
A Spectral Approach to Collaborative Ranking

Joachim Giesen
Max-Planck Institut für Informatik

Stuhlsatzenhausweg 85
D-66123 Saarbrücken

jgiesen@mpi-inf.mpg.de

Dieter Mitsche
Department of Computer Science

ETH Zürich
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Abstract

Knowing your customers and their needs is mandatory when
conducting business. In an e-commerce environment, where
one often knows much less about individual customers than
in a face-to-face business, questionnaires - besides historical
transaction data and basic information like names and ge-
ographic location - are popular means to get to know cus-
tomers. Here we report on an approach to analyze prefer-
ence data that consumers provide in stated choice experi-
ments which can be conducted on a company’s web site. Nat-
urally, the information one captures with web based question-
naires tends to be sparse and noisy. Nevertheless, our results
show that if one collects data from enough consumers one can
learn about different segments and their needs. The results are
obtained with a spectral collaborative ranking algorithm that
can be applied to stated choice data, especially, choice based
conjoint analysis data.
Keywords. clustering, other algorithms, other applications

Introduction
In competitive markets it is essential to match consumer
needs as well as possible. In some markets a single prod-
uct fulfills all consumers’ needs. In the other extreme there
are markets where one strives to match each individual con-
sumer’s needs. But in most markets a compromise between
these two extremes is the best strategy to pursue. Such
a compromise is to segment the market and to match the
needs of selected segments as closely as possible. So it is
not surprising that market segmentation is one of the key
activities in marketing. There are essentially two ways to
segment consumers in a market, either indirectly by the
consumer’s socio-demographic profile, e.g., by age, gen-
der, geographic location and so on, or directly by con-
sumer’s needs. Socio-demographic data are often readily
available or at least less expensive to elicit than preference
data. However, preference data more directly tell about con-
sumers’ needs. It is a non-trivial task to transform socio-
demographic data together with a limited amount of pref-
erence data into reliable preference data, for first steps into
this direction see (Hüllermeier & Fürnkranz 2004). On the
other hand, although it is expensive, preference elicitation is
daily practice in market research. Among the most popular
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preference elicitation methods is conjoint analysis1, which
assumes that products can be described in terms of attributes
and levels, i.e., that the product set has a conjoint structure.
In one of its many variants (choice based conjoint analysis)
a respondent is faced with a few number of choice tasks. In
each choice task the respondent has to pick one out of two to
five product profiles presented to him. From all his choices
the respondent’s preferences over the whole product set are
estimated. Remarkably, the product set typically is large
compared to the number of choice tasks. Preferences are
usually encoded in a value function for each respondent. A
value function assigns to every product a value and induces
a ranking of the products, i.e., the higher the value of a prod-
uct, the higher is the product’s position in the ranking. Of-
ten one even tries to extract metric information from a value
function, e.g., information like the respondent likes product
x five times better than product y. Since it is not straight-
forward to derive metric information from choice questions
we restrict ourselves here to ranking information. In our ap-
proach we confront each respondent with very few choice
tasks. The number of choice tasks should be independent of
the size of the product set since even the most well mean-
ing respondents get worn out after a certain fixed number of
choice tasks. We make up for that by asking more respon-
dents for larger product sets. This approach is suited for web
based questionnaires where the respondent’s answers are not
always reliable and respondents get worn out easily.

Our approach also differs from the standard practice in
market research (Sawtooth ; Chapelle & Harchaoui 2005) in
that we first segment the set of respondents and then com-
pute one ranking for each segment to approximate the indi-
viduals’ rankings. Usually first individuals’ value functions
are estimated which are subsequently used to segment the
market. That is, our approach builds directly on aggregated
information collected from similar respondents—and as we
will demonstrate, the similarity of respondents can often be
decided even if the respondents answer only very few choice
tasks each.

The approach was implemented using spectral techniques,
i.e., building on the eigenvalues and -vectors of some matrix.
We report on an evaluation of the approach on synthetic and

1See the section about conjoint analysis data or (Gustafsson,
Herrmann, & Huber 2000) for more details.
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real market research data and compare it with a more stan-
dard approach (Chapelle & Harchaoui 2005) on the real data
in the section about conjoint analysis data.

