
Exploiting Preferences over Information Sources to Efficiently Resolve
Inconsistencies in Peer-to-peer Query Answering

Arnold Binas and Sheila A. McIlraith
Departement of Computer Science, University of Toronto, Toronto, Ontario, Canada

{abinas,sheila}@cs.toronto.edu

Abstract

Decentralized reasoning is receiving increasing attention due
to the distributed nature of knowledge on the Web. We ad-
dress the problem of answering queries to distributed propo-
sitional reasoners which may be mutually inconsistent. This
paper provides a formal characterization of a prioritized peer-
to-peer query answering framework that exploits a preference
ordering over the peers as well as a distributed entailment
relation. We develop decentralized algorithms for comput-
ing answers to a restricted class of queries according to dis-
tributed entailment and prove their soundness and complete-
ness. A heuristic exploiting the peers’ preference ordering for
a more efficient computation of query answers from priori-
tized, inconsistent systems is also provided and its effective-
ness empirically verified. We furthermore investigate global
closed-world reasoning in our framework and show how our
techniques can be used to achieve global generalized closed-
world query answering from local closed-world reasoners in
a restricted class of distributed peer-to-peer query answering
systems.

1 Introduction
With the advent of the Web has come a significant increase
in the availability of information from a variety of infor-
mation sources, not all of which are mutually consistent
or equally reliable. These information sources are often
databases, but many foresee a future in which some of them
will be deductive databases, logic programs, or even full-
fledged logical reasoners. Motivated by this general prob-
lem, this paper addresses the problem of peer-to-peer (P2P)
query answering over distributed propositional information
sources that may be mutually inconsistent. We assume the
existence of a preference ordering over the peers to discrim-
inate between peers with conflicting information. This pref-
erence ordering may reflect an individual’s level of trust in
an information source or it may be obtained from an objec-
tive third party rating. We provide a formal characteriza-
tion of a prioritized P2P query answering framework along
with a distributed entailment relation based on argued en-
tailment [3]. To realize the specification of our problem, we
develop decentralized algorithms based on [1, 2] for com-
puting answers to a restricted class of queries according to
distributed entailment and prove their soundness and com-
pleteness. To improve the efficiency of reasoning, we pro-
pose heuristic and pruning techniques that exploit the prefer-

ence ordering over peers and the resulting priority ordering
over the peers’ knowledge and empirically illustrate their ef-
fectiveness. A common problem with distributed query an-
swering is that individual information sources may make a
local closed-world assumption, and yet we wish to answer
queries under a global closed-world assumption. We show
how this interesting and important problem can be resolved
as a special case of our framework for a restricted but com-
pelling class of information sources.

There has been significant previous work on distributed
logical reasoning. For example, Amir and McIlraith in-
troduced partition-based logical reasoning for propositional
and first-order logic (FOL) to reason with multiple knowl-
edge bases (KBs) and to improve the efficiency of reason-
ing with large KBs [2]. Their approach was limited to con-
sistent KBs connected in a tree topology. Adjiman et al.
introduced the first consequence-finding algorithm for dis-
tributed propositional theories connected by graphs of arbi-
trary topology, but limited such systems to be globally con-
sistent [1]. Chatalic et al. extended this approach to allow for
mutually inconsistent peers that are connected by mapping
clauses [7]. However, their approach allows for a formula
and its negation to be derived as a consequence at the same
time. Our work builds on this work, addressing a different
general problem. We discuss other related work in further
detail in the final section.

2 P2P Query Answering Systems
In this section we formalize a P2P query answering frame-
work and provide a distributed entailment relation for such
systems. We illustrate concepts via a running example.

2.1 Framework
A P2P query answering system (PQAS) consists of multi-
ple peers, all of which are assigned user-specific priorities
that reflect the user’s preferences over the peers and are dis-
tributed to the peers when the user joins the network. Pri-
orities are drawn from a totally ordered set of comparable
elements (such as the set of integers), and a priority is better
than another priority if its value is lower. The peers’ pri-
orities define a total or partial preference ordering over the
peers. A peer with better priority is preferred over a peer
with worse priority. Each peer furthermore hosts a consis-
tent propositional local KB and consequence relation, which

15

Bookstore
pmt rcvd ∨ ¬ord ∨ ¬del ontime
¬pmt rcvd ∨ ¬ord ∨ del ontime

3

Visa
pmt rcvd ∨ ¬paid

5 CCOne¬pmt rcvd
¬paid ∨ lost

10 CCTwo
pmt rcvd ∨ ¬paid ∨ ¬conf

3

Customer
ord
paid

3

{pmt rcvd} {pmt rcvd} {ord} {pmt rcvd}

{paid} {paid}
{paid, conf}

Figure 1: Bookstore example

may be classical entailment or any other consequence re-
lation. Multiple peers’ KBs may be mutually inconsistent.
Peers are connected by labeled edges. An edge label is a set
of variables and determines the language in which formulas
can be passed between two peers.

Definition 1 (P2P query answering system (PQAS)). A
P2P query answering system P is a tuple (P, G) where
P = {Pi}n

i=1 is a set of n peers and G is a graph (V, E)
describing the communication connections between those
peers. A peer Pi is a triple (KBi, Consi, Ii) comprising
a local propositional knowledge base KBi, its local con-
sequence relation Consi, and the peer’s priority Ii. We
call

⋃n
i=1 KBi the global theory of P. We use the notation

Σ |=i φ to denote φ ∈ Consi(Σ), where Σ is a set of for-
mulas. We say that peer Pi has better priority than peer Pj

iff Ii < Ij . A peer’s signature Li is the set of propositional
symbols in its knowledge base. Each peer’s signature Li is
a subset of the global signature L =

⋃n
j=1 Lj of P. V is the

set {1, . . . , n} of vertices in G, with vertex i corresponding to
peer Pi. E is the set of labeled edges (i, j, Lij) in G, where
Lij is the edge label (link signature) between peers Pi and
Pj and Lij ⊆ Li ∩ Lj .

