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Abstract

The notion of optimality naturally arises in many areas of ap-
plied mathematics and computer science concerned with de-
cision making.
Here we consider this notion in the context of two formalisms
used for different purposes in reasoning about multi-agent
systems. One of them are strategic games that are used to
capture the idea that agents interact with each other while
pursuing their own interests. The other are soft constraints
that are used to express preferences in presence of constraints
and uncertainty.
To relate the notions of optimality in these formalisms we de-
fine two mappings. We show for a natural mapping from soft
constraints to strategic games that in general no relation exists
between the notions of an optimal solution and Nash equilib-
rium. However, for a class of soft constraints that includes
weighted constraints every optimal solution is a Nash equi-
librium. In turn, for a natural mapping from strategic games
to soft constraints the notion that coincides with optimality
for soft constraints is that of Pareto efficient joint strategy.

Introduction
The concept of optimality is prevalent in many areas of ap-
plied mathematics and computer science. It is of relevance
whenever we need to choose among several alternatives that
are not equally preferable. For example, in constraint opti-
mization, each solution of a constraint problem has a quality
level associated with it and the aim is to choose an optimal
solution, that is, a solution with an optimal quality level.

The aim of this paper is to clarify the relation between
the notions of optimality used in two areas within AI: game
theory (commonly used to model multi-agent systems) and
soft constraints. This allows us to gain new insights into
these notions which hopefully will lead to further cross-
fertilization between these areas.

Game theory, notably strategic games, captures the idea
of an interaction between agents (players) by equipping each
agent with a payoff function on the game outcomes and al-
lowing the agents to take actions (in strategic games simul-
taneously) with the aim of maximizing their payoffs. The
most commonly used concept of optimality is that of a Nash
equilibrium. Intuitively, it is an outcome that is optimal for
each player under the assumption that only he may recon-
sider his action. Strategic games form one of the main tools

in the area of multi-agent systems since they formalize in
a simple and powerful way the idea that the agents interact
with each other while pursuing their own interests.

Soft constraints, see e.g. (Bistarelli, Montanari, & Rossi
1997), are used to express preferences in the presence of
constraints and uncertainty. An example are fuzzy con-
straints, see (Dubois, Fargier & Prade 1993) and (Ruttkay
1994), for which the preference of a solution is the minimal
preference computed over all the constraints, and an optimal
solution is the one with the highest preference. The research
in this area mainly focused on the algorithms for finding op-
timal solutions and on the relationship between modelling
formalisms (see (Rossi, Meseguer, & Schiex 2006)).

Strategic games
Let us recall now the notion of a strategic game, see, e.g.,
(Myerson 1991). A strategic game for n players (n > 1) is a
sequence (S1, . . ., Sn, p1, . . ., pn), where for each i ∈ [1..n]

• Si is the non-empty set of strategies available to player i,

• pi is the payoff function for the player i, so pi : S1 ×
. . .× Sn→R, whereR is the set of real numbers.

Given a sequence of non-empty sets S1, . . ., Sn and s ∈
S1 × . . . × Sn we denote the ith element of s by si, abbre-
viate N \ {i} to −i, and use the following standard notation
of game theory, where i ∈ [1..n] and I := i1, . . ., ik is a
subsequence of 1, . . ., n:

• sI := (si1 , . . ., sik
),

• (s′i, s−i) := (s1, . . ., si−1, s
′
i, si+1, . . ., sn), where we as-

sume that s′i ∈ Si,

• SI := Si1 × . . .× Sik
.

A joint strategy s is called

• a (pure) Nash equilibrium if pi(s) ≥ pi(s′i, s−i) for all
i ∈ [1..n] and all s′i ∈ Si,

• Pareto efficient if for no joint strategy s′, pi(s′) ≥ pi(s)
for all i ∈ [1..n] and pi(s′) > pi(s) for some i ∈ [1..n].

Pareto efficiency can be alternatively defined by consider-
ing the following strict Pareto ordering <P on the n-tuples
of reals: (a1, . . ., an) <P (b1, . . ., bn) iff ∀i ∈ [1..n] ai ≤ bi

and ∃ i ∈ [1..n] ai < bi. Then a joint strategy s is Pareto
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efficient iff the n-tuple (p1(s), . . ., pn(s)) is a maximal ele-
ment in the <P ordering on such n-tuples of reals.

