
Minimax Regret Based Elicitation of Generalized Additive Utilities

Darius Braziunas
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4
darius@cs.toronto.edu

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4
cebly@cs.toronto.edu

Abstract

We describe the semantic foundations for elicitation of gen-
eralized additively independent (GAI) utilities using the min-
imax regret criterion, and propose several new query types
and strategies for this purpose. Computational feasibility is
obtained by exploiting the local GAI structure in the model.
Our results provide a practical approach for implementing
preference-based constrained configuration optimization as
well as effective search in multiattribute product databases.

Introduction

Representing, reasoning with, and eliciting the preferences
of individual users is a fundamental problem in the design of
decision support tools (and indeed, much of AI). A key issue
in preference research is dealing with large, multiattribute
problems: preference representation and elicitation tech-
niques must cope with the exponential size of the outcome
space. By exploiting intrinsic independencies in preference
structure, factored utility models can provide tractable (al-
though sometimes approximate) solutions to the problem.
Utility function structure (such as additive, multilinear, gen-
eralized additive, etc.) can be used to represent large util-
ity models very concisely (Keeney and Raiffa 1976). While
additive models are the most widely used in practice, gen-
eralized additive independence models (GAI) have recently
generated interest because of their greater flexibility and ap-
plicability (Bacchus and Grove 1995; Boutilier, Bacchus,
and Brafman 2001; Gonzales and Perny 2004; Boutilier, et
al. 2006; Braziunas and Boutilier 2005). Even though the
semantic foundations of the GAI representation were de-
scribed by Fishburn decades ago (Fishburn 1967), the design
of effective elicitation techniques has gained attention only
recently (Boutilier, et al. 2006; Gonzales and Perny 2004;
Braziunas and Boutilier 2005).

In this paper, we develop a new model for utility elici-
tation in GAI models based on the minimax regret decision
criterion (Savage 1954; Kouvelis and Yu 1997). Minimax re-
gret provides a robust way of making decisions under utility
function uncertainty, minimizing worst-case loss under all
possible realizations of a user’s utility function (Boutilier,
Bacchus, and Brafman 2001; Salo and Ramalainen 2001;

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Boutilier, et al. 2006); as such it is applicable when dis-
tributional information over utility functions is not eas-
ily available. Regret has also proven to be an effective
driver of preference elicitation (Wang and Boutilier 2003;
Boutilier, et al. 2006; Boutilier, Sandholm, and Shields
2004). However, prior work on regret-based elicitation for
GAI models has ignored key semantic issues, thus simpli-
fying the approach to both elicitation and regret computa-
tion and optimization. By building on the semantic founda-
tions of GAI elicitation laid out in (Braziunas and Boutilier
2005), we identify new classes of elicitation queries suitable
for regret-based elicitation, and propose several new query
strategies based on these classes.

Our approach emphasizes local queries over small sets of
attributes; but global queries over full outcomes are required
to calibrate certain terms across GAI factors (a problem ig-
nored in previous work on regret-based elicitation). How-
ever, we will demonstrate that most of the “heavy lifting”
can be achieved using local queries. Our new approach guar-
antees the semantic soundness of the utility representation in
a way that techniques that ignore interactions across factors
do not. In addition, these queries put much more intricate
constraints on GAI model parameters than those considered
in previous work. For this reason, we develop new formula-
tions of the mixed integer programs required to handle these
queries in regret-based optimization and show that the prob-
lem can be effectively solved despite the added complexity.

We begin in the Multiattribute Preferences section with
relevant background on multiattribute utility. We discuss
appropriate forms of both local and global queries for GAI
elicitation in the Elicitation Queries section. We then de-
scribe effective integer programming formulations for mini-
max regret computation in the Minimax Regret Calculation
section, followed by a discussion of regret computation in
multiattribute product databases in the Multiattributed Prod-
uct Databases section. The Elicitation strategies sectionpre-
sents several elicitation strategies based on the query types
above, which are empirically evaluated in the Experimen-
tal Results section. Future directions are summarized in the
Conclusions.

Multiattribute preferences

Assume a set of attributes X1, X2, . . . , Xn, each with finite
domains, which define a set of outcomes X = X1×· · ·×Xn.

31



The preferences of a user, on whose behalf decisions are
made, are captured by a utility function u : X 7→ R. A
utility function can viewed as reflecting (qualitative) prefer-
ences over lotteries (distributions over outcomes) (Keeney
and Raiffa 1976), with one lottery preferred to another iff its
expected utility is greater. Let 〈p,x⊤; 1 − p,x⊥〉 denote the
lottery where the best outcome x

⊤ is realized with probabil-
ity p, and the worst outcome x

⊥ with probability 1 − p; we
refer to best and worst outcomes as anchor outcomes. Since
utility functions are unique up to positive affine transforma-
tions, it is customary to set the utility of the best outcome
x
⊤ to 1, and the utility of the worst outcome x

⊥ to 0. If
a user is indifferent between some outcome x and the stan-
dard gamble 〈p,x⊤; 1 − p,x⊥〉, then u(x) = p.

