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Abstract

To have value for an individual tasked with arranging a meet-
ing, a scheduling tool must actively account for the individ-
ual’s scheduling preferences, especially when the meeting
request must be relaxed. We develop a preference model
designed to capture user scheduling preferences for over-
constrained meeting requests between multiple people, and
a methodology for preference elicitation to initially populate
this model. The model is built around a 2-order Choquet in-
tegral representation. We explain a natural-language-based
elicitation of the meeting request details and constraints, and
outline the solving of the resulting constrained scheduling
problem (with preferences). We then describe the display of
solutions to the scheduling problem to the user, as candidate
scheduling options with explanations, and detail unobtrusive
learning of revisions to the preference model from the user’s
choices among the candidates. We report on initial assess-
ment of the efficacy of such a preference model in terms of
elicitation, learning, and reasoning.

Introduction
All too often, arranging meetings in an office environment is
a tedious process. One common method is a series of emails
to propose, reject, counter-propose, and eventually agree on
a time. The effort consumed in such practices motivates the
opportunity for automated assistance in scheduling.

Although a number of fully- or semi-automated schedul-
ing systems have been developed, they have suffered from
low adoption rates for two main reasons [12; 27; 31]: they
fail to account for the personal nature of scheduling, or they
demand too much control of an important aspect of an indi-
vidual’s working world.

The personal nature of scheduling is most directly seen in
situations where a user’s meeting request cannot be fully sat-
isfied. For example, suppose that Alice requests a 90 minute
meeting with Bob and Chris next Tuesday afternoon, but no
time is available to all during that period. Some users may
prefer the option of a shortened 60 minute meeting, while
others (like Alice) may prefer the full 90 minute meeting
Tuesday morning. Most users would like to be presented
with both options (more generally, with all relevant options,
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of which there can be many in such over-constrained situa-
tions), but such that the options they most prefer have prior-
ity in the presentation. It is precisely in these difficult, over-
constrained situations, in which there may be many com-
peting factors and many possible relaxations of the meeting
request, where scheduling assistance is most useful. But to
be of real value here, an automated scheduling assistant must
actively account for a user’s scheduling preferences.

In this paper we consider representing and reasoning over
the scheduling preferences of an individual. We present a
preference model designed to balance the potentially com-
peting loci of elicitation of preferences, refinement of the
elicited model instance by machine learning, and reason-
ing over the preference model to provide options to over-
constrained meeting requests. First, for elicitation, more ex-
pressive models better capture the nuances of user prefer-
ences, but require more effort to specify. Second, for learn-
ing, expressive models require significant training (and tend
to overfit), while inexpressive models cannot distinguish be-
tween candidate schedule options that are distinguished by
the user. Third, for automated searching for and ranking
of candidate options (hereafter, constraint reasoning), it is
more difficult to define and reason over complex objective
functions, preferences, and constraints.

While prior research has looked at one or more of these
aspects — modelling and eliciting, learning, and reasoning
— the resulting systems have rarely sought to encompass
all three. For example, representing and learning user pref-
erences but not performing sophisticated reasoning to of-
fer scheduling options [21], or representing preferences and
performing constraint reasoning but not updating the prefer-
ences by learning [11].

Based on our preference model, the end-to-end semi-
automated scheduling assistance enabled by the integration
of these three aspects has been implemented within a de-
ployed system called PTIME [2]. PTIME, a component
of a larger cognitive assistant named CALO [25], man-
ages the calendar and the scheduling requests of a CALO
user in a mixed-initiative manner. Figure 1 shows the pro-
cess. PTIME elicits scheduling preferences (step 0); elicits
a meeting request (step 1); computes candidate schedules
(possibly relaxations) in response to the request, by means
of a Constraint Reasoner module, and displays a subset of
the candidates to the user as options (step 2); and accepts the
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Figure 1: Use of the preference model in PTIME.

user’s choice of the desired schedule option (step 3). Based
on which option the user chooses for each request among
the presented options, the learning module in PTIME up-
dates the parameters of the preference model instance (step
4) [8]. The updated model becomes the basis of reasoning
over candidate schedules for the next scheduling request.1

At present, the PTIME user organizing the meeting de-
cides which meeting option to select, taking into consid-
eration others participants’ generic scheduling preferences.
In the future, she will be able to also take others’ meeting-
specific preferences into consideration. In the simplest form
of inter-agent negotiation supported by PTIME, the selected
meeting is presented to invitees for inclusion or otherwise in
their calendars.

