first, we functionally generalize the in-
dividual preference information provided by the users via
their ratings σ1, . . . , σM . Such individual ranking functions
σ̂1, . . . , σ̂M can be generated via M independent optimiza-
tion problems as in Eq. 6, each restricted to the constraints of
a certain user ui ∈ U . At the next step, the GAR procedure
aggregates the generated ranking functions {σ̂1, . . . , σ̂M}
into a single ranking function σ̂ that aims at capturing the
“average” taste across the users. In case of linear ranking
functions (considered here), ~wgar = 1

M

∑M
i=1 ~wi appears to

be a natural and semantically justifiable candidate for such
an “averaging” function σ̂. However, the performance of
GAR on EachMovie is still unsatisfactory. While it elim-
inates the major shortcoming of AGR, it introduces a new
shortcoming of its own: Simple averaging of the individual
user models does not prove to be very effective. Hence, next
we proceed in a different direction.

The lessons learnt with the AGR and GAR procedures sug-
gest stratifying the model-based rank aggregation by push-
ing the aggregation step even farther down the process. This
is exactly what we converge to in our third procedure, GRA,
depicted in Figure 1. The first step here is identical to this of

136



AGR (aggregate, generalize, and rank)

(a) Aggregate the weak, partial orderings �1, . . . ,�M induced by the user rat-
ings σ1, . . . , σM into a single (possibly weak) partial ordering �.

(b) From �, generate a ranking function σ̂ : X 7→ R that generalizes the order-
ing � to the entire item space X ⊃ I.

(c) Generate a strict, complete ordering �∗ by picking an arbitrary linearization
of the ordering �̂ induced by σ̂ according to Eq. 1.

GAR (generalize, aggregate, and rank)

(a) For each user ui, generate a ranking function σ̂i : X 7→ R that generalizes
the ordering �i induced by σi to the entire item space X ⊇ I.

(b) Aggregate {σ̂1, . . . , σ̂M} into a single ranking function σ̂ aiming at captur-
ing the average preferences of the users U .

(c) Generate a strict, complete ordering �∗ by picking an arbitrary linearization
of the ordering �̂ induced by σ̂ according to Eq. 1.

GRA (generalize, rank, and aggregate)

(a) For each user ui, generate a ranking function σ̂i : X 7→ R that generalizes
the ordering �i induced by σi to the entire item space X ⊇ I.

(b) For each ratings-less item o ∈ I \
Sk

i=1 Ii:

• Select a subset Ûo ⊆ U .

• For each ui ∈ Ûo, (schematically) add o into Ii.

(c) Aggregate the individual user orderings �̂1, . . . , �̂M over the (extended)
item sets I1, . . . , IM into a strict, complete ordering �∗ over I.

Figure 1: Model-based qualitative rank aggregations.

the GAR procedure. However, instead of then gluing up the
individual ranking functions σ̂i into a single function σ̂, we
use them directly as a source of pseudo-ranking of the entire
item set I “on behalf of” each user. Note that we apply the
pseudo-ranking not only to the cold items o ∈ I \

⋃k
i=1 Ii,

but also to the items the user has actually ranked. The (op-
tional) selection at step (b) restricts the pseudo-ranking of
each cold item o only to a selected subset Ûo of users that
are considered to be relatively “reliable” pseudo-rankers for
this particular item o.

The data used for evaluation of all the above methods was
identical to this used for evaluating the basic AVG-cf and
MC3/MC4 tools, except for that now the training and test-
ing data divide between the movies. We randomly selected
α = 50 movies for testing, and used the rest 440 movies
for training. The movies have been described by 26 boolean
attributes capturing the genres of the movie, the period the
movie was created, and the geographic origin of the movie.
For the KNN parameters of AVG-cf we used simple L1 as
the distance measure between the movies, and optimized the
number of neighbors to k = 50. In GRA, a user has been
used as a pseudo-ranker for the movie o if she ranked one of
the k nearest neighbors of o.

The table below shows the methods’ performance (in
terms of precision = 1 − K∗) on the union of the train-
ing and testing data. It is easy to see that, AVG-cf and GAR
clearly outperform the other two methods, with GAR per-
forming slightly better than AVG-cf.

AGR GAR GRA(MC3) GRA(MC4) AVG-cf
0.583 0.603 0.652 0.651 0.645

From these results, however, it is impossible to extract
the marginal precision of the techniques on the cold items.
Hence, below we evaluate the effectiveness in relative or-
dering of the cold items only. For that, let K (o)(�,�′) be
the number of ordering disagreements between � and �′

but only on item pairs containing the item o. Given that,
let K

(o)
∗ (�, {�1, . . . ,�M}) be defined similarly to K∗ in

Eq. 4, but with respect to K (o) instead of K . Focusing on
the cold items only, here we consider two alternative mea-
sures of precision with respect to the cold items o1, . . . , oα

and the single-item-oriented distance measure K
(o)
∗ :

p1 =
1
α

α∑
i=1

(
1−K

(oi)
∗ (�, {�1, . . . ,�M})

)
pk =

α∑
i=1

Ûoi∑α
j=1 Ûoj

(
1−K

(oi)
∗ (�, {�1, . . . ,�M})

)
We run α separate additions of the cold items to the training
set, and averaged the performance of all the methods with
respect to p1 and p2. The results are presented in the table
below.

p1 p2

AGR 0.642 0.640
GAR 0.586 0.623

GRA(MC4) 0.674 0.687
GRA(MC3) 0.681 0.687

AVG-cf 0.672 0.639

First, these results show that both MC3 and MC4 versions
of GRA significantly outperformed AVG-cf with respect to
the precision measure p2. Currently we perform a more de-
tailed introspection into the results of both experiments, but,
in any event, the performance of GRA already appears very
promising.
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