Additive utilities

Since the size of outcome space is exponential in the number
of attributes, specifying the utility of each outcome is infea-
sible in many practical applications. Most preferences, how-
ever, exhibit internal structure that can be used to express u
concisely. Additive independence (Keeney and Raiffa 1976)
is commonly assumed in practice, where u can be written as
a sum of single-attribute subutility functions:1

u(x) =

n∑

i=1

ui(xi) =

n∑

i=1

λivi(xi).

The subutility functions ui(xi) = λivi(xi) can be defined as
a product of local value functions (LVFs) vi and scaling con-
stants λi. This simple factorization allows us to separate the
representation of preferences into two components: “local”
and “global.” Significantly, LVFs can be defined using “lo-
cal” lotteries that involve only a single attribute: vi(xi) = p,
where p is the probability at which the user is indifferent be-
tween two local outcomes xi and 〈p, x⊤

i ; 1 − p, x⊥
i 〉, ceteris

paribus.2 Since we can define value functions independently
of other attributes, we can also assess them independently
using queries only about values of attribute i. This focus on
preferences over individual attributes has tremendous prac-
tical significance, because people have difficulty taking into
account more than five or six attributes at a time (Green and
Srinivasan 1978).

The scaling constants λi are “global” and are required to
properly calibrate LVFs across attributes. To define the scal-
ing constants, we first introduce a notion of a reference (or
default) outcome, denoted by x

0 = (x0
1, x

0
2, . . . , x

0
n). The

reference outcome is an arbitrary outcome, though it is com-
mon to choose the worst outcome x

⊥ as x
0 (more gener-

ally, any salient outcome, such as an “incumbent” will prove
useful in this role). Let x

⊤j be a full outcome where the
jth attribute is set to its best level whereas other attributes
are fixed at their reference levels; x

⊥j is defined similarly.
Then, λj = u(x⊤j ) − u(x⊥j ). To assess scaling constants

λj , one must ask queries involving global outcomes x
⊤j and

1This decomposition is possible if a user is indifferent between
lotteries with the same marginals on each attribute.

2x⊤
i and x⊥

i are the best and worst levels of attribute i. Without
loss of generality, we assume vi(x

⊤
i ) = 1, vi(x

⊥
i ) = 0.

x
⊥j for each attribute j. Only 2n such queries are needed,

and they involve varying only one feature at a time from the
reference outcome. This ease of assessment makes additive
utility the model of choice in most practical applications.

Generalized additive utilities

Simple additive models, although very popular in practice,
are quite restrictive in their assumptions of attribute indepen-
dence. A more general utility decomposition, based on gen-
eralized additive independence (GAI), has recently gained
more attention because of its additional flexibility (Bacchus
and Grove 1995; Boutilier, Bacchus, and Brafman 2001;
Gonzales and Perny 2004; Boutilier, et al. 2006; Braziu-
nas and Boutilier 2005). It can model “flat” utility functions
with no internal structure as well as linear additive models.
Most realistic problems arguably fall somewhere between
these two extremes.

GAI models (Fishburn 1967; Bacchus and Grove 1995)
additively decompose a utility function over (possibly over-
lapping) subsets of attributes. Formally, assume a given col-
lection {I1, . . . , Im} of possibly intersecting attribute (in-
dex) sets, or factors. Given an index set I ⊆ {1, . . . , n},
we define XI = ×i∈IXi to be the set of partial outcomes
restricted to attributes in I . For a factor j, xIj

, or simply xj ,
is a particular instantiation of attributes in factor j. The fac-
tors are generalized additively independent if and only if the
user is indifferent between any two lotteries with the same
marginals on each set of attributes (Fishburn 1967). Further-
more, if GAI holds, the utility function can be written as a
sum of subutility functions (Fishburn 1967):

u(x) = u1(xI1 ) + . . . + um(xIm
).

As with additive utilities, in order to take full advantage
of utility structure and facilitate elicitation, we would like to
decompose GAI subutilities into “global” and “local” com-
ponents. With GAI utilities, the matter is less straightfor-
ward, because the values of subutility functions uj do not
directly represent the local preference relation among the at-
tributes in factor j. Intuitively, since utility can “flow” from
one subutility factor to the next through the shared attributes,
the subutility values do not have an independent semantic
meaning.3 Nevertheless, it turns out that separation into lo-
cal and global components is possible even with GAI utili-
ties (Braziunas and Boutilier 2005).

First, we define a generalization of local value function
(LVF) vj . Let the conditioning set Cj of factor j be the
set of all attributes that share GAI factors with attributes
in j. Intuitively, fixing the attributes in the conditioning
set to any value “blocks” the influence of other factors on
factor j. In a manner similar to additive models, the local
value vj(xj) of suboutcome xj is simply p, the probabil-
ity that induces indifference in the local standard gamble,

3Indeed, a utility function can be faithfully decomposed in
two different ways into the same set of factors such that the lo-
cal (qualitative) preferences for two outcomes in an LVF are re-
versed in the two decompositions (Gonzales and Perny 2004;
Braziunas and Boutilier 2005). This means purely local elicitation
without calibration across factors is impossible without risking se-
vere misrepresentation of user preferences.