We begin by describing our first user studies and the re-
quirements on the preference model that we derived from
them. We then describe a model, based on Multi-Attribute
Utility Theory (MAUT) [15] designed to balance expressive-
ness with amenability for learning and reasoning. Next, we
describe the interfaces and design choices for eliciting both
an initial instance of the model (general preference elicita-
tion), and the specification of and constraints on meeting re-
quests (problem-specific preference elicitation). The follow-
ing sections describe the presentation of schedule options
and the learning based on user choices. We report on initial
assessment of the suitability of such a preference model in
terms of elicitation, learning, and reasoning, and on initial
studies of the overall user experience of the PTIME system,
noting some of the challenges found in this evaluation.

Development of a Preference Model
An earlier model of user scheduling preferences in the
PTIME system, reported in [8], sought to capture temporal
preferences (day and time of events) for under-constrained
meeting requests. It was composed as a weighted linear sum
of features such as meeting start and end times. Building a
constraint problem representation and reasoning over it, to

1The dashed arrow from step 3 back to step 2 indicates the
user’s ability to reject all the presented schedule options and re-
vise her scheduling request. She might do so because she finds
none of the options satisfactory, or because seeing the options has
stimulated her to refine her request or explore an alternative.

find preferred schedule options according to the model, was
straightforward. Refining a model instance, likewise, proved
effective using support vector machine learning techniques
[14]. Despite these positive aspects, the model could not
capture non-temporal preferences, such as for meeting par-
ticipants, and its expressiveness was too limited to capture
how temporal and non-temporal criteria interact. Compared
to the under-constrained case, these two aspects have a sig-
nificant role for over-constrained meeting requests.

User Studies on Scheduling Habits
We began by investigating the criteria that commonly influ-
ence scheduling decisions. We conducted a series of struc-
tured interviews focused on how individuals prefer to sched-
ule their meetings and free time, and how they deal with
scheduling conflicts. The latter questions were designed to
give insight into the trade-offs between different criteria.
The study group included managers, administrative staff,
and researchers in our organization. We further asked the
participants to keep a record of their schedules over a period
of a week, and to record the meeting requests they made and
received, and how they negotiated meetings with others.

The fivefold foci of the study were event characteristics
(e.g., one-on-one vs. group meetings), scheduling processes
(e.g., iterated refinement of a time), scheduling needs, deci-
sion factors (e.g., relationship to meeting host), and prefer-
ences. In the interest of space, we omit all but the last two.
Factors We found that the subjects take into considera-
tion a handful of factors that are a subset of a broadly com-
mon list, when scheduling a meeting and when deciding
whether to accept a meeting request. We group the fac-
tors into seven categories: (1) importance (of the meeting;
its importance to you, your importance to the meeting); (2)
urgency/criticality; (3) interest; (4) relationships (host, re-
lationship to host; other participants, relationship to other
participants [31]); (5) perturbation (effect on other meet-
ings); (6) stability (often characterized as “number of times
the meeting has been rescheduled”); and (7) preferences (of
the individual and of others). The relative importance of the
features varied considerably between subjects.
Preferences The subjects explicitly indicated preferences
for or against some specific features. We group them into
four categories: (1) general meeting-specific preferences
(e.g., time of day); (2) general calendar-wide preferences
(e.g., fragmentation, density, number of meetings per day);
(3) preferences over how to relax meeting request con-
straints (e.g., proximity to specified time, proximity to spec-
ified duration, attendance of high-priority participants); and
(4) preferences over how to relax calendar-wide constraints
(e.g., no overlaps, no Friday p.m. meetings because of child-
care situations, no late meetings on carpool days).

Among other studies of user scheduling habits and
(semi-)automated calendaring tools, Palen [27], for instance,
examined the use in situ of group calendaring software at
Sun Microsystems. Several researchers report that people
are reluctant to invest in accurately and fully informing a
scheduling system of their preferences (to the extent that
they can articulate them) unless either (1) the process is not
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burdensome and they are persuaded of the benefit; or (2)
they are mandated to do so [12; 31]. Other studies support
our finding that even when people are confident in the be-
havior and the decisions of a (semi-)automated system, they
seek transparency into its reasoning [1; 27].