Segmentation and Ranking
Let X be a set of n products, typically substitution goods or
services, and let m be the number of respondents. The basic
data structure that underlies our algorithm is an m ×

(
n
2

)
-

matrix A. The entries aij of A are in {±1, 0} and can be in-
terpreted as follows: the index i refers to the i’th respondent
and the index j refers to the j’th product pair (x, y) ∈

(
X
2

)
.

The entry aij is 1 if the i’th respondent prefers product x
over product y, it is −1 if he prefers y over x and it is 0 if
the respondent has not compared x and y. Since each re-
spondent has to perform only very few choice tasks most
entries of A will be 0.

Our algorithm has three phases. In the first phase we es-
timate the number of consumer types k. To this end we use
the positive semi-definite m ×m matrix B = AAT . In the
second phase we again use the matrix B to segment the m
respondents into k classes that correspond to the types. In
the third phase we use the segmentation obtained in the sec-
ond phase to compute a ranking for each type.

Estimating the number of types. If the population can be
segmented into a small number of types k, then this is simply
a model order selection problem where we could systemati-
cally try out small values of k. But we also expect2 that the
k largest eigenvalues of B are significantly larger than the
m−k smallest eigenvalues. We estimate k as the number of
eigenvalues larger than some threshold.

Respondent segmentation. Let us first give an interpre-
tation of the entry bij of B. Let Xij ⊂

(
X
2

)
be the set of

pairs in
(
X
2

)
that are compared by both the i’th and the j’th

respondent. The entry bij is the number of pairs in Xij on
which the i’th and the j’th respondent agree in their com-
parison minus the number of pairs in Xij on which they dis-
agree. The intuition is that bij is large if both respondents
belong to the same type and small otherwise. In other words
the entries in the sub-matrices of the matrixB that have both
indices in the same type are expected to be larger than the en-
tries off these blocks. The goal now becomes identify these
sub-matrices. We use the projector Pk =

∑k
i=1 v

T
i vi onto

the space spanned by eigenvectors vi, i = 1, . . . , k to the k
largest eigenvalues for this purpose. For k we use the esti-
mate from the first phase. Note that we can use the columns
of Pk to associate each respondent with a vector in Rm,
namely, the i’th respondent corresponds to the i’th column
of Pk. We use k-means clustering (MacQueen 1967) to seg-
ment the respondents, i.e., their corresponding vectors, into
types.

2We will later experimentally test if this assumption is reason-
able.

Computing the typical rankings. Once we have seg-
mented the respondents we can compute for each type a m-
dimensional characteristic vector ct, t = 1, . . . , k, whose
i’th entry is 1 if the i’th respondent belongs to this type and
0 otherwise. The result of the matrix-vector product AT ct
is an

(
n
2

)
-dimensional vector each of whose entries corre-

sponds to the comparison of two products. We interpret the
entries of AT ct as follows: if the entry that corresponds to
the comparison of products x and y is positive then x is pre-
ferred over y by the t’th type. If the entry is negative then
y is preferred over x by the t’th type, otherwise the type is
indifferent between products x and y. Note that this pro-
cedure not necessarily provides us with a (partial) order on
the products since it is not guaranteed that the resulting re-
lation is transitive. When we refer in the following to the
computed or reconstructed ranking for type t we think of
the vector AT ct which does not necessarily have to satisfy
transitivity.

Synthetic data
We will first test our method on synthetic data that are gener-
ated according to a statistical model3. In (Giesen, Mitsche,
& Schuberth 2007) we devised an algorithm for which we
can prove theoretical performance guarantees using our sta-
tistical model. Unfortunately the algorithm is not practical,
i.e., it only works if the number of respondents is very large.

Population model. We assume that the population can be
partitioned into k types. Let αi ∈ (0, 1) be the fraction of
the i’th type in the whole population. For each type there
is a ranking πi, i = 1, . . . , k, i.e., a permutation, of the n
products.

