
A Decision-Theoretic Approach to Evaluating
Posterior Probabilities of Mental Models

Jonathan Y. Ito and David V. Pynadath and Stacy C. Marsella
Information Sciences Institute, University of Southern California

4676 Admiralty Way, Marina del Rey CA 90292 USA

Abstract

Agents face the problem of maintaining and updating their
beliefs over the possible mental models (whether goals, plans,
activities, intentions, etc.) of other agents in many multiagent
domains. Decision-theoretic agents typically model their un-
certainty in these beliefs as a probability distribution over
their possible mental models of others. They then update
their beliefs by computing a posterior probability over mental
models conditioned on their observations. We present a novel
algorithm for performing this belief update over mental mod-
els that are in the form of Partially Observable Markov Deci-
sion Problems (POMDPs). POMDPs form a common model
for decision-theoretic agents, but there is no existing method
for translating a POMDP, which generates deterministic be-
havior, into a probability distribution over actions that is ap-
propriate for abductive reasoning. In this work, we explore
alternate methods to generate a more suitable probability dis-
tribution. We use a sample multiagent scenario to demon-
strate the different behaviors of the approaches and to draw
some conclusions about the conditions under which each is
successful.

Introduction

Agents face the problem of maintaining and updating their
beliefs over the possible mental models (whether goals,
plans, activities, intentions, etc.) of other agents in many
multiagent domains. Decision-theoretic agents typically
model their uncertainty in these beliefs as a probability dis-
tribution over their possible mental models of others. They
then update their beliefs by computing a posterior probabil-
ity over mental models conditioned on their observations.
For example, many existing methods for plan recognition
represent the agent being observed in a probabilistic repre-
sentation of its plan hierarchy (Goldman, Geib, & Miller
1999; Charniak & Goldman 1993; Pynadath & Wellman
2000; Bui, Venkatesh, & West 2002; Kaminka, Pynadath, &
Tambe 2001). These methods provide algorithms that invert
the representation to provide an abductive reasoning mecha-
nism that compute the desired posterior probability over the
possible plans.

In this work, we are interested in modeling agents who
perform decision-theoretic planning, but not over a hierar-
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chy of possible plans. In particular, we consider agent mod-
els in the form of Partially Observable Markov Decision
Problems (POMDPs) (Smallwood & Sondik 1973). The rec-
ognizing agent maintains a probability distribution over pos-
sible POMDP models, representing the likelihood that the
observed agent is following a given POMDP. Thus, in the
language of Interactive POMDPs (Gmytrasiewicz & Doshi
2005), all of the agents’ frames are POMDPs.

For a recognizing agent to update its belief over the
POMDP model of the observed, it must determine the prob-
ability that a candidate POMDP model would generate each
observed action of that agent. An agent following a given
POMDP model will execute one of a set of policies that have
the highest expected reward, as determined by whichever
POMDP solution algorithm the agent uses. Thus, the rec-
ognizing agent could assume that the observed agent’s be-
havior will always conform to one of these optimal policies.
Then, it could assign a probability of zero to any action that
does not appear in any optimal policies for the given situa-
tion.

While such an assumption would lead to the straightfor-
ward development of a POMDP recognition algorithm, we
could safely do so only if we are sure that the space of pos-
sible POMDPs under consideration is exhaustive. If the ob-
served agent happens to be following some other, unknown
POMDP, then it could perform an action that does not occur
in any of the known optimal policies, leading to all of the
existing POMDP models to have a zero posterior probabil-
ity. To avoid such a degenerate case, the recognizing agent
must allow for the possibility of error in its computation of
the possible POMDP policies.

In this work, we observe that we can use the POMDP
model’s value function as a measure of likelihood over all
actions, rather than only the optimal one. In other words,
the larger the gap in expected reward between an observed
action and the optimal one under a given POMDP model,
the worse candidate that model is. Similarly, the more ac-
tions that have a higher expected reward (in a given POMDP
model) than the observed action, the worse candidate that
model is.