Figure 1 is a small example of a PQAS consisting of the
peers P = {Bookstore, V isa, CCOne, CCTwo, Customer}.
The priority Ii of peer i is displayed on its upper right
corner. The bookstore’s KB, KB1, contains the axioms
¬pmt rcvd ∧ ord → ¬del ontime and pmt rcvd ∧ ord →
del ontime, stating that the book is delivered on time if the
payment is received and an order placed and not delivered
on time if the payment is not received. The Visa peer con-
tains the KB KB2 = {paid → pmt rcvd}, stating that the
payment is received if money is paid. CCTwo (KB4) addi-
tionally requires confirmation (conf). The unreliable CCOne
has worse priority than the Visa peer and contains the KB
KB3 = {¬pmt rcvd, paid → lost}, stating that the payment
will not be received. The edges are labeled by the proposi-
tions which pairs of peers may use to communicate. An edge
label between two peers only contains propositions which
are mentioned in both peers’ local KBs, but not necessarily
all such propositions (perhaps for reasons of confidentiality).

2.2 Distributed Entailment

The distributed entailment we wish to achieve is best in-
troduced through our example in Figure 1. Consider the
case where Customer has asserted ord and paid and poses
the query del ontime. According to Bookstore, the book
is delivered on time if an order has been placed and the
payment received. If the book is ordered and the pay-
ment not received, the book will not be delivered on time
(¬del ontime). According to Visa, the payment is re-
ceived (paid and pmt rcvd ∨ ¬paid imply pmt rcvd), and
del ontime is derived. However, according to credit card
peer CCOne, the payment will not be received by the book-
store (¬pmt rcvd) and ¬del ontime is derived. Clearly
we have a contradiction. But since Visa is preferred over
CCOne due to its better priority, we would like to receive
the answer it supports. Hence we need del ontime to be en-
tailed according to distributed entailment.

In the following, we formally define this new notion of
entailment. Here we employ the notion of argued entail-
ment for prioritized KBs [3] in our definitions. Benferhat et
al. defined a formula to be entailed by argued entailment if a
better reason exists for it than for its negation. A reason for
a formula is a consistent subset of the KB that classically en-
tails the formula (since an inconsistent one could derive any
formula and would thus be meaningless). In our distributed
setting, we extend this definition to account for several, dis-
tributed KBs, possibly different local consequence relations,
and restricted sharing of information between KBs.

Definition 2 (Support of a formula by a reason). The for-
mula φ is supported in a PQAS P by the reason Σ, denoted
P |=Σ φ, iff there exists a peer Pi s.t. P |=Σ

i φ. P |=Σ
i φ

iff Σ �|= ⊥ and one of the following conditions holds: (1)
Σ ⊆ KBi, Σ |=i φ, and for no Σ∗ ⊂ Σ, Σ∗ |=i φ or (2)
there exists a set of formulas Σ′ ⊆ KBi and a set of formu-
las ψ1, . . . , ψm s.t. Σ′ ∪ ⋃m

j=1{ψj} |=i φ, for no Σ′∗ ⊂ Σ′,
Σ′∗∪⋃m

j=1{ψj} |=i φ, and for each ψj , there exists a peer Pk

and a set of formulas Σj s.t. P |=Σj

k ψj and (i, k, Lij) ∈ E
with Lij ⊇ sig(ψj), and Σ = Σ′ ∪ ⋃m

j=1 Σj .

Thus a reason for a formula φ exists in a PQAS P if some
consistent subset of the peers’ local KBs derives φ given the
peers’ local consequence relations and given that whenever
two formulas of different peers need to interact, an edge be-
tween the peers exists and is labeled by all variables men-
tioned in the formula. Since a reason may exist for both a
formula φ and its negation ¬φ, we need to weigh the pri-
orities of the formulas in both reasons in order to decide
whether to believe φ or ¬φ. The priority of a formula is that
of its host peer. The rank of a reason is the priority of the
worst-priority formula in it. Under distributed entailment,
we will believe the result with the best rank-reason (low-
est value), i.e. the result supported by the most preferred
peers. The definitions are altered and adapted to the dis-
tributed case from [3].

Definition 3 (Rank of a reason). The rank of a reason Σ
is R(Σ) = maxψ∈Σ(prio(ψ)), where the priority prio(ψ) of a
formula ψ is the priority Ii of the peer Pi it originated from.

16

Definition 4 (Distributed entailment in a prioritized
PQAS). A formula φ is entailed by the PQAS P, denoted
P |=D φ, iff there exists a reason Σ+ supporting φ and for
all reasons Σ− supporting ¬φ, R(Σ+) < R(Σ−).

While in the general case, a PQAS’s peers may be mu-
tually inconsistent, an inconsistency may not always be de-
rived. This could be because all peers are mutually consis-
tent or because the inconsistency is not derivable with the
restricted communication imposed by peer connectivity. To
distinguish between PQASs that can derive contradictions
and those that cannot, we introduce P-consistency.