Our own study and prior work both demonstrate that eval-
uation of scheduling options hinges on multiple criteria and
their interaction [16; 4]. Accounting for the relative impor-
tance of these features is crucial if we are to offer the user
desirable relaxations for over-constrained requests. Whereas
[11; 8; 22] and others assume no interaction between the cri-
teria in their preference model — which simplifies the learn-
ing and solving aspects — this choice limits the expressive-
ness of the model.

A set of requirements for a preference model results from
these various ethnographic investigations. First, the model
must be populated from intuitive (and thus likely qualita-
tive) statements expressed in terms of concepts that the user
is familiar with in the domain, i.e., events, people, and calen-
dars. Second, the expressiveness of the model must be such
that it can capture enough of user scheduling preferences to
enable the personalized scheduling task. Third, the prefer-
ence model must be explainable to the user, again in terms
of familiar, domain-relevant concepts [21]. Fourth, the pref-
erence model must be able to express multiple criteria that
factor into the user’s decisions, and the interaction between
the criteria, such as between the meeting duration and the
temporal preferences of other participants. Finally, as we
have argued, the model must be tractable for reasoning and
learning, if a practical scheduling assistant is to be built.

Choquet Integral Model of Scheduling Preferences
The preferences literature is rich with qualitative and quan-
titative models of varying expressive power and computa-
tional tractability; for surveys, we refer to [26; 9]. The rea-
soning and learning methods we wish to bring to bear on
scheduling problems are quantitative, and the features of the
preferences are not independent. Suitable models can be
based on, for instance, Generalized Additive Utility (GAI)
[6] or Multi-Attribute Utility Theory (MAUT) [15].

To balance the competing aspects of expressiveness and
elicitation, learning, and reasoning, and to meet the above
requirements, we chose to adopt the global utility function
approach of MAUT. By providing a single function by which
the system can rate alternative schedules, a MAUT approach
is in principle amenable to the schedule evaluation and pref-
erence learning components. The challenge of adopting any
approach is to build a model suited to the scheduling do-
main, and to adapt reasoning and learning algorithms to it.

A MAUT model is specified by a set of n criteria, a set
u1, . . . , un of (partial) utility functions that make the criteria
commensurate, and an aggregation function F . An instance
of the model, i.e., a capturing of the preferences of an in-
dividual, is specified by the coefficients of the aggregation
function. For example, if zj = uj(x), where x is item being
evaluated, then F (z1, . . . , zn) =

∑
i aizi for coefficients ak

is aggregation by a linear weighted sum.
A weighted sum cannot express interaction between crite-

ria; it assumes that all criteria are preferentially independent

[15]. An aggregation function that avoids this assumption
and that satisfies certain desirable properties is the Choquet
integral [10; 17]. The Choquet integral subsumes a weighted
sum, and is able to express multi-criteria trade-offs such as
Pareto optimal decisions that a weighted sum cannot repre-
sent. We now explain how we define a scheduling preference
model based on this representation.

From our first user study reported above, augmented
by features suggested in prior work in the literature (e.g.,
[16; 21; 4]), we identified seven criteria consistent across
different users: (1) scheduling windows for the requested
meetings; (2) durations of meetings; (3) overlaps, order-
ing constraints, and conflicts between requested and existing
meetings; (4) locations of meetings; (5) participants in meet-
ings; (6) time or duration changes for existing meetings; and
(7) preferences of others participating in new meetings or
rescheduled existing meetings [7].

We deliberately chose criteria expressed in terms of con-
cepts familiar to the user in the domain to facilitate elici-
tation of instances of the preference model and explanation
of learned preferences. Below we describe the formulation
of the commensurate utility functions ui. Other criteria, in-
cluding the stability of a candidate schedule (how stable it
is with respect to new meetings and meetings that run long)
and how much the candidate schedule perturbs the existing
schedule, would add richness to the preference model. How-
ever, as we will describe, we found that the richer model
would not be amenable to constraint solving.

With the criteria specified, we next define the Choquet
integral aggregation function simplified to this context.