Respondent model. We assume that the set of respon-
dents faithfully represents the population, i.e., αi is also
(roughly) the fraction of respondents of type i among all
respondents. Given a respondent let π be the ranking that
corresponds to the type of this respondent. For any compar-
ison of products x and y, with x ≺ y according to π, we
assume that the respondent states his preference of y over x
with probability p > 1/2. Note that this allows the respon-
dents’ answers to violate transitivity - something one also
observes in practice.

3Our model is such that if we would change our elicitation pro-
cedure slightly to enforce transitivity in each respondent’s answers
(simply by asking only for comparisons not in the transitive hull of
the previous answers), then the rankings of the respondents (if we
would ask them until we have elicited the complete ranking) that
are of type i follow a Mallows distribution (Mallows 1957), i.e.,

P [π] = ce− log(p/(1−p))δ(π,πi), c−1 =
X
π

e− log(p/(1−p))δ(π,πi)

where δ(π, πi) is the Kendall distance (Kendall 1970) between π
and πi. In (Feigin & Cohen 1978) and (Critchlow 1985) it was
shown that Mallow’s model often provides a good fit to ranking
data.

48



We use the following measures to assess the quality of our
method on data generated according to the model4.

Misclassifications. We use the following intuitive notion
of misclassified respondents, see also (Lange et al. 2004;
Meila & Verma ). From the model we have a partition func-
tion

ϕ : {1, . . . ,m} → {1, . . . , k}
that assigns every respondent to his type. The segmentation
algorithm provides us with another partition function

ψ : {1, . . . ,m} → {1, . . . , k′},

where k′ is the number of estimated types. The number of
misclassified respondents is m minus the size of a maxi-
mum weight matching on the weighted, complete bipartite
graph, whose vertices are the classes ϕ−1(i), i ∈ {1, . . . , k}
and the classes ψ−1(j), j ∈ {1, . . . , k′} produced by the
algorithm. The weight of the edge {ϕ−1(i), ψ−1(j)} is
|ϕ−1(i) ∩ ψ−1(j)|, i.e., the size of the intersection of the
classes. The matching gives a pairing of the classes de-
fined by ϕ and ψ. Assume without loss of generality that al-
ways ϕ−1(i) and ψ−1(i) are paired in the maximum weight
matching. Then the number of misclassifications is given as

m−
min{k,k′}∑

t=1

|ϕ−1(t) ∩ ψ−1(t)|.

In our analysis we only compute the number of misclassifi-
cations if we estimate the number of types k correctly.

Number of inverted pairs. We only compute this mea-
sure if we estimate the number of types correctly. In this
case we get a one to one correspondence of actual and re-
constructed types via the maximum weight matching that
we compute in order to count the number of misclassified re-
spondents. We compute the number of inverted pairs in the
{±1}(

n
2) vector that encodes the product ranking for type t

and its reconstruction AT ct ∈ Z(n
2), where ct is the com-

puted characteristic vector for class t. That is, we count en-
tries that have different signs in the two vectors (not counting
zero entries). We always state the fraction of inverted pairs
compared to all pairs, i.e.,

(
n
2

)
.

Hit rate. For a respondent of type t that we classify cor-
rectly we compute the hit rate as the average success prob-
ability of correctly predicting the outcome of any pairwise
product comparison from the vectorAT ct. Note that if there
is a zero entry in AT ct for a product pair we just flip a fair
coin to predict the outcome of a comparison performed by a
respondent of type t.

4Intuitively speaking our method should work well on data gen-
erated according to the model since it can be shown that if the typ-
ical rankings πi are sufficiently well separated, then the expected
matrixB has k eigenvalues in Θ(m) andm−k eigenvalues 0, i.e.,
it has a large spectral gap. Furthermore it has a nice block structure
with blocks corresponding to the different types in the population.

Experimental results. In all our experiments we fix n =
30 (number of products), l = 12 (number of pairwise com-
parisons performed by each respondent) and αi = m/k
(fraction of the i’th consumer type of the population) for all
types i = 1, . . . , k. This leaves m (number of respondents),
k (number of types), 1−p (deviation probability) and δ (sep-
aration of type rankings) as free parameters. Note that the
information theoretic lower bound on the number of pair-
wise comparisons needed by a respondent to rank n = 30
products is n log2 n ≈ 147 and a sorting algorithms like
QUICKSORT needs ≈ 300 pairwise comparisons to rank all
products. For any fixed parameter setting we ran ten inde-
pendent trials of the experiment and report on our findings
in the following tables.