Definition 5 (P-consistency). A PQAS P is P-inconsistent
iff there exists a formula φ s.t. there exists both a reason for
φ and a reason for ¬φ in P. Otherwise P is P-consistent.

Since in a P-consistent system no contradiction can be
derived, the existence of a reason for a formula φ guarantees
that no reason for ¬φ exists and thus that φ is entailed by
distributed entailment in P.

3 Query Answering in a PQAS
Given the PQAS framework, we want to pose a formula as
a query and have the system determine whether the query
is true, false, or unknown according to our definition of dis-
tributed entailment, using individual peers’ local knowledge
and reasoning capabilities. The goal of this section is to de-
velop a message-passing algorithm that solves this problem
for single-literal queries in a possibly P-inconsistent PQAS
in which all peers use classical entailment as their local con-
sequence relation.

A consequence-finding algorithm for systems of mutually
consistent peers already exists [1]. Adjiman et al.’s algo-
rithm computes consequences of a single-literal query for
arbitrary peer topologies and shall serve as the basis for
our query answering algorithm. In this section, we mod-
ify and extend Adjiman et al.’s algorithm to answer single-
literal queries in possibly P-inconsistent PQASs according
to distributed entailment, which supports prioritized peers
and generates best-priority answers. Our focus on prior-
itized peers enables a search space pruning technique and
search heuristic that drastically improves query processing.
A query is posed by a query peer that may be one of the
peers of P or an additional peer connected to P.

3.1 Algorithm
To answer queries according to distributed entailment, we
first need an algorithm to compute reasons for a query. Rea-
sons are computed by the message-passing Algorithms 2, 3,
4, and 5. In order to compute reasons for a query literal
q by refutation, a forth message containing ¬q is sent to a
peer whose signature contains q. Each way to derive the
empty clause from a consistent set of original peer clauses
constitutes a reason for q. A history is used to keep track
of which literals and clauses the currently processed literal
depended on, enabling the algorithm to detect if a literal has
been processed by the same peer before or whether it de-
pends on its own negation in the history (and thus derives
the empty clause). Each derived clause has an associated

OA set (for “original ancestor”) which contains all original
parent clauses except the negation of the query. OA sets are
used to verify that a derived clause depends only on a consis-
tent set of parent clauses. The following notation, proposed
by [1], is used in the algorithms.

Definition 6 (History ([1])). A history hist is a list of tu-
ples (l, P, c) of a literal l, a peer P , and a clause c. c is a
consequence of l in P , and l is a literal of the clause of the
previous tuple in the hist list.

Definition 7 (Local consequences ([1])). Resolvent(l, Pi)
is the set {c|KBi |=i c ∨ ¬l} of local consequences in peer
Pi of the literal l.

Definition 8 (Acquainted peers by literal ([1])).
ACQ(l, P) is the set {P ′ ∈ V |(P, P ′, Lij) ∈ E, l ∈ Lij} of
peers sharing an edge labeled by Lij with peer P , where
l ∈ Lij .

Definition 9 (Distributed disjunction ([1])). The dis-
tributed disjunction operator ⊗ in A ⊗ B forms clauses by
disjoining all combinations of clauses in the sets A and
B . For an indexed set of clause sets {Ai}i, the notation
⊗i∈{1,2,3}Ai means A1 ⊗ A2 ⊗ A3.

Each peer can send and receive four message types dur-
ing the search for a reason for the query. Forth messages
(Algorithm 2) request the search for the empty clause � by
neighboring peers. The receiving peer computes all local
consequences of the literal p of the message (line 14). When
two clauses are resolved, their original ancestors are added
to the resolvent’s OA set. An exception is the negation of the
query, which is not part of the OA set. Any derivations of �
with a consistent OA set are returned to the sender peer via
a back message containing � (line 21). Local consequence
clauses all of whose variables are shared with other peers are
split into their individual literals and each sent to the con-
nected peers via another forth message (line 34). Back mes-
sages (Algorithm 3) are sent back to the sender peer when
� is derived. Upon receiving a back message, a peer stores
� as a consequence of the literal of the corresponding forth
message (line 3). If all other literals of this literal’s parent
clause also have a � consequence associated with them and
their respective OA sets are mutually satisfiable, one back
message for each combination of per-literal empty clauses
is sent to the last peer in the history (line 11). Final mes-
sages (Algorithm 4) indicate that the exploration of a par-
ticular search branch is completed (Algorithm 2, lines 2,
4, and 35). Prio messages (Algorithm 5) are sent when a
new reason of better priority than any reason known so far
is found (Algorithm 2, lines 13 and 24 and Algorithm 3,
line 13). Prio messages serve to update each peer’s local
value of best, which determines the priority at which peers
and clauses can be safely pruned from the search space. This
pruning of the search space deserves highlighting and results
in a significant improvement in performance of the system.

A new query q is posed by the query peer User for the
computation of reasons to peer P by sending the message
m(User, P, forth, ∅,¬q). Algorithm 1 runs at the query peer
and computes query answers from reasons for the query and
its negation by returning the answer corresponding to the

17

Algorithm 1 Initiating a query q to peer P

1: Answer Query(q, P)
2: send m(Self, P, forth, ∅,¬q)

3: send m(Self, P, forth, ∅, q)

4: pos ← ∞; neg ← ∞
5: while !received(m(P, Self, final, [(¬q, Self, true)])) or

!received(m(P, Self, final, [(q, Self, true)])) do
6: for all m(P, Self, back, [(¬q, Self, �)], �) received do
7: pos ← min(pos, �.prio)

8: for all m(P, Self, back, [(q, Self, �)], �) received do
9: neg ← min(pos, �.prio)

10: if pos < neg then return YES

11: if neg < pos then return NO

12: return UNK

best-rank reason. UNK (for unknown) is returned if the
best reasons for and against the query have equal rank or
no reason for either exists.