There is no one universal method for modeling such like-
lihoods, so we examine a variety of methods and their im-
pact on recognition accuracy. In particular, we explore three
methods for calculating the probability of an observed action
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conditioned on a particular POMDP model: (1) the ratio of
expected rewards, (2) a linear ranking method, and (3) an
exponential ranking method. We explore and evaluate these
different methods in a sample domain within the PsychSim
(Marsella, Pynadath, & Read 2005; Pynadath & Marsella
2005) multiagent framework.

PsychSim Simulation Framework

PsychSim is a multiagent framework for running social sim-
ulations. It operationalizes existing psychological theories
as boundedly rational computations to generate more plau-
sibly human behavior. A central aspect of the PsychSim
design is that agents have fully qualified decision-theoretic
models of others. Such quantitative recursive models give
PsychSim a powerful mechanism to model a range of factors
in a principled way. Each agent within PsychSim maintains
independent beliefs about the world, has its own goals and
its own policies for achieving those goals. The PsychSim
framework is an extension to the Com-MTDP model (Pyna-
dath & Tambe 2002) of agent teamwork.

Example Domain

We have taken our example domain from a scenario in
childhood aggression modeled within PsychSim. There are
agents for three students: a bully, his victim (i.e., the stu-
dent he focuses his aggression on), and an onlooking stu-
dent to whom the bully looks for affirmation. There is also a
teacher who wishes to prevent any incidents of aggression.
The teacher can deter the bully from picking on his victim
by doling out punishment. We focus on the problem facing
the bully agent, whose decision on whether or not to pick on
his victim must consider the possible punishment policy of
the teacher.

State

Each agent model includes features representing its “true”
state. This state consists of objective facts about the world,
some of which may be hidden from the agent itself. For our
example bully domain, each agent has a power state feature
representing the strength of the agent. Thus powerbully rep-
resents the power of the bully agent. We represent the state
as a vector, −→s t

, where each component corresponds to one
of these state features and has a value in the range [−1, 1].

Reward

PsychSim uses a decision-theoretic model of preferences, so
the bully agent decides whether or not to pick on his vic-
tim through a finite-horizon evaluation of expected reward.
There are three components of the bully’s reward function:
(1) a desire to increase his power, which decreases when he
is punished; (2) a desire for affirmation from the onlooking
student, which increases when the onlooker laughs along as
the bully picks on the victim; and (3) a desire to decrease
the victim’s power, which decreases when the bully picks
on him (as well as when the onlooker laughs at him). We
define the reward function as a linear combination of these
three components, so that we can reduce the specification

of the bully’s type as a triple of coefficients, with each co-
efficient in [0, 1] and with the additional constraint that the
three coefficients sum to 1. It is only the relative value of the
coefficients that determines behavior. Thus, to simulate the
behavior of a bully whose aggression is intended to gain the
approval of his peers, we would use an agent with a higher
weight for the second of the reward components. On the
other hand, to simulate a bully of a more sadistic orienta-
tion, we would use a higher weight for the third.

The teacher also has three components to her reward func-
tion, corresponding to her desire to increase the power of
each of the three students: bully, victim, and onlooker. This
reward function gives the teacher a disincentive for punish-
ing anyone (as the punishee’s power would then decrease)
unless doing so will deter acts of aggression that would re-
duce the victim’s power even more. A perfectly fair teacher
would give equal weight to the three students’ power. A
bully feeling persecuted by the teacher may be inclined to
think that she favors the victim’s power over his own. On
the other hand, a bully may feel that the teacher shares his
dislike of the victim, in which case he may model here as
having a lower weight for increasing the victim’s power.

We can represent the overall preferences of an agent, as
well as the relative priority among them, as a vector of
weights, −→g , so that the product, −→g · −→s t, quantifies the de-
gree of satisfaction that the agent receives from the world,
as represented by the state vector, −→s t

.

Actions

The teacher has 7 options in her action set, At. She can
do nothing; she can scold the bully, onlooker, or the entire
class; or she can punish the bully, onlooker, or the entire
class. Punishing a student causes a more sever decrease in
a student’s power than simply scolding. The onlooking stu-
dent has 2 option in his action set, Ao: laugh at the victim,
or do nothing. The bully has 2 actions in his action set, Ab:
pick on the victim or do nothing.