The first table contains data for varyingm, fixed deviation
probability 1 − p = 0.1 and k = 3 types. The average
minimum separation is δ = 45.2%.

m miscl. inv. hit rate
150 52.8% 13.3% 70.7%
450 8.8% 2.9% 93.9%
750 6.1% 0.8% 98.4%
1050 4.3% 0.3% 99.5%

One can see that with increasing m also the quality of the
segmentation and the reconstruction increases. The next ta-
ble contains data for varying m, fixed deviation probability
1 − p = 0.2 and k = 3 types. The average minimum sepa-
ration is δ = 46%.

m miscl. inv. hit rate
150 52.7% 20.9% 61.7%
450 41.2% 18.5% 74.8%
750 27.4% 9.6 % 86.7%
1050 6.7% 4.8% 93.2%

Finally we show a table containing data for varying m,
fixed deviation probability 1 − p = 0.1 and k = 5 types.
The average minimum separation is δ = 40%.

m miscl. inv. hit rate
150 61.1% 16.1% 59.6%
650 25.4% 7.3% 86.9%
1150 14.9% 2.2% 96.1%
1650 11.2% 0.63% 98.8%

The last table shows that also for an increasing number of
types we have to ask more respondents to get comparably
good results. This is plausible because for a fixed number
of respondents a larger number of types means that a type
contains less respondents and thus we have less ranking in-
formation about this type.

Conjoint analysis data
In this section we report on the performance of our algorithm
on real data that were provided to us by SAWTOOTH SOFT-
WARE, INC.. Let us first give a short summary of conjoint
analysis.
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Conjoint analysis. Conjoint analysis deals with prefer-
ence elicitation over a set of products that can be described
by attributes and levels, i.e., the product set is a subset of a
Cartesian product A1× . . .×An, where each attribute Ai is
a set of levels, e.g., an attribute color might have the levels
{red, green, blue}. In conjoint analysis one is especially
interested in the trade-offs customers make. For example if
there are attributes price and speed to describe a car then
the price attribute might range from $20,000 to $100,000
and the maximum speed might range from 100 mph to 160
mph, but it is reasonable that it is impossible to build a car
that runs 160 mph for $20,000. Thus when buying a car
people are forced to deal with a trade-off decision between
price and speed. It is reasonable to assume that the car mar-
ket can be segmented into typical types regarding the price
vs. speed trade-off, e.g., there are the extremes—sporting
drivers and economic drivers—and probably a more diffuse
compromise type5. Market research tries to find such seg-
ments and to estimate their size. Choice based conjoint anal-
ysis is a popular means to this end. In choice based conjoint
analysis respondents are confronted with a series of choice
tasks. In each choice task a respondent has to pick one out
of a given number of (partial) product profiles. From a re-
spondent’s choices an individual value function or ranking
is computed.

We got 21 disguised data sets from SAWTOOTH SOFT-
WARE, INC., i.e., we do not know in which context and for
which application they were elicited. Here we report in more
detail on the performance of our method on three represen-
tative ones of them. In the end of this section we will give a
brief overview of the results of our algorithm applied to the
remaining data sets. Before presenting the three represen-
tative studies we will introduce the measures that we use in
the analysis. Note that in contrast to the synthetic data here
we do not have a ground truth to compare against. Thus we
have to use different quality measures.

Number of inverted pairs. Here we use a different defini-
tion than for the synthetic data. We compute for the respon-
dents segmented into type i and the computed ranking for
type j the average number of inverted pairs, i.e., the average
number of product pairs on which a respondent of type i dif-
fers in his stated preference from the ranking computed for
type j and denote it by invij , i.e.,

invij =
1
| Ti |

∑
r∈Ti

invj(r),

where Ti is the set of respondents segmented into type i and
invj(r) is the number of inverted pairs that the respondent r
has with respect to type j. We do not count the case when
there is indifference in the type ranking for a product pair
while the respondent states a preference for that product pair.