To clarify these notions consider the classical Prisoner’s
Dilemma game represented by the following bimatrix repre-
senting the payoffs to both players:

C2 N2

C1 3, 3 0, 4
N1 4, 0 1, 1

So each player i has two strategies, Ci (cooperate) and
Ni (not cooperate), the payoff to player 1 for the joint
strategy (C1, N2) is 0, etc. Here the unique Nash equi-
librium is (N1, N2), while the other three joint strategies
(C1, C2), (C1, N2) and (N1, C2) are Pareto efficient.

Soft constraints
Soft constraints, see e.g. (Bistarelli, Montanari, & Rossi
1997), model problems with preferences using c-semirings.
A c-semiring is a tuple 〈A, +,×,0,1〉, where:
• A is a set, called the carrier of the semiring, and 0,1 ∈ A;
• + is commutative, associative, idempotent, 0 is its unit

element, and 1 is its absorbing element;
• × is associative, commutative, distributes over +, 1 is its

unit element and 0 is its absorbing element.
Elements 0 and 1 represent, respectively, the highest and

lowest preference. While the operator × is used to combine
preferences, the operator + induces a partial ordering on the
carrier A defined by a ≤ b iff a + b = b.

Given a c-semiring S = 〈A, +,×,0,1〉, and a set of vari-
ables V , each variable x with a domain D(x), a soft con-
straint is a pair 〈def, con〉, where con ⊆ V and def :
×y∈conD(y) → A. So a constraint specifies a set of vari-
ables (the ones in con), and assigns to each tuple of values
from ×y∈conD(y), the Cartesian product of the variable do-
mains, an element of the semiring carrier A.

A soft constraint satisfaction problem (SCSP) (in short,
a soft CSP) is a tuple 〈C, V, D, S〉 where V is a set of vari-
ables, with the corresponding set of domains D, C is a set
of soft constraints over V and S is a c-semiring. Given an
SCSP a solution is an instantiation of all the variables. The
preference of a solution s is the combination by means of
the × operator of all the preference levels given by the con-
straints to the corresponding subtuples of the solution, or
more formally, ×c∈Cdefc(s ↓conc

), where × is the multi-
plicative operator of the semiring and defc(s ↓conc

) is the
preference associated by the constraint c to the projection of
the solution s on the variables in conc.

A solution is called optimal if there is no other solution
with a strictly higher preference.

Three widely used instances of SCSPs are:
• Classical CSPs (in short CSPs), based on the c-semiring
〈{0, 1},∨,∧, 0, 1〉. They model the customary CSPs in
which tuples are either allowed or not. So CSPs can be
seen as a special case of SCSPs.

• Fuzzy CSPs, based on the fuzzy c-semiring
〈[0, 1], max,min, 0, 1〉. In such problems, prefer-
ences are the values in [0, 1], combined by taking the

minimum and the goal is to maximize the minimum
preference.

• Weighted CSPs, based on the weighted c-semiring
〈<+, min,+,∞, 0〉. Preferences are costs ranging over
non-negative reals, which are aggregated using the sum.
The goal is to minimize the total cost.
A simple example of a fuzzy CSP is the following one:

• three variables: x, y, and z, each with the domain {a, b};
• two constraints: Cxy (over x and y) and Cyz (over y and

z) defined by:
Cxy := {(aa, 0.4), (ab, 0.1), (ba, 0.3), (bb, 0.5)},
Cyz := {(aa, 0.4), (ab, 0.3), (ba, 0.1), (bb, 0.5)}.

The unique optimal solution of this problem is bbb (an ab-
breviation for x = y = z = b). Its preference is 0.5.

From soft constraints to strategic games
In this and next section we relate the optimality notions in
games and soft constraints. We shall see that the notion of
optimality in soft constraints is not always related to the no-
tion of Nash equilibria, but rather to the notion of Pareto
efficient joint strategies.

Mapping soft constraints to graphical games
We define now a mapping from soft CSPs to a specific kind
of games, and study the relation between the optimal out-
comes in soft CSPs and Nash equilibria in the corresponding
games.

