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Abstract

Plan recognition is the problem of inferring an agent’s hid-
den state of plans, or intentions, based on the pattern of his
observable actions. Among many potential applications, in-
tention recognition can be particularly useful for intelligence
analysis and homeland security related problems. While
most of the existing work in plan recognition has focused on
studying overt agents, problems from the intelligence domain
usually have different settings, where hostile agents operate
covertly in a large population of otherwise benign entities. In
this paper we formulate a problem of detecting and tracking
hostile intentions in such an environment − a virtual world
where a large number of agents are involved in individual and
collective activities. Most of the agents are benign, while a
small number of them have malicious intent. We describe our
initial effort for building a probabilistic framework for detect-
ing hostile activities in this system, and provide some initial
results for simple scenarios.

Introduction

Plan recognition is the problem of inferring an agent’s hid-
den state of plans, or intentions, based on the pattern of his
observable actions. Clearly, the ability to efficiently and
accurately recognize plans and/or intentions of adversarial
agents can be very useful for intelligence analysis and other
homeland security related problems. There has been an ex-
tensive amount of work on plan recognition in recent years.
Most of the existing studies, however, consider scenarios
that are not very suitable from the perspective of intelligence
analysts, and do not adequately address challenges posed by
plan recognition problems in the intelligence domain. For
instance, most of the existing work is concerned with situ-
ations where the identities of agents engaged in the activity
of interest are known in advance. While this assumption
is certainly justified in some applications, it does not hold
in realistic intelligence analysis scenarios where adversarial
agents operate covertly, e.g., by embedding themselves in a
much larger, benign population. Thus, inferring the identi-
ties of those covert agents is a very important aspect of the
problem. Furthermore, majority of the existing approaches
address single–agent scenarios. In the intelligence domain,
however, observations often describe interactions between
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agents: meetings, financial transactions, and other forms of
communication. Thus, taking into account this relational as-
pect of the data is important.

In this paper we formulate a problem of detecting and
tracking hostile intentions in a virtual domain, the Hats
world. Hats simulates a virtual society composed of large
number of agents that are involved in individual and col-
lective activities. Each agent carries a set of attributes, that
might change dynamically through trades and/or exchanges.
The overwhelming majority of the agents are benign. How-
ever, a small fraction of them are covert adversaries and in-
tend to do harm by destroying certain landmarks. The goal
of the analyst is to detect and neutralize malicious groups
before the attacks, based on limited and noisy information
about their activities. While the model of agent behavior in
Hats is clearly oversimplified, it shares important character-
istics with problems faced by intelligence analysts. Specif-
ically, what makes the Hats problem challenging is the ex-
tremely low signal to noise ratio, and the huge number of
hypotheses one needs to manage, which is usually the case
in real–world intelligence scenarios.

The rest of this paper is organized as follows: In the next
section we provide a more detailed description of the Hats
domain. We then describe a Bayesian framework for track-
ing agent activities in a simplified Hats scenario, and illus-
trate this framework on two examples. We conclude the pa-
per by the review of the relevant literature and a brief dis-
cussion about future work.

The Hats Domain

One of the hindrances for researchers who want to build
tools for intelligence analysis is the lack of available in-
telligence data. The Hats simulator (Cohen, P.R. & Mor-
rison, C.T. 2004; Morrison, C.T. et al. 2005) was proposed
to fill this gap, by providing synthetic intelligence data to
researchers and serving as a proxy for various intelligence
analysis problems. Hats simulates a society in a box, where
a large number of agents, called hats, are engaged in indi-
vidual and collective activities. Agents reside on a two di-
mensional grid-world and travel to different locations to at-
tend meetings. Each agent has a set of elementary attributes,
called capabilities, which he can trade with other agents at
those meetings. The overwhelming majority of the agents
are benign. Some agents, however, are covert terrorists, and
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Figure 1: Hierarchical representation of a plan

intend to inflict harm by destroying certain landmarks called
beacons. Beacons are special locations on the grid and are
characterized by their vulnerabilities. A successful attack
on a beacon happens when a group of adversarial agents
moves to the location of a beacon and has all the capabil-
ities that match the beacon vulnerabilities. Beacon attacks
are planned by a generative planner that chooses the target,
sets up a task-force, and builds a meeting schedule for the
task-force members, so that they will acquire the capabili-
ties required for the attack.