32



xj ∼ 〈p,x⊤
j ; 1 − p,x⊥

j 〉, given that attributes in the condi-
tioning set Cj are fixed at reference levels, ceteris paribus.
We refer to the setting of attributes in Cj to their reference

values as the local value condition. Here x
⊤
j and x

⊥
j are

the best and worst suboutcomes in factor j assuming the lo-
cal value condition; as before, we also normalize the LVF
by setting vj(x

⊤
j ) = 1 and vj(x

⊥
j ) = 0. We see, then,

that LVFs can be elicited using queries that involve only at-
tributes in single factors and their (usually small) condition-
ing sets. We discuss specific elicitation methods below.

The canonical way to define subutilities (see (Fishburn
1967)) is:

u(x) =

m∑

j=1

uj(xj) =

m∑

j=1

λj ūj(xj), (1)

where λj is a scaling constant, and

ūj(xj) = vj(xj)+

j−1
X

k=1

(−1)k
X

1≤i1<···ik<j

vj(xj [
k

\

s=1

Iis∩Ij ]) (2)

is an unscaled subutility function.4 For any x, x[I] is an
outcome where attributes not in I are set to the reference
value (i.e., Xi = xi if i ∈ I , and Xi = x0

i if i /∈ I).
To compute the unscaled subutility function ūj(xj),

we must know which local suboutcomes are involved in
the right-hand side of Eq. 2; this amounts to finding all

nonempty sets
⋂k

s=1 Iis
∩ Ij and recording the sign (+/−)

for the corresponding LVFs. The structure of subutility
functions depends only on the decomposition of GAI sets.
Therefore, given a GAI graph, a graphical search procedure
(Braziunas and Boutilier 2005) computes the relevant sub-
sets for Eq. 2 efficiently. We do this once for each factor.

To simplify Eq. 2, we introduce the following notation.
Let Nj be the number of local configurations in factor j
(e.g., with 3 boolean attributes, Nj = 8). The local value

function vj can be expressed by Nj parameters v1
j , . . . , v

Nj

j ,

with vi
j = vj(xj) where xj is the ith local configuration of

factor j. Then, Eq. 2 can be rewritten as

ūj(xj) =
∑

i∈1..Nj

Ci
xj

vi
j , (3)

where the Ci
xj

are integer coefficients precomputed by the

graphical search procedure (most of these are zero).
The scaling constants λj are defined in a way analogous

to simple additive utility case. Let x
⊤j and x

⊥j be the best
and the worst (full) outcomes, given that attributes not in
factor j are set to their reference levels. Then,

λj = u(x⊤j ) − u(x⊥j ) = u⊤
j − u⊥

j .

Thus, a GAI model is additively decomposed into factors
which are the product of scaling constants, or weights, λj

and a linear combination of LVF parameters:

u(x) =
X

j

λjūj(xj) =
X

j

2

4(u⊤
j − u

⊥
j )

X

i∈1..Nj

C
i
xj

v
i
j

3

5 (4)

4In Eq. 2, the sum is only over non-empty intersections.

As in the additive case, we need to elicit utilities of a few
full outcomes to achieve the right calibration of the LVFs.
For each factor we must know the utility of the best and the
worst outcomes given that attributes in other factors are set
to their reference levels.

Elicitation queries

In general, eliciting complete preference information is
costly and, in most cases, unnecessary for making an op-
timal decision. Instead, elicitation and decision making can
be viewed as a single process whose goal is to achieve the
right tradeoff between the costs of interaction, potential im-
provements of decision quality due to additional preference
information, and the value of a terminal decision (Boutilier
2002).

The types of queries one considers is an integral part of
the preference elicitation problem. Some queries are easy to
answer, but do not provide much information, while more in-
formative queries are often costly. Computing or estimating
the value of information can vary considerably for different
query types. Finally, allowable queries define the nature of
constraints on the feasible utility set. We broadly distinguish
global queries over full outcomes from local queries over
subsets of outcomes. In most multiattribute problems, peo-
ple can meaningfully compare outcomes with no more than
five or six attributes (Green and Srinivasan 1978). There-
fore, most of the global queries have local counterparts that
apply to a subset of attributes.

We will consider four types of queries for elicitation. The
following queries are well-defined semantically, relatively
simple, and easy to explain to non-expert users.

Local bound queries An LVF calibrates utilities of local
outcomes with respect to local “anchor” outcomes x

⊤
j and

x
⊥
j , given that the attributes in conditioning set Cj are fixed

at their reference levels. A local bound query on parameter
vx

j asks: “Assume that the attributes in Cj are fixed at ref-
erence levels. Would you prefer the local outcome xj to a

lottery 〈x⊤
j , p;x⊥

j , 1 − p〉, assuming that the remaining at-
tributes are fixed at same levels (ceteris paribus)?” If the
answer is “yes”, vx

j ≥ p; if “no”, then vx

j < p. By defini-
tion, the local value parameters vx

j lie in [0,1]. This binary
(yes/no) query differs from a (local) standard gamble since
we do not ask the user to choose the indifference level p,
only bound it.