Because soft constraints are defined by quantitative means
it is natural to relate them to the original quantitative def-
inition of a strategic game and not to the games with
parametrized preferences. As in the case of CP-nets we shall
identify the players with the variables. But the constraints
link variables, so in the resulting game players are naturally
connected. To capture this aspect we shall therefore use the
graphical games.

A graphical game, see (Kearns, Littman & Singh
2001), for n players with the corresponding strategy sets
S1, . . ., Sn with the payoffs being elements of a linearly
ordered set A, is defined by assuming a neighbour rela-
tion neigh that given a player i yields its set of neighbours
neigh(i). The payoff for player i is then a function from
×j∈neigh(i)∪{i}Sj to A. We denote such a graphical game by
(S1, . . . , Sn, neigh, p1, . . . , pn, A).

By using the canonic extensions of these payoff functions
to the Cartesian product of all strategy sets one can then
extend the previously introduced concepts to the graphical
games. Further, when all pairs of players are neighbours a
graphical game reduces to a strategic game.

Let us consider a first possible mapping from SCSPs
to graphical games. In what follows we focus on SCSPs
based on c-semirings with the carrier linearly ordered by ≤
(e.g. fuzzy or weighted) and on the concepts of optimal so-
lutions in SCSPs and Nash equilibria in games.

Given a SCSP P := 〈C, V, D, S〉 we define the corre-
sponding graphical game for n = |V | players as follows:

• the players: one for each variable;
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• the strategies of player i: all values in the domain of the
corresponding variable xi;
• the neighbourhood relation: j ∈ neigh(i) iff the variables

xi and xj appear together in some constraint from C;
• the payoff function of player i:

Let Ci ⊆ C be the set of constraints involving xi and let
X be the set of variables that appear together with xi in
some constraint in Ci (i.e., X = {xj | j ∈ neigh(i)}.)
Then given an assignment s to all variables in X ∪ {xi}
the payoff of player i w.r.t. s is defined by: pi(s) :=
×c∈Ci

defc(s ↓conc
).

We denote the resulting graphical game by L(P ) to em-
phasize the fact that the payoffs are obtained using a local
information about each variable, by looking only at the con-
straints in which it is involved.

We now analyze the relation between the optimal solu-
tions of a SCSP P and the Nash equilibria of the derived
game L(P ).

General case In general, these two concepts are unrelated.
Indeed, consider the fuzzy CSP defined at the end of Section
. The corresponding game has:
• three players, x, y, and z;
• each player has two strategies, a and b;
• the neighbourhood relation is defined by: neigh(x) :=
{y}, neigh(y) := {x, z}, neigh(z) := {y};
• the payoffs of the players are defined as follows:

– for player x: px(aa∗) := 0.4, px(ab∗) := 0.1,
px(ba∗) := 0.3, px(bb∗) := 0.5;

– for player y: py(aaa) := 0.4, py(aab) := 0.3,
py(abb) := 0.1, py(bbb) := 0.5, py(bba) := 0.5,
py(baa) := 0.3, py(bab) := 0.3, py(aba) := 0.1;

– for player z: pz(∗aa) := 0.4, pz(∗ab) := 0.3,
pz(∗ba) := 0.1, pz(∗bb) := 0.5;

where ∗ stands for either a or b and where to facilitate the
analysis we use the canonic extensions of the payoff func-
tions px and pz to the functions on {a, b}3.

This game has two Nash equilibria: aaa and bbb. How-
ever, only bbb is an optimal solution of the fuzzy SCSP. One
could thus think that in general the set of Nash equilibria is
a superset of the set of optimal solutions of the correspond-
ing SCSP. However, this is not the case. Indeed, consider a
fuzzy CSP with as before three variables, x, y and z, each
with the domain {a, b}, but now with the constraints:

Cxy := {(aa, 0.9), (ab, 0.6), (ba, 0.6), (bb, 0.9)},
Cyz := {(aa, 0.1), (ab, 0.2), (ba, 0.1), (bb, 0.2)}.
Then aab, abb, bab and bbb are all optimal solutions but

only aab and bbb are Nash equilibria of the corresponding
graphical game.