Along with the covert adversaries, there also are hats that
are known to be adversaries. Each hat belongs to one or
more organizations that can be of two types, benign or adver-
sary. Each adversarial hat belongs to at least one adversary
organization, while each benign agent belongs to at least one
benign organization and does not belong to any adversary
organization. When a meeting is planned, the list of partic-
ipants is drawn from the set of hats belonging to the same
organization. Consequently, a meeting planned by an ad-
versary organization will consist of only adversary (either
known or covert) hats, whereas a meeting planned by a be-
nign organization might contain all types of hats.

Instead of choosing a task–force that already possesses
the required capabilities, the planner designs an elaborate
sequence of meetings for passing capabilities among the
agents. This is intended for masking the true intention of the
task–force. In the Hats simulator, the actual plans are con-
structed as inverted trees, where each node describes a meet-
ing between agents, and the root node corresponds to the fi-
nal meeting at the beacon. More information about meeting
planner in Hats can be found in (Cohen, P.R. & Morrison,
C.T. 2004; Morrison, C.T. et al. 2005). For the purposes
of this paper, however, we will consider a little simplified
model for plans. In particular, we assume that the observ-
able activities are a result of a certain hidden generative pro-
cess, that can be represented hierarchically as depicted in
Figure 1. Namely, the attack is planned by choosing a tar-

get and an organization that will carry out the attack. Then,
a task–force composed of the members of that organization
is chosen. This task–force determines the group of agents
that will participate in the final meeting at the location of
the beacon. Next, the planner will generate a schedule for
meetings and trades, so that members of the task–force ac-
quire capabilities matching the vulnerability of the beacon.
Finally, after all the capabilities are acquired, the task–force
members will move to the location of the beacon for the fi-
nal meeting. We note that only highlighted nodes produce
directly observable actions.

Bayesian Framework for Tracking
We now consider a simplified Hats scenario with only two
organizations, one benign and one terrorist. Furthermore,
we assume that each agent can hold only one capability at
any given time. Let us characterize the state of the i-th agent
at time n by a tuple xi

n = (ξi
n, αi

n, θi
n). Here ξi

n ∈ {0, 1} is a
terrorist indicator variable for agent i, so that ξi

n = 1 means
that agent i is a member of the terrorist organization; αi

n ∈
{0, 1, 2, . . . , M} indicates the intention of the i-th agent to
acquire a certain capability out of M possible ones (αi

n = 0
means the agent does not intend to get any capability at all);
and θi

n denotes the actual capability carried by the agent i at
time n, e.g., θi

n = k, k ∈ {1, 2, . . . , M}. The joint state of
the system is defined by xn = {x1

n, x2
n, ..., xN

n }. Initially, all
our knowledge is represented by the prior distribution over
the states, P0(x0). Usually, this prior distribution will have
a factored representation owing to independence among the
individual agents at the beginning,

P0(x0) = P1
0(x

1
0)P

2
0(x

2
0) . . .PN

0 (xN
0 ), (1)

where Pi
0(x

i
0) represents our prior belief about the i–th

agent.
Starting from the initial state, agents will participate in

meetings and might change their internal state by acquiring
capabilities at those meetings. We characterize this hidden
state dynamics by a Hidden Markov Model (HMM) with
observation–dependent state transitions as depicted in Fig-
ure 2. Here Xn and Yn are the hidden state and observa-
tion (e.g., observed meetings) at time n, respectively. The
influence diagram shows that the hidden state at time n + 1
depends on the hidden state at time n, as well as the obser-
vation at time n. The reason for the latter dependence is that

Xn+1

Yn+1

Xn

Yn

Figure 2: Schematic diagram of an HMM with states de-
pending on observations.
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whether an agent will change its state (e.g., acquire a cer-
tain capability) depends on the meeting it has participated in
(e.g., observation). At the same time, the observation at time
n is determined only by the corresponding hidden state Xn.

To specify the HMM we need to define the transition ma-
trix and the emission model. The transition matrix is given
by

M(x,x′;y) = P(Xn = x|Xn−1 = x′,Yn−1 = y), (2)

which is the probability that the system will be in state
Xn = x at time n, given that it was in state Xn−1 = x′
and produced an observation Yn−1 = y at time n − 1.