Local comparison queries Local comparisons are natu-
ral and easy to answer. We ask a user to compare two lo-
cal outcomes: “Assume that the attributes in Cj are fixed
at reference levels. Would you prefer local outcome xj to
local outcome x

′
j ceteris paribus?” If the answer is “yes”,

vx

j ≥ vx
′

j ; if “no”, then vx

j < vx
′

j .

Anchor bound queries The scaling factor, or weight, for
a subutility function ūj is (u⊤

j −u⊥
j ), where u⊤

j is the global

utility of the outcome in which the jth factor is set to its best

33



value, and all the other attributes are fixed at reference levels.
Similarly, u⊥

j is the utility of the “bottom anchor” of factor

j. Utilities of anchor levels u⊤
1 , u⊥

1 , . . . , u⊤
m, u⊥

m must be
obtained using global queries. However, we need only ask
2m direct utility queries over full outcomes; this is the same
number of global queries required for scaling in the additive
case (considering each attribute as a factor).

Instead of eliciting exact anchor utilities directly, we pro-
pose global queries that are easier to answer. An anchor
bound query asks: “Consider a full outcome x

⊤j , where at-
tributes in factor j are set to their best values, and other at-
tributes are fixed at reference levels. Do you prefer x

⊤j to a
lottery 〈x⊤, p; x

⊥, 1−p〉?” A “yes” response gives u⊤
j ≥ p;

and “no”, u⊤
j < p (assuming, without loss of generality, that

u(x⊤) = 1 and u(x⊥) = 0). An analogous query exists for
the “bottom” anchor x

⊥j .

Anchor comparison queries We can also ask a user to
compare anchor outcomes from different factors: “Do you
prefer global outcome x

⊤k to x
⊥l ”? If “yes”, then u⊤

k ≥
u⊥

l ; if “no”, then u⊤
k < u⊥

l . Such comparison queries are
usually much easier to answer than bound queries.

Minimax regret calculation

Minimax regret is a natural decision criterion for mak-
ing decisions with incompletely or imprecisely specified
utility functions (Boutilier, Bacchus, and Brafman 2001;
Salo and Ramalainen 2001; Boutilier, et al. 2006). It re-
quires that our system recommend a (feasible) outcome x

∗

that minimizes maximum regret with respect to all possi-
ble realizations of the user’s utility function. This guaran-
tees worst-case bounds on the quality of the decision made
under the type of strict uncertainty induced by the queries
above (Wang and Boutilier 2003; Boutilier, et al. 2006;
Boutilier, Sandholm, and Shields 2004).

Let U be the set of feasible utility functions, defined
by constraints on the values of factor anchors u⊤

j , u⊥
j (for

each factor j), and constraints on the LVF parameters vi
j .

Such constraints, denotedU , are induced by responses to the
queries described above. Let Feas(X) ⊆ X be the set of
feasible outcomes (e.g., defined by a set of hard constraints
C). We define minimax regret in three stages (following
(Boutilier, et al. 2006)). The pairwise regret of choosing
x instead of x

′ w.r.t. U is R(x,x′,U) = maxu∈U u(x′) −
u(x). The maximum regret of choosing outcome x is
MR(x,U) = maxx′∈Feas(X) R(x,x′,U). Finally, the
outcome that minimizes max regret is the minimax opti-
mal decision: MMR(U) = minx∈Feas(X) MR(x,U). We
develop tractable formulations of these definitions for GAI
models.

Pairwise regret Given a GAI model, the pairwise regret
of x w.r.t. x′ over U is:

R(x,x
′
,U) = max

u∈U

u(x′) − u(x) (5)

= max
u∈U

X

j

[uj(x
′
j) − uj(xj)]

= max
{u⊤

j
,u⊥

j
,vi

j
}

X

j

(u⊤
j − u

⊥
j )(ūj(x

′
j) − ūj(xj))

= max
{u⊤

j
,u⊥

j
,vi

j
}

X

j

2

4(u⊤
j − u

⊥
j )

X

i∈1..Nj

(Ci
x′

j
− C

i
xj

) v
i
j

3

5 .

In general, when constraints on utility space tie together
parameters from different factors, regret computation has a
quadratic objective. Such constraints might arise, for ex-
ample, from global comparison queries. With linear con-
straints, this becomes a quadratic program.

Since factors reflect intrinsic independencies among at-
tributes, it is natural to assume that utility constraints involve
only parameters within the same factor. The constraints in-
duced by local comparison or bound queries, for instance,
have this form. We call constraints involving parameters
within a single factor local. This allows modeling regret
computation linearly as we discuss below.