The state of the world changes in response to the actions
performed by the agents. We model these dynamics using
a transition probability function, T

(−→s ,−→a ,−→s ′
)

, to capture
the possibly uncertain effects of these actions on the subse-
quent state:

P
(−→s t+1 = −→s ′|−→s t = −→s ,−→a t = −→a

)

= T
(−→s ,−→a ,−→s ′

)

(1)

For example, the bully’s attack on the victim impacts the
power of the bully, the power of the victim, etc. The dis-
tribution over the bully’s and victim’s changes in power is
a function of the relative powers of the two - e.g., the larger
the power gap that the bully enjoys over the victim, the more
likely the victim is to suffer a big loss in power.

Policies

The policy of the teacher depends on not only her mental
models of the students, but also on the prior actions of the
students. In other words, the teacher may perform a different
action when the bully picks on the victim than when he does
not. Thus, the policy, πT : MTB × MTO × AB × AO →
AT . Over the infinite space of possible reward functions for
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the teacher in this classroom scenario, there are only eight
policies that are ever optimal. However, there are 74 = 2401
possible policies in the overall space, so a bully considering
only optimal policies is ignoring a large set of possibilities.

We model each agent’s real policy table as including a
bounded lookahead policy rule that seeks to best achieve the
agent’s goals given its beliefs. To do so, the policy considers
all of the possible actions/messages it has to choose from
and measures the results by simulating the behavior of the
other agents and the dynamics of the world in response to the
selected action/message. They compute a quantitative value,

Va

(

−→
b

t
)

, of each possible action, a, given their beliefs,
−→
b

t
.

Va

(

−→
b

t
)

= −→g · T
(

−→
b

t
, a

)

+ V
(

T
(

−→
b

t
, a

))

(2)

V
(

−→
b

t+1
)

=
N

∑

τ=1

−→g ·
−→
b

t+τ
(3)

Thus, an agent first uses the transition function, T , to
project the immediate effect of the action, a, and then
projects another N steps into the future, weighing each state
along the path against its goals, −→g . Thus, the agent is seek-
ing to maximize the expected value of its behavior, along
the lines of decision policies in decision theory. However,
PsychSim’s agents are only boundedly rational, given that
they are constrained, both by the finite horizon, N , of their

lookahead and the possible error in their belief state,
−→
b .

Distribution Update Procedure

P (mi|Aobs) =
P (mi) × P (Aobs|mi)

∑

i P (mi) × P (Aobs|mi)
(4)

Here we describe the process by which an agent can up-
date its initial probability distribution over which mental
model is being employed by the another agent. In 4 we
use Bayes’ Theorem to calculate the probability that mental
model i is being employed given that actions A have been
observed. The marginal probability of a given mental model
P (mi) can either be determined beforehand by the modeler
or we can assume a uniform distribution. The calculation
of P (Aobs|mi) is more complicated since there is no defini-
tive method of calculating the probability of observing a cer-
tain sequence of actions given that a particular mental model
is being employed. However, since we are in a decision-
theoretic framework in which agents have their own beliefs
(albeit sometimes incorrect) regarding other agents, we can
use these beliefs of other agents to determine an agent’s
probable expected reward when executing a particular action
assuming they are using a particular mental model. And us-
ing one of the several methods described below, we can ap-
proximate the probability that a certain sequence of actions
may be observed.

Expected Value Ratio

One method for generating a probability distribution is to
treat the model’s value function as a likelihood weighting.
In other words, we model the agent as choosing an action

Table 1: Ranking Example

EV rank (x) rank (x) + 1 erank(x)

0.65 1 2 exp (1) = 2.718
0.49 0 1 exp (0) = 1.0
0.73 2 3 exp (2) = 7.389
0.65 1 2 exp (1) = 2.718
0.83 3 4 exp (3) = 20.086

randomly, with the probability of a given action being pro-
portional to its expected reward. More precisely we assign a
probability that an agent will perform a given action as equal
to the ratio of the expected reward of that particular action
to the total summation of expected rewards of all actions the
agent can perform at any given time step.