Definition 1. Let zj = uj(x), let N be the set of criteria,
and let ∧ denote conjunction. The Choquet integral is

F (z1, . . . , zn) =
∑
I⊆N

aI

∧
j∈I

zj (1)

where aI is a coefficient representing the degree and type of
interaction of the criteria in I .

Over n criteria, specification of the general Choquet inte-
gral requires 2n coefficients. A k-additive or k-order Cho-
quet integral considers only the interactions of criteria sets
with k or fewer criteria. It trades expressiveness of the model
for its easier specification. Practical applications indicate
that the 2-order case is usually sufficient [20; 18]. Only
n +

(
n
2

)
= n(n+1)

2 coefficients are required to specify the
integral. In this case, (1) can be written as

F (z1, . . . , zn) =
∑
i∈N

aizi +
∑

{i,j}⊆N

aij(zi ∧ zj) (2)

where the coefficients ai, i ∈ N , and aij , {i, j} ⊆ N , fully
specify the model. Details of the derivation are given in [20].

In the 2-order case, the coefficient ai ∈ [0, 1] describes
the relative importance of criterion i (a greater value indi-
cates greater relative importance), while aij ∈ [−1, 1] de-
scribes the interaction between criteria i and j. aij > 0 indi-
cates that i and j are complementary criteria, while aij < 0
indicates that they are substitutive; aij = 0 indicates no cor-
relation between the two.
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We make the hypothesis that a 2-order model trades off
expressiveness (being unable to express interaction effects
among three or more criteria) with ease of model specifica-
tion and explanation in a way suitable for (1) a constraint-
based representation of the scheduling problem, (2) reason-
ing over this problem representation, and (3) learning revi-
sions to the model. With n = 7 criteria, an instance of the
model is specified by 1

27(7 + 1) = 28 coefficients. Note,
however, that the reasoning and learning to be described do
not depend on a 2-order model, other than their complexity
increases as the number of Choquet coefficients increases.

Preference and Problem Elicitation
Both preference and problem elicitation share the common
challenges of eliciting preference information from a user.
First, information that the user does know and can express
she may not be willing to input to the system, especially if
the elicitation process is burdensome. Second, the user may
not fully know the information or be able to express it (at
least via the elicitation mechanism offered). Moreover, the
very process of elicitation itself is known to reshape — and
at worst bias — the information provided; preferences can
even be created by the elicitation process [28; 32].

Preference elicitation One approach to elicitation of gen-
eral scheduling preferences is to derive rankings of schedule
options by showing the user specific examples as part of an
elicitation phase. groupTime [4] is a scheduling system that
takes such an example-driven approach. Viappiani et al. [32]
show that presenting users with carefully chosen examples
can help stimulate their preferences, a technique known as
example critiquing.

An alternative approach to elicitation has the user en-
ter the parameters of the preference model directly. The
scheduling system of Hayes et al. [11] takes such a model-
driven approach. The advantage of this approach is that the
elicitation period can be shorter, because the information
elicited has greater entropy. The significant disadvantage is
that users must comprehend the model, rather than examples
that are possibly easier to comprehend.

The coefficients of a Choquet integral, the goal of our elic-
itation, can be derived from statements over examples (“I
rate this example more highly than that”) or over the model
(“overlap is more important for me than duration”) [20].

We chose to explore a form of model-driven preference
specification for three reasons. First, we considered that
the user’s intuition of the scheduling domain reduces the
cognitive effort to understand the model, in contrast to the
need to digest an artificial example before giving mean-
ingful feedback based upon it. This is especially true for
over-constrained examples, where a perception of the calen-
dars and preferences of involved participants is necessary to
make an informed judgment over scheduling options. Sec-
ond, the use of online learning in PTIME updates the model
from examples (real-life examples for which the user already
has in mind the meeting request, and participants’ calendars
and preferences, to some degree). Third, we considered it
advantageous to enable the user to employ PTIME with-

Figure 2: One panel of the preference elicitation interface.

out an extended elicitation phase, by developing a one-shot,
model-driven elicitation.

Hence, our approach to preference elicitation combines
an interactive, visual interface and a series of simple elicita-
tion invitations. Each invitation is presented as a panel, such
as in Figure 2, that asks the user to provide some statements
of her general scheduling preferences. The panels are pre-
sented in a ‘wizard’ interface that allows the user to freely
step forward and backward through them, and to ignore any
invitation (i.e., provide no information for it).