The emission model specifies the probability of seeing a
particular observation in a particular state:

Ψ(y,x) = P(Yn = y|Xn = x). (3)

The Bayesian filtering problem is concerned with assess-
ing the state of the system at time n given the history of
observations up to time n, yn

0 = {y0,y1, ...,yn}. This
is done through estimating the so called filtering distribu-
tion Pn(x) = P(Xn = x|yn

0 ). In practice, it is easier to
work with the un–normalized filtering distribution defined
as Φn(x,yn

0 ) = P(Xn = x,Yn
0 = yn

0 ). The normalized
distribution is obtained by dividing Φn(x,yn

0 ) by the data
likelihood:

Pn(x) =
Φn(x,yn

0 )
P(yn

0 )
=

Φn(x,yn
0 )∑

x Φn(x,yn
0 )

. (4)

We now derive a recursive equation for Φn(x,yn
0 ) as fol-

lows. Let us write it as

Φn(x,yn
0 ) = P(Yn = yn|Xn = x,Yn−1

0 = yn−1
0 )

× P(Xn = x,Yn−1
0 = yn−1

0 )

= Ψ(yn,x) × P(Xn = x,Yn−1
0 = yn−1

0 ),
(5)

where in the last equation we have used the fact that, condi-
tioned on state Xn, the observation at time n, Yn, does not
depend on previous observations.

Let us now rewrite the second term as follows:

P(Xn = x,yn−1
0 ) =

∑

x′
P(Xn = x,Xn−1 = x′,yn−1

0 ) =

∑

x′
P(Xn = x|Xn−1 = x′,yn−1

0 )P(Xn−1 = x′,yn−1
0 )

=
∑

x′
M(x,x′;yn−1)Φn−1(x′,yn−1

0 ). (6)

Substituting Equation 6 into Equation 5 we arrive at the
following recursive update formula:

Φn(x,yn
0 ) = Ψ(x,yn)

∑

x′
M(x,x′;yn−1)Φn−1(x′,yn−1

0 )

(7)
Once an emission model and state transition model are

specified, Equation 7 can be used for state estimation. Below
we apply this framework to a couple of simple examples.

Bayesian Guilt by Association (GBA) Model

In the first example, we neglect any capability trades, and
focus on estimating group–membership of agents, based on
the observation of meetings between them. Specifically, as-
sume there are N agents indexed i = 1, .., N , each of which
can belong to one of two organizations: one adversary, and
the other benign. Thus, the state of the system is fully char-
acterized by a binary vector x = {ξ1

n, ξ2
n, ...ξN

n }. Also, let
us assume that agents never change their adversary/benign
status, so the time index can be dropped.

Let us now specify the emission model. For the sake of
simplicity, we will assume that at any given time, a meet-
ing contains only two agents. Thus, each observation can be
represented as a pair of agent ID–s: yn = {i, j}. Further,
we assume that the probability of a meeting between same
agents (that is, both adversary or both benign) is p > 0.5,
and the probability of a meeting between agents from differ-
ent groups (one adversary and one benign) is 1− p. In other
words, probability of a meeting between agents i and j is p
if ξi = ξj , and 1 − p if ξi �= ξj . This can be written as
follows:

Ψ(y = {i, j},x = {ξ1, .., ξ
N}) = pδ(ξi, ξj) + (1 − p)
×(1 − δ(ξi, ξj)), (8)

where we have used the Kronecker’s δ–function: δ(i, j) = 1
if i = j, and δ(i, j) = 0, i �= j.

We now specify the transition matrix. Since agents do not
change their organization (e.g., no recruitment), there are
simply no transitions. Thus, the state transition is described
by the identity matrix:

M(x,x′;y) = δ(x,x′). (9)

Plugging Equation 9 into 7 yields the following simple
recursion rule:

Φn(x,yn
0 ) = Ψ(yn,x) × Φn−1(x,yn−1

0 ) (10)