If the constraints on local value parameters vi
j are local

then Eq. 5 can be simplified by pushing one “max” inward.
This is made possible by the fact that the scaling factors

u⊤
j − u⊥

j are always positive: R(x,x′,U) =

= max
{u⊤

j
,u⊥

j
,vi

j
}

X

j

2

4(u⊤
j − u

⊥
j )

X

i∈1..Nj

(Ci
x
′

j
− C

i
xj

) v
i
j

3

5

= max
{u⊤

j
,u⊥

j
}

X

j

2

4(u⊤
j − u

⊥
j ) max

{vi
j
}

X

i∈1..Nj

(Ci
x′

j
− C

i
xj

) v
i
j

3

5

= max
{u⊤

j
,u⊥

j
}

X

j

(u⊤
j − u

⊥
j ) r̄

x,x′

j , (6)

where (unscaled) “local regret”

r̄x,x′

j = max
{vi

j
}

∑

i∈1..Nj

(Ci
x′

j
− Ci

xj
) vi

j (7)

can be precomputed by solving a small linear program
(whose size is bounded by the factor size).

If constraints on LVF parameters are bound constraints,
and therefore independent of each other, we can do without

linear programming when computing the local regret r̄x,x′

j

(by pushing the max within the sum):

r̄
x,x′

j =
X

i∈1..Nj

max
{vi

j
}

(Ci
x′

j
− C

i
xj

) v
i
j ,

where max{vi
j
} (Ci

x′

j
− Ci

xj
) vi

j =

(

(Ci
x′

j
− Ci

xj
) max(vi

j), if Ci
x′

j
− Ci

xj
≥ 0,

(Ci
x′

j
− Ci

xj
) min(vi

j), if Ci
x′

j
− Ci

xj
< 0.

34



Maximum regret The max regret of choosing x is
MR(x,U):

= max
x′∈F eas(X)

R(x,x
′
,U) (8)

= max
x′∈F eas(X),u∈U

u(x′) − u(x)

= max
x′∈F eas(X),{u⊤

j
,u⊥

j
,vi

j
}

X

j

2

4(u⊤
j − u

⊥
j )

X

i∈1..Nj

(Ci
x′

j
− C

i
xj

) v
i
j

3

5

If local value constraints involve only local value param-
eters within their own factors, the max regret expression
above simplifies to:

MR(x,U) = max
x′∈F eas(X),{u⊤

j
,u⊥

j
}

X

j

(u⊤
j − u

⊥
j ) r̄

x,x′

j , (9)

where local regrets r̄x,x′

j can be precomputed beforehand

and treated as constants. This optimization can be recast as
a mixed integer program (MIP):

MR(x,U) = max
x′∈F eas(X)

max
{u⊤

j
,u⊥

j
}

X

j

(u⊤
j − u

⊥
j ) r̄

x,x′

j

= max
{Ix

′

j
,u⊤

j
,u⊥

j
}

X

j

X

x′

j

(u⊤
j − u

⊥
j ) I

x
′

j r̄
x,x′

j ,

subject to constraints A, C and U ,

where A are state definition constraints tying indicators Ix
′

j

with consistent attribute assignments and C are the domain
constraints defining feasible configurations.

Using the “big-M” transformation, the quadratic opti-
mization above can be linearized by introducing variables

Y x
′

j :

MR(x,U) = max
{Y x

′

j
,u⊤

j
,u⊥

j
}

X

j

X

x′

j

r̄
x,x′

j Y
x
′

j , (10)

subject to

8

>

<

>

:

0 ≤ Y x
′

j ≤ MjI
x
′

j , ∀j,x′
j

Y x
′

j ≤ (u⊤
j − u⊥

j ), ∀j,x′
j

A, C and U .

In the formulation above, the first constraint ensures that
Y x

′

j is zero whenever Ix
′

j is zero. If Ix
′

j is one, Y x
′

j is

bounded by some constant Mj ≥ (u⊤
j − u⊥

j ), and the sec-

ond constraint ensures that Y x
′

j achieves the optimal value

of (u⊤
j − u⊥

j ). Since the difference (u⊤
j − u⊥

j ) is always

positive, it is assumed Y x
′

j ≥ 0. If all constraints in U are
linear, the problem becomes a MIP.

If uncertainty over factor anchor values is specified using
bounds, and therefore anchor utilities are independent across
different factors, the computation is simplified as follows:

MR(x,U) = max
x′∈F eas(X)

max
{u⊤

j
,u⊥

j
}

X

j

(u⊤
j − u

⊥
j ) r̄

x,x′

j (11)

= max
x′∈F eas(X)

X

j

max
{u⊤

j
,u⊥

j
}
(u⊤

j − u
⊥
j ) r̄

x,x′

j

= max
x′∈F eas(X)

X

j

r
x,x′

j = max
{Ix

′

j
}

X

j

X

x′

j

r
x,x′

j I
x
′

j ,

where pairwise factor regret rx,x′

j is

r
x,x′

j = max
{u⊤

j
,u⊥

j
}
(u⊤

j − u
⊥
j ) r̄

x,x′

j

=

(

[max(u⊤
j ) − min(u⊥

j )] r̄
x,x′

j , if r̄
x
′,x

j ≥ 0,

[min(u⊤
j ) − max(u⊥

j )] r̄
x,x′

j , if r̄
x
′,x

j < 0.