From the information entered by the user, we infer quali-
tative preference statements on and between the criteria, and
compile these statements into quantitative coefficients in the
Choquet representation. This compilation is performed by
solving a linear program (LP); for the details we refer to
[20]. The preference statements we infer encompass infor-
mation regarding both the relative importances of the criteria
(i.e., the ai Choquet coefficients), and the trade-offs between
criteria pairs (i.e., the aij coefficients).2 In the panel of Fig-
ure 2, the classification of the criteria into the four buckets
speaks to the first aspect (ai), and the pairwise relative posi-
tions of the criteria speak to the second aspect (aij).

This two-stage approach of interactive elicitation fol-
lowed by compilation is designed to blend intuitive,
lightweight elicitation for the user, in qualitative, domain-
dependent terms familiar to her, with the eventual derivation
of quantitative coefficients required by our model. More-
over, the process is robust to the amount of information,
falling back to an uninformative, default instantiation of the
model in the case of no information.3

2Since it is well known (e.g., [15]) that people do not act ra-
tionally and often do not have consistent desires, the preference
statements made may result in conflicts. In these cases, we itera-
tively relax or remove conflicting statements until the resulting LP
is consistent. We judged that any benefit from including the user in
this process would be outweighed by the burden of possible added
confusion. Relaxation of inconsistent Choquet models is a research
topic beyond our scope here [19].

3Equal importance (ai = 1/n) to each criterion; no interaction

10



Problem elicitation Like preference elicitation, our ap-
proach to problem elicitation is based on an interactive in-
terface. Common office calendaring tools, such as Microsoft
Outlook, obtain meeting details by allowing the user to se-
lect a block of time on a calendar interface, and then filling
in details in a form. Recent tools, such as Google Calendar,
allow the user to specify the meeting details by entering nat-
ural language (NL) sentences. In both cases, such tools are
not seeking to elicit information in order to formulate and
solve a problem of presenting schedule options, but simply
to fix a meeting in the user’s calendar.

The information for our scheduling task can be both
broader (“An afternoon next week”) and more specific
(“Bob is an optional participant”) than that required by cal-
endaring tools. We are seeking to elicit not the details of
the meeting itself, but details of the meeting request — a
potentially rich set of soft constraints that will be used to
formulate a constrained scheduling problem instance. Since
the constraints are relaxable, problem elicitation can be
seen as elicitation of problem-specific (in contrast to generic
scheduling) preferences.

Thus, the deficiencies of common approaches are mag-
nified. On one hand, form-based elicitation varies from re-
strictive, since the user is limited to the fields in the form,
to intimidating, if the form contains enough fields to allow
expression of rich constraints. Further, users are observed to
feel they must fill in a field simply because of its presence
[28]. On the other hand, unrestricted NL can leave the user
unsure of what to enter, especially once the illusion that the
system really understands everything entered is (inevitably)
broken. Moreover, while forms place restrictions or require-
ments on the user, NL provides little guidance: for example,
that the user can specify optional participants.

Figure 3 shows our problem elicitation interface. In the
top section of the window we see a system-user dialogue,
following DiamondHelp [30]. In the bottom section of the
window we see dynamic, context-specific content — here
the meeting request interface. Based around an NL input
mechanism (centre), the system summarizes the informa-
tion the user has entered already (bottom), and stimulates
her with ‘example’ lines (top). The design choices and ra-
tionale behind them are discussed in [2]. Fundamentally,
the scheduling domain scopes the statements the user wishes
to input so that restricted NL is practicable, and directs the
statements, so that it is intuitive.

Because of the NL interface, the user can readily specify
soft constraints (i.e., constraints that may be satisfied only to
a degree, in contrast to hard constraints that must be satis-
fied exactly), such as preferred times (e.g., “prefer early”, or
“prefer 3pm”), and optional and preferred locations and par-
ticipants. The user can also flexibly and succinctly specify
time windows (e.g., “tues afternoon”). Transparency and
predictability are enhanced by the system reporting what it
understood (“You entered:”); auto-completion reduces the
burden and possible mis-spelling of entering locations, par-
ticipant names, and so on.

The NL interface provides a mechanism for specifying

(aij = 0) between each pair of criteria.