Maximum deviation. For each respondent we compute
the deviation from his type as the number of inverted pairs

5This observation motivates our statistical model of a seg-
mented population.

for this respondent over the number of questions he had to
answer. The maximum deviation for a given type is the max-
imum deviation of any respondent that belongs to this type.
The maximum deviation for the segmentation is the maxi-
mum deviation of any respondent independent of his type.

Average deviation. For each type the average deviation is
defined as the average number of inversions of respondents
in that type over the number of questions they were asked,
i.e., as invii

l . The average deviation for the whole segmenta-
tion is defined analogously. For the synthetic data the aver-
age deviation roughly corresponds to to 1− p.

Minimum separation. This is a measure for how differ-
ent the computed type rankings are. It is a quality measure
only in so far as types that are similar are more difficult to
distinguish. For two computed type rankings the separation
is the fraction of product pairs that are ranked differently in
the two rankings. Note that 0 entries do not contribute to this
measure. For the studies we compute the minimum over the
separation of all pairs of type rankings.

In the following we present details for three typical out of
the 21 studies.

Study 1. This study has 539 respondents and 4 attributes
with 4, 3, 3 and 5 levels, respectively, i.e., the set of all prod-
uct profiles has 180 elements. The number of questions per
person is 30 (10 choice tasks with 4 products each). We first
show a plot of the eigenvalues of the matrix B for this data
set.

We can see a separation of the four largest eigenvalues
from the other eigenvalues. If we compute the rankings for
four types we get types (segments) with 81, 119, 130 and
209 respondents. That is, all four types contain a significant
number of respondents.

In the following table we list the average number of in-
verted pairs, i.e., the average number of pairs on which a
respondent of type i = 1, . . . , 4 differs in his stated pref-
erence from the ranking computed for type j = 1, . . . , 4.
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Note that the off-diagonal entries are much larger than the
diagonal entries.

ranking ranking ranking ranking
type 1 type 2 type 3 type 4

type 1 0.44 6.77 5.11 6.53
type 2 5.58 0.92 6.92 7.98
type 3 3.56 6.1 0.84 5.67
type 4 3.56 5.08 4.25 1.16

In the following table we show the maximum deviation
and average deviation for each type.

max. dev. avg. dev.
type1 10.0% 1.5%
type2 10.0% 3.1%
type3 13.3% 2.8%
type4 20.0% 3.9%

That the maximum deviation for all types is significantly
larger than the average deviation means that the types con-
tain outliers. This is expected since our method assigns
every respondent to one of the four classes and not only
respondents that fit nicely. This is not a problem since
the “outliers” can be easily detected and removed from the
types—doing this decreases the the average deviation even
further. Also note that the minimum separation of the four
types is only 1.4%, i.e., much smaller than the relative av-
erage deviation of 3.9.% for the fourth type. Nevertheless
the four types are clearly separated as can be seen from the
average numbers of inverted pairs in the table above. This
shows that our method is capable of detecting even small
differences in types.

Study 2. This study has 1184 respondents and 3 attributes
with 9, 6 and 5 levels, respectively, i.e., the set of all prod-
uct profiles has 270 elements. The average number of ques-
tions per person is 48 (12 choice tasks with 5 products each).
Again, we first show a plot of the eigenvalues of the matrix
B for this data set.

Like in the first study there is a gap in the eigenvalues.
After computing five type rankings however, it turns out that

four of the five types do not contain a significant number of
respondents. The size of the types are 3, 3, 6, 8 and 1164,
respectively. If we decrease the number of types to three
the size of the types becomes 3, 6 and 1175, respectively.
Only if we increase the number of types to seven, the large
type gets split into two smaller types of size 942 and 201,
respectively. In the following table we report on how the
choice of k affects the maximum and average deviation for
the corresponding segmentation.

k max. avg.
dev. dev.

1 37.5% 12.1%
2 37.5% 5.7%
3 37.5% 5.8%
4 37.5% 5.7%

k max. avg.
dev. dev.