3.2 Example
Returning to the bookstore example, Customer asserts ord
and paid and asks at the bookstore whether the book will
be delivered on time. Algorithm 1 poses the query (as its
negation, ¬del ontime) as well as the opposite query (also
as its negation, del ontime). ¬del ontime generates the lo-
cal consequence ¬pmt rcvd ∨ ¬ord which is split into its
individual literals. A forth message containing ¬pmt rcvd
is sent to Visa, CCOne, and CCTwo. Visa generates ¬paid
which resolves with paid to the empty clause at Customer.
The empty clause with its OA set is passed back to Visa and
then to Bookstore via back messages. ¬pmt rcvd generates
no consequences in CCOne or CCTwo, and final messages
are sent for these branches. The ¬ord of the consequence
in Bookstore is sent as a forth message to Customer where
it resolves with ord to the empty clause and is passed back
as a back message. The empty clauses for ¬pmt rcvd and
¬ord are merged back together at the bookstore and the re-
sulting OA set {¬pmt rcvd∨¬ord∨ del ontime, pmt rcvd∨
¬paid, paid, ord} is determined to be consistent. Thus a
reason for del ontime is found with rank 5 (max over the
three peers contributing clauses to the reason). Similarly the
empty clause can be derived from del ontime using Book-
store, CCOne, and Customer, resulting in a reason of rank
10 for ¬del ontime. Since del ontime is inferred with better
rank than ¬del ontime, YES is returned as the answer.

3.3 Analysis and Discussion
We proved various soundness and completeness results for
the algorithm and restate the most important theorems here.
Detailed proofs and further theorems can be found in [5]. To
prove the soundness and completeness of Algorithm 1 with
respect to distributed entailment, we first establish that the
message-passing algorithm finds the best-rank reasons for
a query. To this end, Theorems 1 and 2 establish that the
message-passing algorithm without priority-based pruning
is sound and complete for computing reasons.

Theorem 1 (Soundness wrt. computing reasons). Given
a P-inconsistent PQAS P and a peer P , for every � in a

Algorithm 2 Forth message algorithm
1: ReceiveForthMessage(m(Sender, Self, forth, hist, p))
2: if (p, Self,) ∈ hist or p ∈ KBSelf then
3: send m(Self, Sender, final, [(p, Self, true)|hist])

4: else if p.prio > best or Self.prio > best then
5: send m(Self, Sender, final, [(p, Self, true)|hist])

6: else
7: if (¬p, ,) ∈ hist then
8: hist is of the form [(l′, , c′)|hist′]
9: if c′.OA is SAT then

10: � a new empty clause; �.OA ← c′.OA; �.prio ← c′.prio

11: send m(Self, Sender, back, [(p, Self, �)|hist], �)

12: if hist = ∅ and �.prio < best then
13: send m(Self, Sender, prio, �.prio)

14: LOCAL(Self) ← {p} ∪ Resolvent(p, Self)

15: for all c ∈ LOCAL(Self) do
16: let {c∗i }i be the set of clauses from KBSelf that went into c

17: c.OA ← ⋃
i c∗i .OA; c.prio ← maxi(p.prio, Self.prio)

18: LOCAL(Self) ← {c ∈LOCAL(Self)|c.prio ≤ best}
19: temp min ← ∞
20: for all � ∈ LOCAL(Self) s.t. �.OA is SAT do
21: send m(Self, Sender, back, [(p, Self, �)|hist], �)

22: temp min ← min(temp min, �.prio)

23: if hist = ∅ and temp min < best then
24: send m(Self, Sender, prio, temp min)

25: LOCAL(Self) ← {c ∈ LOCAL(Self) |c �= �, all literals in c shared}
26: if LOCAL(Self) = ∅ then
27: send m(Self, Sender, final, [(p, Self, true)|hist])

28: for all c ∈ LOCAL(Self) do
29: for all l ∈ c do
30: CONS(l, [(p, Self, c)|hist]) ← ∅
31: ACQ∗ ← {P ′ ∈ ACQ(l, Self)|P ′.prio ≤ best}
32: for all RP ∈ ACQ∗ do
33: FINAL(l, [(p, Self, c)|hist], RP) ← false

34: send m(Self, RP, forth, [(p, Self, c)|hist], l)

35: if no forth message sent then
36: send m(Self, Sender, final, [(p, Self, true)|hist])

Algorithm 3 Back message algorithm
1: ReceiveBackMessage(m(Sender, Self, back, hist, �∗))
2: hist is of the form [(l′, Sender, �∗), (p, Self, c)|hist′]
3: CONS(l′, [(p, Self, c)|hist′]) ← CONS(l′, [(p, Self, c)|hist′]) ∪ �∗

4: RESULT ← (⊗l∈c\{l′}CONS(l, [(p, Self, c)|hist′])) ⊗ {�∗}
5: for all � ∈ RESULT s.t. � contains an empty clause consequence for each

l ∈ c do
6: let {�∗

i }i be the set of empty clauses that went into �
7: �.OA ← ⋃

i �∗
i .OA; �.prio ← maxi(�∗

i .prio)

8: RESULT ← {� ∈ RESULT|�.prio ≤ best and �.OA is SAT}
9: if hist′ = ∅ then U ← User else U ← the first peer P ′ of hist′