Figure 3: Meeting request (problem) elicitation interface.

preferences that is designed to be superior to a form-based
direct manipulation input interface. Nonetheless, since easy
access to direct manipulation is among the principles for
mixed-initiative user interfaces [13], and recognizing that
some users find a form-based interface more familiar, we
provide an option to “Switch to Form View” that allows di-
rect input of a subset of the possible constraints.

Our interface is suited to specification of straightforward
temporal preferences for the meeting, such as a combined
preference for the morning over the afternoon, and later
in the morning over earlier. It is less suited for specifica-
tion of finely grained preferences, such as “later between
10–11am, or as soon as possible after noon, but not be-
tween 11–11:30am”. As the last sentence exemplifies, such
highly detailed preferences are cumbersome to describe in
text. Rather, a dedicated direct-manipulation interface for
such preference would be preferable [5]. We have not imple-
mented this complementary kind of interface, because our
first user studies indicated that meetings are rarely requested
with such detailed preferences. We think it better for the
user to retain these preferences and use them to guide among
relaxations of the meeting request, if warranted, when the
schedule options are presented by the system.

Altogether, the assisted NL interface was favourably re-
ceived by users in the restricted setting of our calendaring
domain, relative to the direct manipulation interface.

Constraint Reasoning
The aim of constraint reasoning is to generate candidate op-
tions in response to a scheduling problem instance that re-
sults from problem elicitation (recall Figure 1). This reason-
ing must account for the preference model of the user, the
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constraints and preferences in the scheduling problem, and
both the current schedule and day/time preferences for all
involved participants.

To find desirable solutions according to our chosen pref-
erence model, the PTIME Constraint Reasoner must search
for candidate schedules using the Choquet integral as the ob-
jective function. Thus we have two questions to address: (1)
how to represent the hard and soft temporal constraints in
a form that translates into the criteria we have chosen; and
(2) how to extend the temporal reasoning beyond the simple
objective functions found in the literature to the more com-
plicated Choquet integral.

Both questions arise from the core issue of balancing
the need for an expressive preference model with difficulty
of learning and reasoning about it. In previous quantita-
tive constraint-based temporal optimization work, objective
functions were based on simple aggregations of local pref-
erence values — values indicating how well each constraint
is satisfied (e.g., [29]). These objectives do not easily extend
to encompass a preference model based on a Choquet inte-
gral. First, our model is based on abstract (domain-relevant)
criteria, not individual constraints. Second, the model con-
tains interactions between criteria, something not readily ex-
pressible in existing frameworks that can accommodate the
constraints in our problem, even for the case in which each
constraint is considered a distinct criterion [23].

The first facet of our reasoning approach is to map each
constraint to a subset of the criteria, based on the origin of
each constraint. For example, a soft constraint expressing
allowed durations maps to the duration criterion, and a con-
straint expressing that a person cannot attend two meetings
at once maps to the overlap criterion. The mapping is one to
many: a constraint can map to multiple criteria.

Formally, we model the constraints as a Disjunctive Tem-
poral Problem with Preferences (DTPP) [29]. Adding the
mapping from constraints to criteria transforms the DTPP
into a Multi-Criteria DTPP (MC-DTPP) [23]. To optimally
solve an MC-DTPP, a solution must be found that maxi-
mizes the value of the Choquet integral equation (2). To
optimize over the full integral (which, recall, is a sum of as
many as 2n terms) would be extremely challenging. Every
search point would require significant time to calculate the
objective value and, more important, it would be difficult to
develop effective heuristics or pruning strategies.

This difficulty highlights the trade-off between model ex-
pressiveness and tractable reasoning. It motivates our choice
of the 2-order Choquet integral, which captures at least one
level of criteria interaction, but can be represented using the
sum of only 1

2n(n + 1) terms. It also guides our choice of
criteria: criteria such as stability and perturbation mentioned
earlier are functions of an entire schedule, and thus do not
easily incorporate with the standard DTPP scheme of aggre-
gating over local preference values.

The second facet of our reasoning is thus an effective
algorithm for solving an MC-DTPP to obtain the schedul-
ing options. The algorithm augments a leading branch-and-
bound DTPP solver [24] with special bounding logic and
additional heuristics. We leave the details to [23].