Pevr (aj |mi) =
E (aj)

∑

j E (aj)
(5)

Linear and Exponential Ranking

Another intuitive basis for a probability distribution is the
notion that an agent is less likely to pick actions when there
are other actions with a higher expected reward. The further
down the ranking an action is, the less likely that a rational
agent will select it. Unlike the expected value ratio method,
the ranking-based probability distributions are insensitive to
the actual difference in expected rewards. One possible in-
stantiation of this intuition is to assign each action a proba-
bility proportional to its rank according to expected reward:

Plinear (aj |mi) =
rank (aj) + 1

∑

j (rank (aj) + 1)
(6)

This method would model the “irrationality” of the agent
as increasing linearly as the action drops down the ranking.
We could alternatively make irrationality even less likely
with an exponential relationship:

Pexp (aj |mi) =
erank(aj)

∑

j erank(aj)
(7)

The rank function monotonically orders each action,
where a ranking of a particular action is higher than the rank
of another action if its expected reward is greater than that
of the other action. If two actions have identical expected
rewards, then the assigned rank is also identical. An exam-
ple of some sample expected values and associated ranking
values is shown in Table 1. Each expected value in Table
1 corresponds to an agent’s evaluation of a particular action
using the lookahead procedure described in 2 and 3.

Experimental Results

In our experimental setup, three distinct teacher mental mod-
els are used with a fixed bully and onlooker. We need con-
sider only three models, because, for the given bully, all of
the other possible reward functions produce the same value
function as one of these three. Based on the differing goals
associated with each model (seen in Table 2), each mental
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Table 2: Teacher Goals
Mental model Bully Onlooker Victim

A 0 1.0 0
B 0.25 0 0.75
C 0.25 0.75 0

Table 3: Policy A
Bully Act Onlooker Act Action
pick-on Victim laugh-at punish Bully
pick-on Victim wait punish Bully
wait laugh-at punish Bully
wait wait punish Bully

Table 4: Policy B
Bully Act Onlooker Act Action
pick-on Victim laugh-at punish Onlooker
pick-on Victim wait wait
wait laugh-at wait
wait wait punish Onlooker

Table 5: Policy C
Bully Act Onlooker Act Action
pick-on Victim laugh-at wait
pick-on Victim wait wait
wait laugh-at wait
wait wait wait
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model compiled to a unique policy given in Tables 3, 4 and
5. The first and second columns of a given policy table cor-
respond to the various actions that are available to the bully
and onlooker respectively. The third column corresponds to
the resulting action the teacher will take in response to the
observed actions of the bully and onlooker. For example,
if the teacher is employing policy B and observes the bully
picking on the victim and the onlooker laughing at the vic-
tim, then the teacher will punish the onlooker. Graphs 1, 2
and 3 show the results of the simulation experiments. Each
graph corresponds to a scenario in which a different initial
policy (A, B, or C) was chosen for the teacher. The other ob-
serving agents begin the scenario with a uniform marginal
probability distribution over the three possible policies. In
other words, the agents believe that the teacher is equally
likely to employ any of the three given policies. With the ini-
tial starting policy, each graph shows the observing agent’s
belief of the correct policy being employed by the teacher.
We vary the memory length from 0 to 20 and plot the dif-
ferent methods (expected value ratio, linear ranking, and ex-
ponential ranking) of calculating the conditional probabili-
ties that a particular policy is being used. The ideal method
of calculating the probabilities would begin at the initial
marginal probability (.33 in our case) at memory length 0
and then quickly converge towards 1 as memory length in-
creases.

We see that when the expected value ratio method shown
in 5 is used, it converges very slowly (or sometimes not at
all) to the correct policy. In our particular domain the ex-
pected values for any given action that an agent can take are
generally very similar. So if an agent chooses a sub-optimal
action having an expected value close to the optimal action,
then the penalty to the probability calculation is extremely
small. In other words, as long as actions are chosen that are
relatively close in value to the action of the highest expected
value there will be very little movement from the initial dis-
tribution.