10: for all �′ ∈ RESULT do
11: send m(Self, U, back, [(p, Self, c)|hist′], �′)
12: if hist = ∅ and min�∈RESULT(�.prio) < best then
13: send m(Self, Sender, prio,min�∈RESULT(�.prio))

Algorithm 4 Final message algorithm
1: ReceiveFinalMessage(m(Sender, Self, final, hist))
2: hist is of the form [(l′, Sender, true), (p, Self, c)|hist′]
3: FINAL(l′, [(p, Self, c)|hist′], Sender) ← true

4: if ∀c∗ ∈ LOCAL(Self) and ∀l ∈ c∗, FINAL(l, [(p, Self, c∗)|hist′],)

= true then
5: if hist′ = ∅ then U ← User else U ← the first peer P ′ of hist′

6: send m(Self, U, final, [(p, Self, true)|hist′])

18

Algorithm 5 Prio message algorithm
1: ReceivePrioMessage(m(Sender, Self, prio, x))
2: if x < best then
3: best ← x

4: for all RP ∈ ACQ(, Self) s.t. RP �= Sender do
5: m(Self, RP, prio, best)

message m(P ′, P, back, [(¬q, P ′, �)], �) that P receives after
sending m(P, P ′, forth, ∅,¬q), there is a set of formulas Σ
s.t. P |=Σ

i q.

Theorem 2 (Completeness wrt. computing reasons).
The following holds for Algorithms 2, 3, and 4 with-
out priority-based pruning. Given a P-inconsistent PQAS
P and a peer Pi, if P |=Σ

i q for some set of formu-
las Σ, then sending m(P, P ′, forth, ∅,¬q) results in receiv-
ing m(P ′, P, back, [(¬q, P ′, �)], �), where P ′ is a peer of P
whose signature contains q.

Clearly, if the message-passing algorithm is sound and
complete for finding reasons, it finds the best-rank reason
for the query. It remains to show that the branch containing
the best-rank reason is never pruned due to its priority.

Theorem 3 (Pruning by priority limit). The following
hold for a PQAS running Algorithms 2, 3, 4, and 5. (i)
Whenever a peer updates its local value of best, there exists
a reason for the original query or its negation with priority
best. (ii) Forth messages and acquainted peers ignored by a
peer P cannot result in a reason for the original query or its
negation with better or equal rank than the current value of
best.

Theorem 4 (Termination (following [1])). If a peer P
sends a message m(P, P ′, forth, ∅,¬q), it will eventually re-
ceive a message m(P ′, P, final, [(¬q, P ′, true)]).

Since Algorithm 1 picks the best-rank reason among the
reasons for the query and its negation and the message-
passing algorithm terminates, and since the message-passing
algorithm is guaranteed to find the best-rank reasons for the
query and its negation, Algorithm 1 is sound and complete
with respect to distributed entailment.

Theorem 5 (Soundness and completeness wrt. dis-
tributed entailment). Given a PQAS P and a peer P , An-
swer Query(q, P) of Algorithm 1 returns YES iff P |=D q,
NO iff P |=D ¬q, and UNK otherwise.

Pruning and Ordering Heuristic: Time can be saved by
the message-passing algorithm when searching for the best-
rank reasons for a query and its negation simultaneously
by exploiting the preference ordering over the peers and
the resulting priority ordering over formulas. Since we are
only interested in the best-rank reason, and since clauses
and peers with worse priority than the currently best known
reason are pruned away, it generally pays off for each peer
to process messages with consequences of better priority
first. This technique ensures that better-rank reasons are
found earlier and the priority limit best is updated more
quickly, resulting in a larger part of the search space being
pruned. Furthermore, the best-rank reason will be one of the
first reasons found (although not necessarily the very first

one as the message-passing algorithm runs concurrently
across distributed peers). In Section 5, we present empirical
results illustrating the effectiveness of this priority-ordering
heuristic.

Consistency: Before sending an empty clause representing
a reason in a back message, the algorithm needs to check the
satisfiability of the clause’s OA set, since this set could be in-
consistent. This may be done by either a call to a SAT solver
or by comparing the clauses in the OA set against cached no-
goods in the framework of [7]. Both approaches have their
merits—one needs no precomputed nogoods and the other
may amortize their computation over multiple queries.

In the special case of a P-consistent PQAS the computa-
tion of query answers is less costly. Since no contradiction
can be derived in such a system, a reason only exists ei-
ther for the query, its negation, or neither, and the message-
passing algorithm for finding reasons is sound and com-
plete for query answering according to distributed entail-
ment. Furthermore, the satisfiability of clause sets is guar-
anteed in a P-consistent system and OA sets need not be
tracked nor their consistency checked. Priorities need not
be tracked if trying to find the answer to a query only. In
this case, the first reason for the query found will suffice and
the algorithm may terminate. If the best-rank reason for the
answers is of interest (for example, if priorities represent re-
liability), priorities must be tracked, but only the query and
not its negation asked in a P-consistent system.

4 Global Closed-world Reasoning
Our definition of a PQAS allows for arbitrary local conse-
quence relations. For example, a database or logic-program
peer might have a non-classical consequence relation that
makes a local closed-world assumption (CWA) [14]. Never-
theless, in many distributed reasoning applications, we may
wish to perform global closed-world reasoning. Our chal-
lenge is to perform global closed-world reasoning in a P2P
setting with peers some or all of which employ some form
of local closed-world reasoning.