Schedule Presentation and Learning
From the many solutions generated by the Constraint Rea-
soner we want to present a subset — the candidate schedul-
ing options — to the user. On one hand, the system must not
overwhelm the user with too many options, but on the other
hand, it must present enough options so that the user can se-
lect one that is acceptable. In general, we want to present
the most desirable solutions first (according to the elicited
preference model). However, the model will generally be
an imperfect approximation of the user’s ‘true’ preferences,
so we also want to present additional solutions that are not
necessarily rated highly but that are qualitatively different
from those thought most preferred. This approach presents
desirable solutions and also enables the user to explore the
solution space. With each option that relaxes the meeting re-
quest, we provide an explanation in the form of a simplified,
natural language summary of the relaxed constraints.

While the elicited preferences provide a starting point
for presenting solutions tailored to the user, an effective
scheduling assistant should refine its preference model over
time. Thus, we employ machine learning techniques. It
would be disruptive to the user experience to interrupt with
learning questions; therefore, in a deployed setting, learning
must happen online using only feedback obtained through
a user’s natural interaction with the system — i.e., through
the user’s selections from among the candidates presented;
these are the training examples for the learner.

Recall that in our earlier work, the PTIME Preference
Learner acquired user preferences over temporal schedule
features (i.e., day/time preferences) using support vector
machine (SVM) learning techniques for ranking [14]. The
learner acquired the weights of a linear schedule evaluation
function that could be used to rank candidate schedules [8].4

Our shift to multi-criteria schedule evaluation fundamen-
tally changes the learning task. While the task remains to
learn a schedule evaluation function, the features of the func-
tion are no longer boolean features representing temporal
properties of a schedule, but instead are real-valued features
representing the degree of satisfaction of higher-level crite-
ria ui, each of which is itself a function of lower-level sched-
ule features, as described earlier. Moreover, the function be-
ing learned is a 2-order Choquet integral, rather than a linear
weighted sum. This adds the constraints that the coefficients
obey ai ∈ [0, 1] and aij ∈ [−1, 1], as mandated by the Cho-
quet model [17; 20].

Observe that the 2-order Choquet integral can be viewed
as a linear weighted sum of a new set of features (crite-
ria) comprising affine combinations of the importance co-
efficients ai and interaction coefficients aij . Based on this
linearization, we can apply the same SVM learning tech-
niques as earlier to learn the coefficients (weights) for the
resulting transformed function, subject to the constraints on
the values of the coefficients.

4In that work, our initial focus was on learning preferences
in under-constrained situations, although the same approach could
have been used in principle to learn preferences in the more difficult
over-constrained situations as well, by adding features to represent
the degree of satisfaction of the different scheduling constraints.
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Since both the elicited and learned preferences have the
same functional form, we use a simple weighting scheme to
combine them into the refined schedule evaluation function

F ′(Z) = α×A · Z + (1− α)×W · Z (3)

where A is the vector of coefficients (weights) for Z rep-
resenting the elicited preferences and W are the learned
weights for Z. By decaying α over time, we can dynami-
cally modify this relative weighting to give more considera-
tion to the learned weights as the user employs the system.

Evaluation and Ongoing Work
Personalization is a key requirement for adoption of auto-
mated scheduling technology. A model of the user’s prefer-
ences, on one hand, must be expressive enough to capture
the salient features that distinguish one scheduling option
from another in the user’s judgment. On the other hand, the
model must be amenable to elicitation to populate instances
of it, to explanation, and to reasoning over scheduling re-
quests to derive candidate schedules. Moreover, if the sys-
tem is to adapt itself by learning, the model must further be
amenable to the machine learning techniques employed.

We have implemented the multi-criteria preference model
described in this paper within a deployed semi-automated
scheduling assistant, PTIME. The implementation necessi-
tated a user interface design that exposes the richness of the
model without overbearing the user, novel constraint-based
reasoning to find optimal schedules according to the model,
and adaption of earlier work in non-obtrusive online learn-
ing to update the model as the user employs the system.

To assess the value of our approach to the trade-off be-
tween representation, reasoning, and learning, we designed
a set of experiments and user studies to investigate the fol-
lowing questions: (1) will the learning algorithm converge to
a given preference model given consistent feedback; (2) how
well do users’ elicited preferences match their ‘true’ prefer-
ences; (3) how well does the learner perform using feedback
from real users on interesting scheduling instances; (4) does
the Constraint Reasoner provide optimal solutions in an ad-
equate amount of time; and (5) how well does the entire sys-
tem perform in real-world situations?