CSPs with strictly monotonic × We now consider the
case when the multiplicative operator × is strictly mono-
tonic. Recall that given a c-semiring 〈A, +,×,0,1〉, the op-
erator× is strictly monotonic if for any a, b, c ∈ A such that

a < b we have c × a < c × b. (The symmetric condition is
taken care of by the commutativity of ×.)

Note for example that in the case of classical CSPs × is
not strictly monotonic, as a < b implies that a = 0 and
b = 1 but c ∧ a < c ∧ b does not hold then for c = 0. Also
in fuzzy CSPs× is not strictly monotonic, as a < b does not
imply that min(a, c) < min(b, c) for all c. In contrast, in
weighted CSP× is strictly monotonic, as a < b in the carrier
means that b < a as reals, so for any c we have c+b < c+a,
i.e., c× a < c× b in the carrier.

So consider now a c-semiring with a linearly ordered car-
rier and a strictly monotonic multiplicative operator. As in
the previous case, given an SCSP P , it is possible that a
Nash equilibrium of L(P ) is not an optimal solution of P .
Consider for example a weighted SCSP P with
• two variables, x and y, each with the domain D = {a, b};
• one constraint Cxy :=
{(aa, 3), (ab, 10), (ba, 10), (bb, 1)}.

The corresponding game L(P ) has:
• two players, x and y, who are neighbours of each other;
• each player has two strategies, a and b;
• the payoffs defined by: px(aa) := py(aa) := 7,

px(ab) := py(ab) := 0, px(ba) := py(ba) := 0,
px(bb) := py(bb) := 9.
Notice that, in a weighted CSP we have a ≤ b in the

carrier iff b ≤ a as reals, so when passing from the SCSP to
the corresponding game, we have complemented the costs
w.r.t. 10, when making them payoffs. In general, given a
weighted CSP, we can define the payoffs (which must be
maximized) from the costs (which must be minimized) by
complementing the costs w.r.t. the greatest cost used in any
constraint of the problem.

Here L(P ) has two Nash equilibria, aa and bb, but only
bb is an optimal solution. Thus, as in the fuzzy case, we
have that there can be a Nash equilibrium of L(P ) that is
not an optimal solution of P . However, in contrast to the
fuzzy case, when the multiplicative operator of the SCSP is
strictly monotonic, the set of Nash equilibria of L(P ) is a
superset of the set of optimal solutions of P .

Theorem 1 Consider a SCSP P defined on a c-semiring
〈A, +,×,0,1〉, where A is linearly ordered and× is strictly
monotonic, and the corresponding game L(P ). Then every
optimal solution of P is a Nash equilibrium of L(P ).

Classical CSPs The above result does not hold for classi-
cal CSPs. Indeed, consider a CSP with:
• three variables: x, y, and z, each with the domain {a, b};
• two constraints: Cxy (over x and y) and Cyz (over y and

z) defined by:
Cxy := {(aa, 1), (ab, 0), (ba, 0), (bb, 0)},
Cyz := {(aa, 0), (ab, 0), (ba, 1), (bb, 0)}.
This CSP has no solutions, i.e., each optimal solution, in

particular baa, has preference 0. However baa is not a Nash
equilibrium of the resulting graphical game, since the payoff
of player x increases when he switches to the strategy a.

3



However, if we restrict the domain of L to consistent
CSPs, that is, CSPs with at least one solution with value
1, then the discussed inclusion does hold.

Theorem 2 Consider a consistent CSP P and the corre-
sponding game L(P ). Then every solution of P is a Nash
equilibrium of L(P ).

The reverse inclusion does not need to hold. Indeed, con-
sider the following CSP:

• three variables: x, y, and z, each with the domain {a, b};

• two constraints: Cxy and Cyz defined by:
Cxy := {(aa, 1), (ab, 0), (ba, 0), (bb, 0)},
Cyz := {(aa, 1), (ab, 0), (ba, 0), (bb, 0)}.

Then aaa is a solution, so the CSP is consistent. But bbb is
not an optimal solution, while it is a Nash equilibrium of the
resulting game.

So for consistent CSPs our mapping L yields games in
which the set of Nash equilibria is a, possibly strict, superset
of the set of solutions of the CSP.