Consider again the bookstore example. CCTwo has bet-
ter priority than Visa and now makes a local CWA. CCTwo
states that payment is received only if the customer paid
and her credit card is confirmed (conf). This condition is
not met, so CCTwo entails ¬pmt rcvd following CWA. Al-
though Visa has worse priority, we would still like to entail
del ontime at Bookstore by global closed-world entailment
since the customer would choose to pay using her Visa card
if doing so allows the payment to go through.

This behavior in the bookstore example could be char-
acterized as closed-world reasoning from the global theory.
However, regular CWA entailment results in an inconsistent
set of entailed formulas in the presence of positive prime
implicates, i.e. minimal clauses of only positive literals that
are globally entailed. Consider, for example, the theory
that only consists of the clause p ∨ q. Under Reiter’s reg-
ular CWA, both ¬p and ¬q are entailed by the CWA and
together contradict the original clause of the theory. In order
to resolve this artificial inconsistency, Minker introduced the
generalized closed-world assumption (GCWA), under which

19

only those literals are entailed negatively which are not en-
tailed positively and occur in no minimal positive clause en-
tailed by the theory [12]. In the following, we review the
formal definitions of CWA and GCWA and use them to de-
fine generalized global closed-world entailment for PQASs.

4.1 Definitions
We define generalized global closed-world entailment
(GGCW) in a PQAS in which each peer makes a local CWA
as GCWA entailment from the global theory

⋃n
i=1 KBi in or-

der to avoid problems with minimal positive clauses. Defini-
tion 10 reviews regular closed-world entailment which each
peer uses as its local consequences relation. Definition 11
reviews generalized closed-world entailment as needed to
define GGCW entailment in Definition 12.

Definition 10 (Closed-world entailment (|=CW)). Let KB
be a consistent propositional theory. Let KB+ = KB ∪
{¬p|p is atomic and KB �|= p}. KB entails a formula φ by
closed-world entailment, denoted KB |=CW φ, iff KB+ |=
φ.

Definition 11 (Generalized closed-world entailment
(|=GC)). Let KB be a consistent propositional theory. Let
KB∗ = KB ∪ {¬p|p is atomic and p occurs in no positive
prime implicate of KB}. KB entails a formula φ by gen-
eralized closed-world entailment, denoted KB |=GC φ, iff
KB∗ |= φ.

Given a PQAS with a consistent global theory and in
which each peers makes a local CWA, we define general-
ized global closed-world entailment as entailment according
to the GCWA wrt. the PQAS’s global theory.

Definition 12 (Generalized global closed-world entail-
ment (|=GGC)). Let P be a PQAS in which each peer lo-
cally makes the closed-world assumption (CWA) and the
global theory is satisfiable. Then P entails a formula φ
by the global generalized closed-world assumption, denoted
P |=GGC φ, iff

⋃n
i=1 KBi |=GC φ.

4.2 GGCW Query Answering
We can achieve GGCW query answering with no modifica-
tion to our algorithms. For the purposes of this paper (as
in Definition 12), we assume that each peer performs rea-
soning that is equivalent to classical entailment with a local
CWA. We also assume maximal connectivity of peers—that
if they share variables, they are reflected in their links. Both
conditions hold in our example of Figure 1.

The trick that makes this work is to set the priority of
any local closed-world consequence (such as ¬pmt rcvd in
CCTwo) to a priority C that is worse than that of every peer
in the system. Applying our existing message-passing algo-
rithms now results in query answering according to GGCW
entailment. Consider what happens in the bookstore exam-
ple. The first clause of Bookstore, together with the CWA
consequence ¬pmt rcv from CCTwo and ord from Cus-
tomer, still produces a reason for ¬del ontime. The rank
of this reason will be worse than the priority of any peer
due to the CWA consequence from CCTwo. A reason for
del ontime with rank 5 is still produced and will override

the reason for ¬del ontime due to its better rank. More gen-
erally, any reason which does not contain local closed-world
consequences will override any reason which relies on a lo-
cal CWA by design. Theorem 6 formalizes this main result.

Theorem 6 (Global generalized closed-world query an-
swering from consistent theories). Let P = (P, G) be a
PQAS with a satisfiable global knowledge base

⋃n
i=1 KBi

such that if for any two peers Pi and Pj , Lij = Li ∩ Lj is
non-empty, (i, j, Lij) ∈ E and Consi is the CWA entailment
relation |=CW s.t. CWA-consequences are assigned the pri-
ority C, which is lower than any peer’s priority but higher
than the priority represented by infinity. For a literal q, An-
swer Query(q, P) of Algorithm 1 returns Y ES iff P |=GGC q,
NO iff P |=GGC ¬q, and UNK otherwise.

Notice how the algorithm avoids issues with the literals of
positive prime implicates and thereby adheres to the GCWA
from the global theory. Consider a positive prime implicate
p ∨ q of the global theory and the query q. Since all peers
make a local CWA, some peers will produce ¬p and ¬q with
priority C. The ¬p is used with p ∨ q to derive q positively
also with priority C and UNK is the answer for the query q
as required by generalized global closed-world entailment.

It follows from Theorem 6 that in a PQAS in which
all peers’ local KBs only contain Horn clauses, the algo-
rithm achieves query answering according to the regular
CWA from the global theory (denoted P |=GCW q in Corol-
lary 1 below). More generally one can imagine arbitrary
user-defined policies for ranking specific peers’ local closed-
world consequences relative to other peers, for example ad-
hering to the partial preference ordering over peers. Such ar-
bitrary policies are equally realizable within our framework.