Space precludes detailed description of our initial eval-
uation. In brief, we find that (1) the learning converges
in theoretical experiments; (2) there is a weak correlation
between elicited and ‘true’ preferences; (3) a lack of data
hinders evaluation of the learning in practice; (4) reasoning
performance is acceptable with real-life meeting requests,
but could be improved; (5) users express satisfaction with
the system behaviour. For a detailed discussion of the user
studies and computational experiments, their results, and an
analysis, we refer to [3].

The inconclusive results of our evaluation to date point
to the difficulty of evaluating a model and learning process.
Positively, user interviews indicate that our model is expres-
sive enough to capture user scheduling preferences, to a de-
gree sufficient for the types of meeting requests made by
knowledge workers in a typical office setting. Although we
find that learning obtains an inexact representation of the
schedule ranking function (as measured by Spearman’s ρ),

the refined preference model obtained by the learning be-
comes adept at suggesting the most preferred schedules.

Users found that the implemented system provides rea-
sonable scheduling options from its first use and exhibits
increasing trustworthiness over time — complementary as-
pects found essential if scheduling technology is to be
adopted in practice [21]. Integration with the user’s exist-
ing calendaring systems and workflow combine with the low
demand of the preference elicitation and learning, to further
support adoption of the system [27; 2]. This indicates that
the model formulation is successful, and that, for the typical
use case of PTIME, even poor model instantiations do not
degrade user satisfaction.

These positive points said, the experiments undertaken
were not able to evaluate the success of the our paradigm of
lightweight elicitation of an initial model, and its subsequent
non-intrusive refinement. While users found the system’s
behaviour satisfactory, the evaluation with human subjects
did not demonstrate that an elicited instantiation of the pref-
erence model is superior to a random instantiation, nor that
online learning converges to the user’s true model in practi-
cal settings (although in artificial settings it does).

Experiments found that an acceptable schedule was usu-
ally in the first three presented. Thus, there is limited scope
for learning to improve performance. Further, the subjects
may have simply selected the first acceptable option, rather
than the ‘best’ option. This hypothesis is supported by [27],
which claims that scheduling is often more about “satisfic-
ing” instead of “optimizing”. Acquiring a model instan-
tiation that reflects the user’s preferences is still valuable,
since if the first presented option is consistently acceptable,
the user may eventually trust the system enough to delegate
greater autonomy to it for her scheduling decisions.

In sum, our experiments to date have been unable to deter-
mine the correlation or otherwise between the seen satisfac-
tory performance of the system and the model, elicitation,
and learning approach underlying it. The reasons for this in-
ability include the small number of subjects in the CALO
evaluations, a lack of data for learning to be visible, the
difference between “interesting” (roughly, over-constrained)
and “uninteresting” (under-constrained) problem instances,
and the difficulty of uncovering the user’s true preferences
or capturing them by approximate metrics.

A central aspect, therefore, of our ongoing work is to de-
sign experiments able to answer the above questions. To-
ward this goal, we have developed a test harness to allow
rapid gathering of new data and experimentation with vari-
ous preference models and learning algorithms. The harness
will enable more realistic validation and will help charac-
terize how well different model and algorithm combinations
work for different types of scheduling instances.

In ongoing work we are considering the use of multi-
ple complementary preference models. For instance, de-
ploying a simple 1-order Choquet model that is more read-
ily elicited and refined, for under-constrained problem in-
stances, in conjunction with the existing 2-order model that
is able to capture criteria trade-offs, for critically- and over-
constrained instances where the interaction between criteria
is a much more significant factor.
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On the offline learning side, we are investigating the mer-
its of more direct, albeit heavyweight, elicitation of the Cho-
quet complementarity and substitutability degrees between
criteria, via methods from decision theory. On the online
learning side, we are investigating hierarchical learning over
the criteria within the Choquet ui functions as well as over
the aggregated F function. We are also exploring adaptive
presentation of the candidate set of schedule options, includ-
ing learning what options to present (e.g., varying the set’s
diversity according to measures informational entropy [33]).
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