Intuitively, the condition that both anchor and local value
constraints are independent across factors allows us to com-
pute local regrets for each factor separately, allowing formu-
lation as a MIP.

Minimax regret Our goal is to find a feasible configura-
tion x

∗ that minimizes maximum regret

MMR(U) = min
x∈Feas(X)

MR(x,U).

We can express this optimization as a MIP:

MMR(U) = min
{Y x

j
,m}

m, subject to (12)

8

>

>

>

<

>

>

>

:

m ≥
P

j

P

xj
r̄
x,x′

j Y x

j , ∀x′ ∈ Feas(X)

0 ≤ Y x

j ≤ MjI
x

j , ∀j,xj

Y x

j ≤ (u⊤
j − u⊥

j ), ∀j,xj

A, C and U .

In practice, we avoid the exponential number of constraints
(one for each feasible adversary configuration x

′) using an
iterative constraint generation procedure that generates the
(small) set of active constraints at the optimal solution. This
requires solving the above MIP in Eq. 12 with only a subset
of constraints, generating the maximally violated constraint
at the solution of this relaxed MIP (by solving the max re-
gret MIP Eq. 10 or Eq. 11), and repeating until no violated
constraints are found (see (Boutilier, et al. 2006) for details).

Multiattribute product databases

The MIP formulations above assume that the space of feasi-
ble configurations is defined by a set of constraints C spec-
ifying allowable combinations of attributes. Alternatively,
the set of choices may be the elements of a multiattribute
product databases, in which the set of feasible outcomes is
specified explicitly, namely, as the set of all products in the
database. Preference-based search of, and choice from, such
a database can be effected using minimax regret as well, but
can in fact be somewhat simpler computationally.

For any two items x and x
′ in the database, pairwise regret

R(x,x′,U) can be computed using Eq. 6. The max regret
MR(x) of x is determined by considering its pairwise re-
gret with each other item. To determine the optimal product
(i.e., that with minimax regret), we compute the max regrets
of each item in the database, and choose the one with the
least. This latter computation can be sped up considerably
by iteratively generating minimax optimal candidate prod-
ucts against a current set of “adversary” items and testing
their optimality. In practice, much like constraint genera-
tion, this speed up reduces the complexity of the algorithm
from quadratic to linear in the size of the database.

35



Elicitation strategies

Minimax regret allows one to bound the loss associated with
the recommended decision relative to the (unknown) opti-
mal. If this bound on utility loss is too high, more utility
information must be elicited. A decision support system
can query the user until minimax regret reaches some ac-
ceptable level (possibly optimality), elicitation costs become
too high, or some other termination criterion is met. We
propose a generalization of the current solution (CS) elic-
itation strategy, first described in (Boutilier, et al. 2006).
This strategy has been shown empirically to be very effec-
tive in reducing minimax regret with few queries in several
domains (Boutilier, et al. 2006; Boutilier, Sandholm, and
Shields 2004). The CS strategy considers only parameters
involved in defining minimax regret (i.e., the current regret-
minimizing solution x

∗ and the adversary’s witness x
w), and

asks a query about the parameter that offers the largest po-
tential reduction in regret. We define below how we score
various query types, and then define potential query strate-
gies.

Local queries The pairwise regret of regret-minimizing
outcome x

∗ and witness x
w (the current solution) is:

R(x∗
,x

w
,U) = max

{u⊤

j
,u⊥

j
}
(u⊤

j − u
⊥
j )

X

j

X

i∈1..Nj

max
{vi

j
}

C
i
j v

i
j ,

=
X

j

(u̇⊤
j − u̇

⊥
j )

X

i∈1..Nj

C
i
j v̇

i
j ,

where Ci
j = Ci

xw
j
−Ci

x∗

j
, and {u̇⊤

j , u̇⊥
j , v̇i

j} are utility param-

eter values that maximize regret. A local bound query adds
a constraint on a local parameter vi

j . We wish to find the

parameter vi
j that offers the largest potential reduction in the

pairwise regret R(x∗,xw,U) at the current solution, hence
in the overall minimax regret. The linear constraints on lo-
cal parameters induce a polytope defining the feasible space
for the parameters for each factor. Our elicitation strategies
use the bounding hyperrectangle of this polytope as an ap-
proximation of this feasible region. This allows for quick
computation of query quality. (The bounding hyperrectan-
gle can be computed by solving two very small LPs, linear in
factor size.) Let gapi

j = vi
j↑ −vi

j↓. If we ask a bound query
about the midpoint of the gap, the response narrows the gap
by half (either lowering the upper bound or raising the lower
bound). The impact of constraining vi

j on the pairwise regret

R(x∗,xw,U) is mediated by the magnitude of a constant Ci
j

and the current value of a scaling factor (u̇⊤
j − u̇⊥

j ). We de-

fine the heuristic score for querying parameter vi
j , a measure

of its potential for reducing minimax regret, as:

S(vi
j) = (u̇⊤

j − u̇⊥
j ) abs(Ci

j) gapi
j/2

The best bound query is that with the highest score. Deter-
mining this is linear in the number of GAI parameters.