Corollary 1 (Global closed-world query answering from
consistent Horn theories). Let P = (P, G) be a PQAS
which satisfies the conditions of Theorem 6 and for all of
whose peers Pi, KBi only contains Horn clauses. An-
swer Query(q, P) of Algorithm 1 returns Y ES iff P |=GCW q
and NO iff P �|=GCW q, where q is a literal.

5 Implementation and Experiments
Our implementation simulates a PQAS on a single machine.
There is a message queue for each peer, and peers take turns
to process one message each. The default message queue
is a first-in first-out (FIFO) queue, ensuring that messages
are processed in the order received. The ordering heuris-
tic uses a priority message queue, which is sorted by the
priorities of clauses and peers of the messages and returns
better-priority messages first. We executed experiments to
evaluate the effectiveness of our priority-ordering heuris-
tic and our pruning strategy. Our pruning strategy prunes
consequences and peers of worse priority than the currently
best known reason. We ran three variations of the algorithm
querying each proposition of each of a set of several hun-
dred randomly generated PQAS instances. Each instance
had 4–20 peers with 4–8 clauses per peer, 1–6 shared propo-
sitions per peer, and a total of 8–96 distinct propositions.
An incomplete attempt to answer a query by a given vari-
ation of the algorithm was aborted after ten minutes. Out

20

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

Problem Instances

N
um

be
r

M
es

sa
ge

s
Pruning vs. No Pruning

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

10000

Problem Instances

N
um

be
r

M
es

sa
ge

s

Pruning vs. Pruning with Ordering Heuristic

no pruning

pruning

pruning

pruning + ordering heuristic

Figure 2: Total number of messages sent

of all queries given, the naive, pruning, and ordering meth-
ods solved 1341, 2292, and 2842 queries, respectively. The
average number of messages required to solve a query for
the three methods were 2735, 1266, and 456 messages, re-
spectively. Figures 2 and 3 show the results for individual
queries in terms of the number of messages passed through-
out the system to solve a query. The top graph of Figure 2
contrasts the total number of messages sent until termination
of the naive algorithm (without pruning) with the number of
messages used when pruning. Problem instances are sorted
by number of messages used by the naive approach. The
bottom graph of Figure 2 compares the number of messages
sent by the heuristic version with the pruning-only version
and is sorted by the hardness of problems for the latter. We
chose the number of messages sent to answer a query as a
performance measure as in a real-world distributed system,
messages would be sent over a network, creating a bottle-
neck for the system. In both graphs only non-trivial queries
that have been solved by at least one of the three methods
are shown. A non-trivial query is one that took the naive
algorithm at least 300 messages to solve. Queries that took
the naive algorithm less than 300 messages to solve took on
average 52, 52, and 46 messages to solve for the naive, prun-
ing, and ordering versions of the algorithm, respectively, so
ignoring such trivial queries does not hurt the evaluation of
the naive approach in the comparison with the other two ap-
proaches. Figure 3 shows the number of messages saved
by the pruning and priority-ordering techniques compared
to not using them for the same set of queries (and in the
same order) as in Figure 2.

The graphs show that pruning can lead to a drastic re-
duction in the number of messages generated over the naive
algorithm, and in turn, that the ordering heuristic in con-
junction with pruning often beats pruning alone. In a large
number of cases, the savings due to both pruning and order-
ing are exponential. In some cases there are no or almost
no savings, and in most cases the savings are somewhere in-
between. In instances where no consequences or peers can
be pruned, our pruning strategy may require slightly more

0 500 1000 1500 2000 2500 3000
−2000

0

2000

4000

6000

8000

10000

Problem Instances

M
es

sa
ge

s
S

av
ed

Message Savings for Pruning vs. No Pruning

0 500 1000 1500 2000 2500 3000
−2000

0

2000

4000

6000

8000

10000

Problem Instances

M
es

sa
ge

s
S

av
ed

Message Savings for Ordering vs. Pruning

Figure 3: Number of messages saved

messages than the naive approach (prio message overhead).
In a few degenerate cases, the heuristic version of the algo-
rithm can use more messages than the pruning-only version.
This occurs when a medium-priority message generating a
reason and best update is at the front of the FIFO queue in
the pruning-only algorithm, but the heuristic version pro-
cesses better-priority messages that lead to no reason first,
potentially generating messages of bad priority before the
pruning cutoff variable best is updated in Algorithm 5.

6 Discussion and Related Work
In this paper we provided a formal characterization of a
P2P query answering system and a distributed entailment
relation. Our system includes a user-defined preference or-
dering over the peers and allows for inconsistent informa-
tion among them. The preference ordering is exploited not
only for finding the best-rank reason for or against a query,
but also for finding this reason computationally efficiently.
While a preference specification as simple as the one pre-
sented in this paper is all that is necessary for many applica-
tions, our framework can be easily extended to richer speci-
fications of preferences as well as aggregation schemes. We
provided an extension to Adjiman et al.’s message-passing
algorithm that computes query answers in the presence of
inconsistent knowledge and, optionally, a preference order-
ing over peers and their knowledge. We proved our al-
gorithm sound and complete with respect to our specifica-
tion. A safe pruning technique and ordering heuristic were
provided. Empirical analysis demonstrated a dramatic im-
provement in the algorithm using these techniques. We for-
mally characterized global generalized closed-world query
answering for PQASs with consistent global theories and
provided a solution to this important problem within our
PQAS framework.