However, there are ways to relate CSPs and games so that
the solutions and the Nash equilibria coincide. This is what
is done in (Gottlob, Greco & Scarcello 2005), where the
mapping is from the strategic games to CSPs. Notice that
our mapping goes in the opposite direction and it is not the
reverse of the one in (Gottlob, Greco & Scarcello 2005). In
fact, the mapping in (Gottlob, Greco & Scarcello 2005) is
not reversible.

Another mapping Other mappings from SCSPs to games
can be defined. While our mapping L is in some sense
‘local’, since it considers the neighbourhood of each vari-
able, we can also define an alternative ‘global’ mapping
that considers all constraints. More precisely, given a SCSP
P = 〈C, V, D, S〉, with a linearly ordered carrier A of S,
we define the corresponding game on n = |V | players,
GL(P ) = (S1, . . . , Sn, p1, . . . , pn, A) by using the follow-
ing payoff function pi for player i:

• given an assignment s to all variables in V , pi(s) :=
×c∈Cdefc(s ↓conc

).

Notice that in the resulting game the payoff functions of
all players are the same.

Theorem 3 Consider an SCSP P over a linearly ordered
carrier, and the corresponding game GL(P ). Then every
optimal solution of P is a Nash equilibrium of GL(P ).

The opposite inclusion does not need to hold. Indeed,
consider again the weighted SCSP with

• two variables, x and y, each with the domain D = {a, b};

• one constraint, Cxy :=
{(aa, 3), (ab, 10), (ba, 10), (bb, 1)}.

Since there is one constraint, the mappings L and GL coin-
cide. Thus we have that aa is a Nash equilibrium of GL(P )
but is not an optimal solution of P .

From strategic games to soft constraints
Let us now consider the question of reversibility of our map-
pings. Both mappings defined in the previous section do not
yield all graphical games, since the generated games are of
a special kind. In particular, if two players have the same
neighbourhood, then, for any given joint strategy, they have
the same payoff. Thus, we cannot hope to reverse our map-
ping if we start from the set of all games.

Therefore we shall rather define a natural mapping from
the graphical games to SCSPs for which we relate Nash
equilibria and Pareto efficient joint strategies in games to
optimal solutions in SCSPs.

In order to define a mapping from the graphical
games to SCSPs, we consider SCSPs defined on c-
semirings which are the Cartesian product of linearly or-
dered c-semirings. For example, the c-semiring 〈[0, 1] ×
[0, 1], (max, max), (min, min), (0,0), (1,1)〉 is the Carte-
sian product of two fuzzy c-semirings. In a SCSP based
on such a c-semiring, preferences are pairs, e.g. (0.1,0.9),
combined using the min operator on each component, e.g.
(0.1, 0.8) × (0.3, 0.6)=(0.1, 0.6). The ordering induced by
using the max operator on each component is a partial or-
dering, e.g. (0.1, 0.6) < (0.2, 0.8), while (0.1, 0.9) is in-
comparable to (0.9, 0.1).

Given a graphical game G =
(S1, . . . , Sn, neigh, p1, . . . , pn, A) we define the cor-
responding SCSP L′(G) = 〈C, V, D, S〉, as follows:
• each variable xi corresponds to a player i;
• the domain D(xi) of the variable xi consists of the set of

strategies of player i, i.e., D(xi) := Si;
• the c-semiring is 〈A1 × · · · ×

An, (+1, . . . ,+n), (×1, . . . ,×n), (01, . . . ,0n), (11, . . . ,1n)〉,
the Cartesian product of n arbitrary linearly ordered
semirings;

• soft constraints: for each variable xi, one constraint
〈def, con〉 such that:
– con = neigh(xi) ∪ {xi};
– def : ×y∈conD(y) → A1 × · · · × An such that for

any s ∈ ×y∈conD(y), def(s) := (d1, . . . , dn) with
dj = 1j for every j 6= i and di = f(pi(s)), where f :
A → Ai is an order preserving mapping from payoffs
to preferences (i.e., if r > r′ then f(r) > f(r′) in the
c-semiring’s ordering).