Scoring local comparison queries is a more complicated,
since it is more difficult to estimate the impact of adding a
linear constraint on minimax regret. We again approximate
the feasible local parameter space with a bounding hyper-
rectangle. Given the current solution, we consider a list of

Figure 1: Four different ways to bisect a bounding rectangle. In

all cases, if the response to a comparison query eliminates the

part of the rectangle which contained the current solution point

(v̇i
j , v̇

k
j ) (marked with a circle), the new solution point (marked

with a square) is one of the two intersections of the diagonal and

the bounding rectangle. The shaded area approximates feasible pa-

rameter space after a response to a comparison query.

all pairs {(vi
j , v

k
j )} such that: (a) Ci

j 6= 0 and Ck
j 6= 0; (b)

vi
j↑≥ vk

j ↓ and vk
j ↑≥ vi

j↓; and (c) the relationship between vi
j

and vk
j is not known due to earlier queries. These conditions

severely limit the number of pairs one must consider when
determining the best local comparison query. The first con-
dition eliminates many parameters from consideration be-
cause most coefficients Ci

j are zero. The second checks the
bounds for implied relationships. Finally, the relationship
between two parameters might already be known before-
hand due to prior constraints or transitive closure of previous
comparison constraints.

For each pair (vi
j , v

k
j ) considered, we compute a heuristic

score as follows. First, we project the bounding hyperrectan-
gle on the plane of the two parameters we are considering;
the comparison constraint divides our 2-D rectangle along
the 45-degree line. Fig. 1 shows all four cases and demon-
strates that, after a response to a comparison query, the val-

ues of the parameters vi
j , v

k
j (as well as the current level of

regret) either remain the same, or they are pushed to lie at
one of the two intersections of the diagonal with the bound-
ing rectangle. In the latter case, the reduction in local regret
can be approximated by

r
i,k
j = C

i
j v̇

i
j + C

k
j v̇

k
j − max(Ci

jt1 + C
k
j t1, C

i
jt2 + C

k
j t2),

where (t1, t1) and (t2, t2) are the coordinates of the two
intersections. The heuristic score for the query comparing
x

i
j to x

k
j is:

S(xi
j ,x

k
j ) = (u̇⊤

j − u̇⊥
j ) ri,k

j .

The complexity of finding the best comparison query is lin-
ear in the number factors and quadratic in the number of
local outcomes in each factor.

Global queries We use similar heuristic methods to com-
pute the score of global anchor queries. In this case, we
look at the impact of imposing constraints on anchor pa-
rameters u⊤

j , u⊥
j , while keeping local regrets

∑
i Ci

j v̇i
j con-

stant. The resulting heuristic scores for both local and global
queries are commensurable, allow comparison of different
query types during elicitation.

36



Figure 2: The performance of different query strategies on a) car rental configuration problem; b) apartment rental catalog problem. After
averaging over 20 random instantiations of user utilities, the LB strategy curve was virtually indistinguishable from LC+LB; similarly,
AB+LB was very close to AB+LC+LB. We omit these two curves for clarity.

Combining different queries If all types of queries are
available, we can simply choose the next query to ask based
on the heuristic score S described above. However, in gen-
eral we want to consider not only the impact of a query in
reducing regret, but also its cost to a user. Global queries
are generally harder to answer than local queries; similarly,
most users will find comparing two outcomes easier than
dealing with bound queries (which require some numerical
calibration w.r.t. anchors).

We consider several different strategies below that com-
bine different query types. The LC strategy uses only local
comparison queries; when our heuristic cannot recommend
a comparison query, a comparison query is then picked at
random. If instead of a random comparison query we se-
lect the best local bound query, we get the LC(LB) strat-
egy. The LB strategy uses only local bound queries. The
remaining strategies do not favor any query type, but sim-
ply recommends a query from the set of allowed types with
the highest score: LC+LB combines local comparison and
bound queries, and AB+LC+LB and AB+LB mix global an-
chor bound queries with local queries.

Experimental results

We tested our CS elicitation strategies on the car rental con-
figuration problem from (Boutilier, et al. 2006; Braziunas
and Boutilier 2005) and a small apartment rental database
problem. The car-rental problem is modeled with 26 at-
tributes that specify various attributes of a car relevant to
typical rental decisions. The domain sizes of the attributes
range from two to nine values, resulting in 6.1 × 1010 pos-
sible configurations. The GAI model consists of 13 local
factors, each defined on at most five variables; the model
has 378 utility parameters. There are ten hard constraints
defining feasible configurations. The apartment rental prob-
lem comprises a database of 186 apartments, described by
eight attributes, each having between two and 33 domain

values. The GAI model has five factors, and can be speci-
fied with 156 utility parameters. The code was implemented
in Python, using CPLEX to solve the required MIPs in the
car-rental problem (in the apartment database, regret com-
putation does not require MIPs). Computing the current re-
gret minimizing solution, which has to be updated after each
query, takes about 1 second; determining the next query for
any given strategy is even faster. Thus our approach admits
real-time interaction.