5 37.5% 5.7%
6 37.5% 5.5%
7 31.3% 4.1%
8 33.3% 3.9%

Since the choice of k hardly affects the average deviation
we conclude that there is only one large type in the popula-
tion. The smaller types can be regarded as outliers.

Study 3. This study has 300 respondents and 6 attributes
with 6, 4, 6, 3, 2 and 4 levels, respectively, the set of all
product profiles therefore has 3456 elements. The average
number of questions is 40 per person (20 choice tasks with 3
products each). There is no significant gap in the eigenvalue
spectrum, see the following plot.

For this study our method did not provide us with good re-
sults because of the very small ratio between the number of
respondents and the number of product profiles. The infor-
mation gathered in this study was too sparse. Since for this
study 300 respondents were asked 40 questions each we can
only learn preferences for at most 300× 40 = 12, 000 prod-
uct profile pairs. The number of all these pairs is 5, 970, 240.
That means that we have preference information for at most
0.2% of all pairs.

As mentioned earlier, altogether we received 21 data sets
from SAWTOOTH, INC.. We presented results for three rep-
resentative ones above. There are four more data sets which
are similar to Study 1, i.e., there is a significant gap in the
eigenvalues and all types contain a significant number of re-
spondents. Five more data sets show the same characteristics
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as Study 2, i.e., there is a significant gap in the eigenvalues
but after segmentation it turns out that basically there is only
one big type while the number of respondents segmented
into the other types is very small. Seven more data sets are
similar to the one in Study 3 in the sense that the ratio be-
tween the number of respondents and the number of product
profiles is so small that we cannot apply our method. Finally
there are two data sets that we could not analyze due to data
format problems.

The same data sets have been analyzed in (Chapelle &
Harchaoui 2005). The analysis follows the traditional way
to estimate a respondent’s value function and not a segmen-
tation/aggregation strategy as we do. For the eleven data sets
that they choose for their analysis which comprises three dif-
ferent methods they get an average deviation in the range
of 13% to 58%. For the majority of studies and meth-
ods they report an average deviation above 30%, i.e., much
larger than what we observe. This indicates that segmenta-
tion/aggregation can be a useful strategy for analyzing con-
joint analysis data—note that in our approach so far we do
not even exploit the conjoint structure of the data.

Discussion
The crucial parameter in our method is the number of re-
spondents. This number is not easy to guess a priori6 since
it does not only depend on the number of products (which is
known a priori) but also on the number of types, their sizes,
the separation of the type rankings and the amount of noise
in the data. The latter quantities are those that ideally we
want to learn from the respondents’ answers to the choice
tasks.

If the number of respondents is small compared to the size
of the product set, then our method is no longer directly ap-
plicable. Since the data in such scenarios are necessarily
sparse there is the need for a (statistical) model that allows to
extrapolate from the stated preference to products that have
not been covered by the choice tasks. Work in this direction
is done in discrete choice modeling, see for example (Train
2003).

In any case one should make sure to keep the set of prod-
uct profiles as small as possible, which often can be achieved
by careful modeling. For example one should not include
products in the profile set that cannot be built or are overly
expensive to build. Note that even for a conjoint structure
with many attributes and levels the set of interesting prod-
ucts might be small. One should also try to keep the attribute
sets as small as possible. That is, the different levels should
differ significantly, e.g., it makes no sense to have the price
attribute for a car as fine tuned as to resolve differences up to
$100. One could start out with very few levels per attribute
and then step by step refine the levels if one feels that more
information is needed.

Finally, our analysis of the conjoint data also puts the
statistical model from which we generated the synthetic

6For our query strategy a lower bound on the number of respon-
dents can be obtained from the connectivity threshold for random
intersection graphs if we consider respondents connected if they
had to answer one common question.

data to the test. The results show that the model is rea-
sonable and captures essential properties of markets and
respondents. Furthermore, the analysis of the conjoint data
gives us estimates for some of the model parameters, e.g.,
a deviation probability for a respondent from his type of
more than 10% seems to be overly pessimistic. It would
be interesting to theoretically analyze our approach for the
statistical model but this seems not an easy task since the
entries in the matrix B = AAT are not independent.
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