To illustrate it consider again the example of the Pris-
oner’s Dilemma game described in Section . Recall that in
this game the only Nash equilibrium is (N1, N2), while the
other three joint strategies are Pareto efficient.

We shall now construct a corresponding SCSP based on
the Cartesian product of two weighted semirings. This SCSP
according to the mapping L′ has:1

• two variables: x1 and x2, each with the domain {c, n};
• two constraints, both on x1 and x2:

– constraint c1 with def(cc) := 〈7, 0〉, def(cn) :=
〈10, 0〉, def(nc) := 〈6, 0〉, def(nn) := 〈9, 0〉;

1Recall that in the weighted semiring 1 equals 0.
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– constraint c2 with def(cc) := 〈0, 7〉, def(cn) :=
〈0, 6〉, def(nc) := 〈0, 10〉, def(nn) := 〈0, 9〉;

The optimal solutions of this SCSPs are: cc, with prefer-
ence 〈7, 7〉, nc, with preference 〈10, 6〉, cn, with preference
〈6, 10〉. The remaining solution, nn, has a lower preference
in the Pareto ordering. Indeed, its preference 〈9, 9〉 is dom-
inated by 〈7, 7〉, the preference of cc (since preferences are
here costs and have to be minimized). Thus the optimal so-
lutions coincide here with the Pareto efficient joint strategies
of the given game. This is true in general.

Theorem 4 Consider a game G and a corresponding SCSP
L′(G). Then the optimal solutions of L′(G) coincide with
the Pareto efficient joint strategies of G.

As mentioned above, in (Gottlob, Greco & Scarcello
2005) a mapping is defined from the graphical games to
CSPs such that Nash equilibria coincide with the solutions
of CSP. Instead, our mapping is from the graphical games to
SCSPs, and is such that Pareto efficient joint strategies and
the optimal solutions coincide.

Since CSPs can be seen as a special instance of SCSPs,
where only 1, 0, the top and bottom elements of the semir-
ing, are used, it is possible to add to any SCSP a set of hard
constraints. Therefore we can merge the results of the two
mappings into a single SCSP, which contains the soft con-
straints generated by L′ and also the hard constraints gener-
ated by the mapping in (Gottlob, Greco & Scarcello 2005),
Below we denote these hard constraints by H(G). If we do
this, then the optimal solutions of the new SCSP with the
preference higher than 0 are the Pareto efficient Nash equi-
libria of the given game.

Theorem 5 Consider a game G and the corresponding
SCSP L′(G). If the optimal solutions of L′(G) have global
preference greater than 0, they correspond to the Pareto ef-
ficient Nash equilibria of G.

For example, in the Prisoner’s Dilemma game, the map-
ping in (Gottlob, Greco & Scarcello 2005) would generate
just one constraint on x1 and x2 with nn as the only allowed
tuple. In our setting, when using as the linearly ordered
c-semirings the weighted semirings, this would become a
soft constraint with def(cc) := def(cn) := def(nc) =
〈∞,∞〉, def(nn) := 〈0, 0〉. With this new constraint, all
solutions have the preference 〈∞,∞〉, except for nn which
has the preference 〈9, 9〉 and thus is optimal. This solution
corresponds to the joint strategy (N1, N2) with the payoff
(1, 1) (and thus preference (9, 9)) that is the only Pareto ef-
ficient Nash equilibrium.

This method allows us to identify among Nash equilib-
ria the ‘best’ ones. One may also be interested in knowing
whether there exist Nash equilibria which are also Pareto
efficient joint strategies. For example, in the Prisoners’
Dilemma example, there are no such Nash equilibria. To
find any such joint strategies we can use the two mappings
separately, to obtain, given a game G, both an SCSP L′(G)
and a CSP H(G) (using the mapping in (Gottlob, Greco &
Scarcello 2005)). Then we should take the intersection of
the set of optimal solutions of L′(G) and the set of solutions
of H(G).

Conclusions
In this paper we related two formalisms that are commonly
used to reason about optimal outcomes: strategic games and
soft constraints. In partcular we considered the relation be-
tween strategic games and various classes soft constraints.
We showed that for a natural mapping from soft CSPs to
strategic games in general no relation exists between the no-
tions of optimal solutions of soft CSPs and Nash equilibria.