We evaluated the six query strategies described above.
Fig. 2 shows their performance on (a) the car rental configu-
ration problem, and (b) the apartment rental database prob-
lem. The results are averaged over 20 random samples of
the underlying user utilities as well as random prior bounds
on utility parameters. The upper anchor bounds are drawn
uniformly from [1,50], and lower bounds from [-50,-1]. The
LVF bounds are drawn uniformly from [0,1].

With the exception of the LC strategy, all strategies (in-
cluding those that use only local queries) exhibit a sharp ini-
tial reduction in minimax regret (from .30 to .05 with less
than 40 interactions in the car-rental case). This means that
in many cases we can either avoid costly global queries alto-
gether or use them only in situations where very strict worst-
case loss guarantees are required. Also, even though the LC
strategy obviously does not perform as well as bound query
strategies, we can notice that comparison queries (which are
generally less costly in terms of user effort, time and accu-
racy than bound queries) are very effective during the first
ten or so interactions, and do not hinder the performance
of strategies in which they are used together with bound
queries. Not surprisingly, only strategies that use anchor
queries (AB+LC+LB and AB+LB) are able to reduce the
regret level to zero; however, the the performance of local-
queries-only strategies, such as LC(LB), LC+LB and LB is
very encouraging.

37



Conclusions

We have provided a semantically justifiable approach to elic-
itation of utility functions in GAI models using the mini-
max regret decision criterion. The structure of a GAI model
facilitates both elicitation and decision making via the se-
mantically sound separation of local and global components.
We described suitable forms of local and global queries and
developed techniques for computing minimax optimal deci-
sions under strict utility uncertainty, captured by linear con-
straints on the parameters of the GAI model. Unlike previ-
ous work that assumes the knowledge of either global scal-
ing constants or local utility values, our elicitation strategies
combine both local and global queries and provide a practi-
cal way to make good decisions while minimizing user inter-
actions. The domains of application range from constrained
configuration problems to preference-based search in multi-
attribute product catalogs.

We are currently pursuing the extension of this work in
several directions. We are investigating techniques for the
effective elicitation of GAI utility structure (something we
have taken as given in this work). We are also exploring the
incorporation of probabilistic knowledge of utility parame-
ters to help guide elicitation, while still considering regret
in making final decisions (Wang and Boutilier 2003) and
experimenting with additional query types. Finally, query
strategies that take into account explicit query costs are of
interest. Elicitation with human decision makers will al-
low us to consider the impact of psychological and behav-
ioral issues—such as framing and ordering effects, sensi-
tivity analysis, and the acceptability of different modes of
interaction—on our normative model of elicitation.

References
Fahiem Bacchus and Adam Grove. Graphical models for prefer-
ence and utility. In Proc. of UAI-95, pages 3–10, Montreal, 1995.

Craig Boutilier. A POMDP formulation of preference elicitation
problems. In Proc. of AAAI-02, pages 239–246, Edmonton, 2002.

Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman. UCP-
Networks: A directed graphical representation of conditional util-
ities. In Proc. of UAI-01, pages 56–64, Seattle, 2001.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schu-
urmans. Constraint-based optimization and utility elicitation us-
ing the minimax decision criterion. Artifical Intelligence, 170(8–
9):686–713, 2006.

Craig Boutilier, Tuomas Sandholm, and Rob Shields. Eliciting
bid taker non-price preferences in (combinatorial) auctions. In
Proc. of AAAI-04, pages 204–211, San Jose, CA, 2004.

Darius Braziunas and Craig Boutilier. Local utility elicitation in
GAI models. In Proc. of UAI-05, pages 42–49, Edinburgh, 2005.

Peter C. Fishburn. Interdependence and additivity in multivariate,
unidimensional expected utility theory. International Economic
Review, 8:335–342, 1967.

Christophe Gonzales and Patrice Perny. GAI networks for util-
ity elicitation. In Proceedings of the Ninth International Confer-
ence on Principles of Knowledge Representation and Reasoning
(KR2004), pages 224–234, Whistler, BC, 2004.

Paul E. Green and V. Srinivasan. Conjoint analysis in consumer
research: Issues and outlook. Journal of Consumer Research,
5(2):103–123, September 1978.

Ralph L. Keeney and Howard Raiffa. Decisions with Multiple
Objectives: Preferences and Value Trade-offs. Wiley, New York,
1976.

Panos Kouvelis and Gang Yu. Robust Discrete Optimization and
Its Applications. Kluwer, Dordrecht, 1997.

Ahti Salo and Raimo P. Hämäläinen. Preference ratios in multi-
attribute evaluation (PRIME)–elicitation and decision procedures
under incomplete information. IEEE Trans. on Systems, Man and
Cybernetics, 31(6):533–545, 2001.

Leonard J. Savage. The Foundations of Statistics. Wiley, New
York, 1954.

Tianhan Wang and Craig Boutilier. Incremental utility elicitation
with the minimax regret decision criterion. In Proc. of IJCAI-03,
pages 309–316, Acapulco, 2003.

38