Note that given Φn(x,yn
0 ), or more precisely, its normal-

ized form Pn(x = {ξ1, ξ2, ..., ξN}), one can calculate the
marginal probability that a given agent is a terrorist, by sum-
ming over all the other agents. In Fig. 3 we show these in-
dividual probabilities for a system of 20 agents, 10 of which
have known identities and the remaining 10 are unknown
(half of them are benign and the other half are terrorist).
The value of the parameter is p = 0.8. In this particular
experiment, the algorithm correctly identifies five covert ad-
versaries, which is reflected in high posteriors for the corre-
sponding agents. We also note that the exact tracking per-
formed here becomes infeasible for sufficiently large sys-
tems as the state space grows exponentially with the number
of agents. Thus, one will have to resort to approximate meth-
ods such as Markov Chain Monte Carlo (MCMC) and parti-
cle filters. In particular, we will be investigating the applica-
tion of Sequential Importance Sampling (SIS; (Doucet, A.,
de Freitas, N., & Gordon, N. Eds. 2001)), which is known
to be helpful in estimating the filtering distribution in case
of high-dimensional data.
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Figure 3: Marginal probabilities (y-axis) of being a terrorist
vs time (shown as tics on the x-axis) for 8 agents represented
by different colored lines. There is a total of 20 agents in
this experiment, of which the identities of 10 are not known
(half of them are benign and the other half are terrorist). The
probability of a meeting between similar agents is p = 0.8.

Tracking Capabilities

Here we consider a little more general model of agents that
are engaged in capability trades. Again, we consider a set
of N agents, each belonging to one of two organizations,
one terrorist and the other benign. The state of the system is
defined by xn = {x1

n, x2
n, ..., xN

n }. Initially, all our knowl-
edge is represented by the prior distribution over the states,
P0(x0).

To trade capabilities, agents engage in meetings with
other agents. For the sake of mathematical simplicity, we
assume that the meetings for the capability trades are di-
rected, in the sense that there is an initiator agent, and there
is a donor agent. Thus, each observation is an ordered pair
yn = {i → j}. The initiator agent i is the one who is trying
to acquire the capability, and the donor agent j is the agent
from whom this capability might be acquired. We note that
observing a meeting {i → j} does not necessarily mean that
i acquired its intended capability from j: first of all, j might
lack the required capability. And second, even if j possesses
the capability, we will assume that there is a certain prob-
ability that the trade will fail. Thus, an agent who is after
a certain capability might have to meet with more than one
donor before he finally acquires the capability.

Next, we need to specify the rules according to which the
meetings are generated. We assume that they are generated
according to a certain probabilistic process. Namely, as in
the GBA model from the previous section, we assume that
the meetings are more likely to happen between agents from
the same group. Furthermore, we assume that agents that
intend to acquire a specific capability will tend to meet with
agents that actually carry that capability. Specifically, at first
the planner randomly chooses an initiator agent, i. Then the
donor agent is chosen as follows:

1. With probability p > 1/2, it will belong to the same group
as agent i. i.e., ξj = ξi.

2. If the initiator agent is not in search of a capability (e.g.,
either αi = 0, or θi = αi), then the second agent will
be chosen without any regard to his capability, e.g., each
capability will be chosen with equal probability p0 =
1/(M +1). And if the initiator agent i is in search of a ca-
pability, e.g., θi

n �= αi
n, then with probability p1 > p0 the

donor agent will be chosen among the agents that carry
that capability.
Using the simple rules above, we can define the emission

model Ψ(yn = {i → j},xn), e.g., calculate the probability
of seeing an observation {i → j} assuming that the sys-
tem is in state xn = {x1

n, x2
n, ..., xN

n }. Clearly, since the
meeting involves two agents i and j, the probability of see-
ing such a meeting is affected by the states of i and j, e,g,
Ψ(yn = {i → j},xn) = Ψ(yn = {i → j}, xi

n, xj
n). Fur-

thermore, as we elaborated above, the probability of such a
meeting depends on two independent factors: first, on the
group membership, and the second, on the intentions and
capabilities. Thus, we represent Ψ(yn, xi

n, xj
n) a product of

two functions:
Ψ(yn = {i → j}, xi

n, xj
n) =

Ψ1(yn = {i → j}, ξi
n, ξj

n) ×
Ψ2(yn = {i → j}, αi

n, θi
n, θj

n). (11)
The first term of the product Ψ1(yn = {i → j}, ξi

n, ξj
n)

is the same as the emission model from the GBA example:
Ψ1(yn = {i → j}, ξi

n, ξj
n) = pδ(ξi, ξj) +

(1 − p)(1 − δ(ξi, ξj)). (12)
And the second term is the probability that the initiator agent
i with intentions αi and capability θi will meet a donor agent
j with capability θj . According to the probabilistic rules
specified above, this function can be written as follows:

Ψ2(yn = {i → j}, αi, θi, θj) =

p0 × [δ(αi, 0) + δ(αi, θi)]

+[1 − δ(αi, 0)][1 − δ(αi, θi)]

×[p2δ(θj , αi) + p0(1 − p2)]. (13)
For instance, the first term describes the case where the agent
i has no intention of acquiring a capability (i.e, δ(αi, 0) =
1), or it has already acquired the capability (i.e., δ(αi, θi) =
1). Then the emission function does not depend on the
donor’s capability θj , and evaluates to Ψ2(yn = {i →
j}, αi, θi, θj) = p0.

To complete the model definition, we must also specify
the transition matrix. Again, for simplicity we assume that
the group membership and intention to acquire a capability
do not change, e.g., ξi

n ≡ ξi and αi
n ≡ αj are set in the be-

ginning and never change. Thus, the only dynamic variables
are θi

n, i.e., the actual capabilities carried by the agents. Fur-
thermore, we note that only the initiator agent can change
its state (i.e., by acquiring a capability), and the state of the
donor agent remains unchanged. Thus, the transition proba-
bilities are as follows:
M(xn,xn−1,y) ≡ P(xn|xn−1,yn−1 = {i → j})

= δ(xj
n, xj

n−1) × δ(ξi
n−1, ξ

i
n) ×

δ(αi
n−1, α

i
n) × T (θi

n;αi, θi
n−1, θ

j
n−1), (14)
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where T (θi
n;αi, θi

n−1, θ
j
n−1) is the probability that after the

meeting {i → j}, the agent i will have the capability θi
n,

provided that at time n− 1, i had the intention αi and capa-
bility θi

n−1, and j had the capability θi
n−1. Let us determine

this probability according to the following rules:

1. If the agent i has no intention of acquiring a specific ca-
pability (αi,= 0) or has already acquired the capability
he intended (θi

n−1 = αi), then no trade happens, e.g.,
θi

n = θi
n−1.

2. If the agent i has not yet acquired its intended capability,
i.e., θi

n−1 �= αi and αi �= 0, then, if the second agent
carries that capability, θj

n−1 = αi, then with probability
γ he will acquire this capability. And if θj

n−1 �= αi, (i.e.,
the donor agent j does not possess the required capabil-
ity), then nothing changes. To simplify the notation, let us
define δ̃(i, j) = 1 − δ(i, j).

Putting all these together, we arrive at the following:

T (θi
n;αi, θi

n−1, θ
j
n−1)

= [δ(αi, 0) + δ(αi, θi
n−1)]δ(θ

i
n, θi

n−1)

+δ̃(αi, 0)δ̃(αi, θi
n−1)δ̃(α

i, θj
n−1)δ(θ

i
n, θi

n−1)

+γδ̃(αi, 0)δ̃(αi, θi
n−1)δ(α

i, θj
n−1)δ(θ

i
n, αi)

+(1 − γ)δ̃(αi, 0)δ̃(αi, θi
n−1)δ(α

i, θj
n−1)δ(θ

i
n, θi

n−1). (15)

The first line on the RHS of Equation 15 corresponds to the
case when the agent i either does not intend to acquire a ca-
pability, or has already acquired it. In this case i’s capability
does not change which is reflected in δ(θi

n, θi
n−1). The sec-

ond line describes the case when i intends to acquire a capa-
bility and has not done so yet, but agent j does not carry the
required capability. Again, the last term in the product en-
sures that the capability does not change. Further, the third
and fourth lines describe the case when j actually carries
the required capability – the third line describes a success-
ful trade with probability γ, and the fourth line describes a
failed trade with complementary probability 1 − γ.