For the reverse direction we showed that for a natural
mapping from strategic games to soft CSPs optimal solu-
tions coincide not with Nash equilibria but with Pareto ef-
ficient joint strategies. Moreover, if we add suitable hard
constraints to the soft constraints, optimal solutions coincide
with Pareto efficient Nash equilibria.

The results of this paper clarify the relationship between
various notions of optimality used in strategic games and
soft constraints. These results can be used in many ways.
One obvious way is to try to exploit computational results
existing for one of these areas in another. This has been pur-
sued already in (Gottlob, Greco & Scarcello 2005) for games
versus hard constraints. Using our results this can also be
done for strategic games versus soft constraints. For exam-
ple, finding a Pareto efficient joint strategy involves mapping
a game into a soft CSP and then solving it. Similar approach
can also be applied to Pareto efficient Nash equilibria, which
can be found by solving a suitable soft CSP.
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Appendix: Proofs
Theorem 1 Consider a SCSP P defined on a c-semiring
〈A, +,×,0,1〉, where A is linearly ordered and× is strictly
monotonic, and the corresponding game L(P ). Then every
optimal solution of P is a Nash equilibrium of L(P ).
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Proof. We prove that if a joint strategy s is not a Nash equi-
librium of game L(P ), then it is not an optimal solution of
SCSP P .

Let a be the strategy of player x in s, and let sneigh(x) and
sY be, respectively, the joint strategy of the neighbours of x,
and of all other players, in s. That is, V = {x}∪neigh(x)∪
Y and s = ((x, a)sneigh(x)sY ).

By assumption there is a strategy b for x such that the
payoff px(s′) for the joint strategy s′ := ((x, b)sneigh(x)sY )
is higher than px(s). (We use here the canonic extension of
px.)

So by the definition of the mapping L

×c∈Cx
defc(s ↓conc

) < ×c∈Cx
defc(s′ ↓conc

),

where Cx is the set of all the constraints involving x in SCSP
P . But the preference of s and s′ is the same on all the
constraints not involving x and × is strictly monotonic, so
we conclude that

×c∈Cdefc(s ↓conc
) < ×c∈Cdefc(s′ ↓conc

).

This means that s is not an optimal solution of P . 2

Theorem 2 Consider a consistent CSP P and the corre-
sponding game L(P ). Then every solution of P is a Nash
equilibrium of L(P ).

Proof. Consider a solution s of P . In the resulting game
L(P ) the payoff to each player is maximal, namely 1. So
the joint strategy s is a Nash equilibrium in game L(P ). 2

Theorem 3 Consider an SCSP P over a linearly ordered
carrier, and the corresponding game GL(P ). Then every
optimal solution of P is a Nash equilibrium of GL(P ).

Proof. An optimal solution of P , say s, is a joint strategy
for which all players have the same, highest, payoff. So no
other joint strategy exists for which some player is better off
and consequently s is a Nash equilibrium. 2

Theorem 4 Consider a game G and a corresponding SCSP
L′(G). Then the optimal solutions of L′(G) coincide with
the Pareto efficient joint strategies of G.

Proof. In the definition of the mapping L′ we stipulated that
the mapping f maintains the ordering from the payoffs to
preferences. As a result each joint strategy s corresponds
to the n-tuple of preferences (f(p1(s)), . . . , f(pn(s))) and
the Pareto orderings on the n-tuples (p1(s), . . . , pn(s))
and (f(p1(s)), . . . , f(pn(s))) coincide. Consequently a se-
quence s is an optimal solution of the SCSP L′(G) iff
(f(p1(s)), . . . , f(pn(s))) is a maximal element of the cor-
responding Pareto ordering. 2

Theorem 5 Consider a game G and the corresponding
SCSP L′(G). If the optimal solutions of L′(G) have global
preference greater than 0, they correspond to the Pareto ef-
ficient Nash equilibria of G.

Proof. Given any solution s, let p be its preference in L′(G)
and p′ in L′(G) ∪ H(G). By the construction of the con-
straints H(G) we have that p′ equals p if s is a Nash equi-
librium and p′ equals 0 otherwise. The remainder of the
argument is as in the proof of Theorem 4. 2
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