The ranking methods, both linear and exponential, are in-
sensitive to the actual differences in expected values and
instead rely on a relative ordering, or ranking, of the ex-
pected values. Thus, the ranking methods will assign a
high probability that a particular model is being employed
if the action with the highest expected value is consistently
observed. However, the linear ranking method can some-
times understate the importance of choosing the optimal ac-
tion while the exponential ranking method can sometimes
overstate its importance. Consider the following exam-
ple: Assume we have two policies X and Y . Each pol-
icy has three actions available to it: actions a, b, c. Fur-
thermore, assume the expected values for X as E (Xa) =
E (Xb) = E (Xc) and for Y as E (Ya) > E (Yb) > E (Yc).
In this case the ranking of the actions will be the follow-
ing: Rank (Xa) = Rank (Xb) = Rank (Xc) = 0 and
Rank (Ya) = 2, Rank (Yb) = 1, Rank (Yc) = 0. If
optimal action b is chosen under policy X we see that the
same action is not optimal for policy Y . But the linear
ranking method will evaluate Plinear (b|X) = Plinear (b|Y )
which is clearly not the desired outcome. Employing the
exponential ranking method, we can avoid understating the

importance of choosing the optimal action, but then be-
come susceptible to overstating its importance. For ex-
ample, in addition to the aforementioned example consider
that after action b is observed, action a is subsequently ob-
served. While these two actions are both optimal for pol-
icy X only action a is optimal for policy Y . But using
the exponential ranking function described in 7 we find that
Pexp (b|Y ) × Pexp (a|Y ) > Pexp (b|X)× Pexp (a|X). Fig-
ures 2 and 3 both illustrate some limitations to the linear
and exponential ranking methods. Policy C has several ac-
tions of equal expected value and thus in some cases the lin-
ear ranking method understates the importance of choosing
the optimal action while the exponential method sometimes
overstates its importance.

Discussion

While we have explored three methods of calculating
P (mi|Aobs) there are still certainly many more probabilis-
tic models that can be investigated. For instance, we could
experiment with a multitude of other linear and exponential
functions in concert with both he ranking function and the
actual expected rewards. Alternatively, we could model the
error has being generated by some noise model (e.g., Gaus-
sian), which would be parameterized by the degree of confi-
dence in the space of possible models (e.g., the variance on
the Gaussian would decrease with confidence).

Another direction that is currently outside the scope of
this paper is to experiment with what to do with the end
probability P (mi|Aobs). For example, if we use this distri-
bution as a belief state over frames in an interactive POMDP,
then we could use this information in the calculation of the
recognizing agent’s expected reward. We could do so by cal-
culating the expected reward for that agent using each men-
tal model and then weighting those values according to our
calculated probability distribution. While such a decision-
making procedure would be optimal, we are also interested
in using these models to simulate the modeling that people
do of each other. Thus, we could instead simply have an
agent switch beliefs of a mental model depending on which
mental model has the highest current probability given the
observed actions. And certainly, agents could have individ-
ual preferences or thresholds over which they are willing to
change their beliefs over the mental models of other agents.

Conclusion

We have discussed and explored several methods for calcu-
lating the posterior probability P (mi|Aobs) that a particular
mental model is being employed given a sequence of ob-
served actions. In particular we’ve explored several meth-
ods of calculating the conditional probability P (aj |mi) that
action j is observed given that mental model i is being used.
These methods include using an expected reward ratio and
linear and exponential ranking functions. We have demon-
strated the application of these techniques using an example
scenario of childhood aggression within PsychSim, a mul-
tiagent framework and show that the expected reward ratio
and exponential ranking functions are the most well suited
for our domain. However, additional work still needs to be
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done to both formalize and explore other methods of cal-
culating the conditional probabilities of actions as well as
investigating how to better integrate the newly calculated
probability distribution over mental models into our multia-
gent, decision-theoretic framework.
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