Equations 11–15 complete the definition of the simple ca-
pability tracking model. Using the distribution Pn(Xn),
one can get probabilistic answers to various questions of in-
terest. For instance, to find out whether the organization is
trying to acquire a set of capabilities {C1, C2}, let us de-
fine an indicator function I(i, j), which is equal to 1 if the
agents i and j are terrorists and have the intention to ac-
quire capabilities C1 and C2 between them, and 0 other-
wise. Using Kronecker’s notation again, this function is rep-
resented as I(i, j) = δ(ξi, 1)δ(ξj , 1)[δ(αi, C1)δ(α

j , C2) +
δ(αi, C2)δ(αj , C21)]. Using this indicator function and
the filtering distribution Pn(Xn), we can estimate the
likelihood of different hypotheses. For instance, our be-
lief that the organization is indeed engaged in a mission
to acquire the capacities can be calculated as follows:
Pn(mission=true) = 1−∑

X Pn(X)
∏

i,j [1−I(i, j)]. Sim-
ilarly, one can define a different indicator function over the
actual carried capabilities to estimate the probability that the
set (or a subset) of the capabilities have already been ac-

quired. Again, we note that exact tracking becomes infeasi-
ble for sufficiently large systems because of the exponential
explosion in the size of the state space. We are currently ex-
amining different approximation techniques, such as using
factored representations of the belief state, that will allow us
to consider a large number of agents.

Related Work
In this section we review existing probabilistic models for
plan recognition. Probabilistic Hostile Agent Task Tracker
(PHATT) (Geib, C.W. & Harp, S.A. 2004; Geib, C.W. &
Goldman, R.P. 2005) is a hybrid symbolic–probabilistic plan
recognizer, where the symbolic approach is used to filter
out inconsistent hypotheses. The remaining consistent hy-
potheses are then evaluated probabilistically. PHATT as-
sumes that initially the executing agent has a set of goals
and chooses a set of plans to achieve these goals. The set of
plans chosen determines a set of pending primitive actions.
The observations of the agent’s actions are taken as an ex-
ecution trace and the conditional probability of each of the
root goals are determined given the observed series of ac-
tions. Another hybrid symbolic–probabilistic model devel-
oped in (Avrahami-Zilberbrand, D. & Kaminka, G.A. 2006)
combines a symbolic plan recognizer with a probabilistic in-
ference framework based on Hierarchical Hidden Markov
Model (HHMM). This approach computes the likelihood of
the consistent hypotheses obtained from the symbolic recog-
nizer, ranks them, and then determines the hypothesis with
the maximum posterior probability (called the probable cur-
rent state hypothesis). It can efficiently deal with a richer
class of plan recognition challenges, such as, recognition
based on duration of behaviors, and recognition of inter-
leaved plans (where an agent interrupts a plan for another,
only to return to the first one later).

Much recent work has considered using various general-
izations of Hidden Markov Models for plan recognition. The
Cascading Hidden Markov Model (CHMM) (Blaylock, N.
& Allen, J. 2006) uses an extension of the traditional HMM
to simultaneously recognize an agent’s current goal schemas
at various levels of a hierarchical plan. Bui et al proposed a
probabilistic plan recognition framework based on Abstract
Hidden Markov Models (AHMM) (Bui, Venkatesh, & West
2002). This approach allows to identify an agent’s behav-
ior in dynamic, noisy, uncertain domains and across mul-
tiple levels of abstraction. They also describe an approxi-
mate inference technique based on Rao-Blackwellized Par-
ticle Filter (RBPF) that allows an efficient, hybrid inference
method for this model, that scales well with the number of
levels in the plan hierarchy. The AHMM has a memoryless
property, that is, the policies in the AHMM cannot repre-
sent a sequence of uninterrupted sub-plans and thus the de-
cision to choose the next sub-plan is only dependent on the
current state, and not on the sub-plans that were chosen in
the past. This issue has been addressed by extending the
AHMM model to include a memory flag (Bui, H.H. 2003).

Probabilistic State-Dependent Grammars (PSDG), sug-
gested in (Pynadath, D.V. & Wellman, M.P. 2000) are used
to represent an agent’s plan generation process and are
closely related to the AHMM approach. The PSDG can
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be described as the Probabilistic Context Free Grammar
(PCFG) augmented with a state space, and a state transi-
tion probability table for each terminal symbol of the PCFG.
They use an exact inference method to deal with the case
where the states are fully observable. When the states are
partially observable, a brute-force approach is suggested
which increases the complexity of the method.