This work provides the foundation for many interesting
extensions. A trend in Semantic Web research is the devel-
opment of rule languages such as SWRL and RuleML. We
would like to apply our techniques to such Semantic Web
peers. Our PQAS assumes a global signature. An inter-

21

esting extension of this work is to augment our techniques
to address information integration. We also wish to extend
our algorithms to deal with local-global closed-world rea-
soning for arbitrary peers and context-specific prioritization
policies. Benferhat et al.’s argued entailment relation in [3],
which served as a basis for our distributed entailment, sat-
isfies the important intuition that no formula should be be-
lieved on the basis of a consistent subset of the global theory
if its negation can be shown from a consistent subset with
better rank. A future extension of our work may provide for
an alternative distributed entailment relation which ensures
that a query follows only then by distributed entailment, if
the reasons it relies on cannot be defeated with better prior-
ity, even if the negation of the query itself cannot be shown
at all. This idea is strongly related to Dung’s work on the
acceptability of arguments that are “attacked” by other argu-
ments [10]. Finally there are some extensions that we wish
to complete, including algorithms for more complex queries
and for richer priority or trust aggregation models.

There is significant related work, most prominently [1,
2, 7] as discussed in the introduction. There is also re-
lated work on distributed description logics [15] and on dis-
tributed database peers [16]. Work on inconsistent knowl-
edge concentrates on the centralized case. E.g., in addi-
tion to [7], [4] uses query rewriting to consistently answer
queries to inconsistent databases with integrity constraints,
while [3] compares several entailment relations for priori-
tized inconsistent KBs. (We exploited their notion of priori-
tized argued entailment in this paper.) In related work, [13]
explores syntax-based approaches to belief revision. Grosof
provides a framework of prioritized, inconsistent logic pro-
grams with a unique consistent answer set [11]. Priori-
ties have also been used in [6] to achieve extended de-
fault reasoning in centralized theories. In the area of local
closed-world reasoning, [8] formalized the concept of a lo-
cal closed-world assumption of data-sources, allowing for
limited global closed-world reasoning with databases. [9]
addressed the issue of open and closed-world reasoning with
rule bases or logic programs for the Semantic Web using
logic program transformations. While related, none of these
lines of work address the general problem that we addressed
in this paper.

Acknowledgments
We are grateful to Michael Gruninger and Gerhard Brewka
for valuable feedback on this work. We furthermore thank
Philippe Adjiman for providing an early version of his
P2PIS code which we did not end up using. We also thank
Eric Hsu and Jorge Baier for their comments on an earlier
draft of this paper. We gratefully acknowledge support from
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References
[1] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset,

and L. Simon. Distributed reasoning in a peer-to-peer
setting: Application to the semantic web. Journal of
Artificial Intelligence Research, 25:269–314, 2006.

[2] E. Amir and S. McIlraith. Partition-based logical rea-
soning for first-order and propositional theories. Arti-
ficial Intelligence, 162(1-2):49–88, 2005.

[3] S. Benferhat, D. Dubois, and H. Prade. Some syntactic
approaches to the handling of inconsistent knowledge
bases: a comparative study part 2: the prioritized case.
In E. Orłowska, editor, Logic at Work: Essays Ded-
icated to the Memory of Helen Rasiowa, volume 24,
pages 437–511. Physica-Verlag, 1999.

[4] L. E. Bertossi, J. Chomicki, A. Cortés, and
C. Gutiérrez. Consistent answers from integrated data
sources. In Proceedings of the 5th International Con-
ference on Flexible Query Answering Systems (FQAS),
pages 71–85, London, UK, 2002.

[5] A. Binas and S. McIlraith. Distributed query answer-
ing in peer-to-peer reasoning systems. Technical re-
port, Department of Computer Science, University of
Toronto, 2007.

[6] G. Brewka and T. Eiter. Prioritizing default logic. In
Intellectics and Computational Logic, pages 27–45.
Kluwer Academic Publishers, 2000.

[7] P. Chatalic, G.-H. Nguyen, and M.-C. Rousset. Rea-
soning with inconsistencies in propositional peer-to-
peer inference systems. In Proceedings of the 17th
European Conference on Artificial Intelligence (ECAI
2006), pages 352–357, 2006.

[8] A. Cortés-Calabuig, M. Denecker, O. Arieli, B. Van
Nuffelen, and M. Bruynooghe. On the local closed-
world assumption of data-sources. In BNAIC, pages
333–334, 2005.

[9] C. V. Damásio, A. Analyti, G. Antoniou, and G. Wag-
ner. Supporting open and closed world reasoning on
the web. In PPSWR, pages 149–163, 2006.

[10] P. M. Dung. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[11] B. N. Grosof. Courteous logic programs: Priori-
tized conflict handling for rules. Technical Report RC
20836, IBM, 1997.

[12] J. Minker. On indefinite databases and the closed world
assumption. In Lecture Notes in Computer Science,
volume 138, pages 292–308. Springer, Berlin, 1982.

[13] B. Nebel. Syntax-based approaches to belief revision.
In P. Gärdenfors, editor, Belief Revision, volume 29,
pages 52–88. Cambridge University Press, 1992.

[14] R. Reiter. On closed world data bases. In Herve Gal-
laire and Jack Minker, editors, Logic and data bases,
pages 55–76. Plenum Press, New York, NY, 1978.

[15] L. Serafini and A. Tamilin. DRAGO: Distributed rea-
soning architecture for the semantic web. Technical
Report T04-12-05, ITC-irst, 2004.

[16] I. Zaihrayeu. Towards Peer-to-Peer Information Man-
agement Systems. PhD thesis, University of Trento,
2006.

22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