YOYO (Kaminka, G.A., Pynadath, D.V., & Tambe, M.
2002)) is an efficient probabilistic plan recognition algo-
rithm to monitor the state of a team of agents from the mem-
bers’ routine conversations (hence overhearing) exchanged
as part of their coordinated task execution. YOYO exploits
knowledge about the team’s social behavior to predict future
observations during execution (thereby reducing monitoring
uncertainty). The approach is scalable, and can handle miss-
ing observations. One of the drawbacks is that messages are
assumed to be truthful, hence there is no way of detecting
deception here which may be an issue in practice. Also, the
method is based on the implicit assumption that the team,
its members and the social structure among them are known
beforehand.

As mentioned earlier also, the primary drawback of many
of these methods is that they assume a known identity of the
agent that one wants to track, and that there is only a mod-
erately large number of potential plans. This is clearly not
practical in realistic intelligence analysis applications where
one usually deals with a huge number of agents with a large
library of plans at their disposal, from which one wants to
find the few that may be of interest in some sense. Such a
scenario thus involves a large network of hypotheses that re-
quires efficient hypothesis management tools with the goal
of determining the relevant ones. An example of such a sys-
tem is provided by the Hats world. The latter is a simple
prototype for terrorist networks that are operational in the
real world, and involve a huge amount of transactional data
in the form of phone conversations, meetings and so on be-
tween many agents, a few of whom are expected to carry out
a harmful mission. Moreover, very few plan recognition sys-
tems deal with team behavior based on coordination among
the members. Therefore, none of the existing techniques are
capable of providing a rigorous tracking and detection al-
gorithm for handling plans of such complex nature as those
involved in a domain like Hats, and our method is a first ef-
fort in that direction that has the potential to overcome the
shortcomings of most of the current approaches .

Discussion and Future Work

In this paper we have formulated a problem of detecting and
tracking hostile activities in a virtual Hats domain. Despite
the over–simplified models of agent behavior, the Hats do-
main still attains the most important characteristics of real
world intelligence analysis problems: low signal to noise ra-
tio, and huge number of possible hypotheses one must man-
age. Thus, we believe that developing successful detection
and tracking techniques for Hats will certainly be valuable
for more realistic problems as well. The scenario consid-
ered here is a keyhole plan recognition, e.g., it is assumed
that agents who are being planned are not aware of it, or do

not pay any attention. We note, however, that in more in-
teresting adversarial scenarios, agents might utilize decep-
tion, e.g., by demonstrating a certain behavior temporarily
to cover their true intent. This type of deliberately deceptive
behavior goes beyond the scope of this paper, and has not
ben covered here.

We have also described our initial steps for building a
probabilistic framework for detecting and tracking hostile
activities in Hats. Specifically, we described a recursive
equation for updating beliefs (i.e., filtering distribution) once
new observations are made available. Clearly, tracking
the joint filtering distribution is computationally infeasible
when the number of agents is sufficiently large. One of the
ways for reducing computational complexity of the track-
ing problem is to group variables (e.g., agents) so that vari-
ables across the groups have little or no correlation. One can
then approximate the joint distribution function by a product
of factored distributions over those groups (Boyen & Koller
1998; Murphy & Weiss 2001). For instance, if one knew the
members of the organizations in advance, we could leave
out other agents, thus significantly reducing the problem di-
mensionality. Moreover, grouping members of organization
together has another advantage. Namely, if all the mem-
bers of the organization are known in advance, then the ob-
servations about individual members can be aggregated to
make inferences about the organization. In other words, if
the tracking has revealed that a certain member of the or-
ganization intends to acquire a certain capability, then this
indicates that the organization itself intends to get that ca-
pability. This suggests that one can try to find organiza-
tions based on transaction data, and for detecting groups of
strongly connected (or highly correlated) nodes in transac-
tional networks. Algorithms for detecting groups of strongly
connected (or highly correlated) nodes in transactional net-
works have been proposed in (Newman & Girvan 2004;
Danon et al. 2005; Galstyan & Cohen 2005; 2006).

Finally, we would like to note that the emission and the
transition probabilities in our model consist of parameters
that are, generally speaking, unknown in advance. Instead,
these parameters have to be estimated using an Expectation–
Maximization (EM) approach, where one starts with some
initial values for each of the unknown parameters (based on
prior knowledge) and continue the re-estimation process un-
til it converges to the particular values that maximizes the
likelihood function, thud yielding the Maximum Likelihood
Estimate (MLE) of the model parameters. We intend to ad-
dress this learning problem in our future work.
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