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Abstract

Specific preference statements may reverse general prefer-
ence statements, thus constituting a change of attitude in par-
ticular situations. We define a semantics of preference rever-
sal by relaxing the popular ceteris-paribus principle. We char-
acterize preference reversal as default reasoning and we link
it to prioritized Pareto-optimization, which permits a natu-
ral computation of preferred solutions. The resulting method
simplifies elicitation, representation, and utilization of com-
plex preference relations and may thus enable a more realistic
preference handling in personalized decision support systems
and in preference-based intelligent systems.

Introduction
As most real-world problems studied in Artificial Intelli-
gence involve large solution spaces, preference knowledge
is needed to guide a problem solver towards the preferred
choices. Recent research on preference handling in AI has
shown that preference knowledge can be represented in a
declarative way as any other knowledge while adding new
possibilities to knowledge representation and problem solv-
ing (cf. e.g. (Brafman et al. 2005)). Preference handling is
important for multi-agent systems, combinatorial auctions,
recommender systems, configuration, planning, and other
AI tasks. In this paper, we consider preferences handling
for combinatorial problems with multiple criteria. As it is
the case for many real-world problems, we suppose that so-
lutions satisfying the problem constraints can easily be enu-
merated and that the main difficulty is to address preferences
formulated on a combinatorial criteria space.

Preferences on combinatorial domains have intensively
been studied in multi-criteria decision making and multi-
criteria decision analysis, but most approaches make strong
assumptions about the user’s preferences. The classic as-
sumption is that the preference relation is a complete pre-
order, which permits a presentation of the user’s preferences
in terms of numeric utility functions. An even stronger as-
sumption is preferential independence meaning that the pref-
erences on a subset of the criteria are independent of the val-
ues of the other criteria. The popular multi-attribute utility
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theory supposes preferential independence for all subsets of
the criteria and uses weighted sums of the criteria’s utilities.
Other methods such as Generalized Additive Independence
use a relaxed form of preferential independence, but lead
to utility functions that are more difficult to elicit (cf. e.g.
(Boutilier et al. 2006)).

An alternative to utility functions is to directly repre-
sent and to use qualitative preference statements elicited
from the user. Recent work in AI started a study of com-
pact representations of preference relations over a combi-
natorial domain. Doyle et. al. have introduced ceteris-
paribus preferences between propositional formulas (Doyle,
Shoham, & Wellman 1991; McGeachie & Doyle 2004).
Boutilier and Brafman et. al. have studied networks of
conditional preference statements (Boutilier et al. 1999;
2004). There are numerous examples for conditional pref-
erences. For example, we may prefer pop music to classic
music when being at home and classic music to pop music
when being at a reception.

Although conditional preferences exhibit one kind of
preferential dependency, they do not capture all surprising
phenomena in human choice behaviour. In this paper, we
study another, may be less frequent, but even more surpris-
ing phenomenon, namely that of preference reversal. Pref-
erence reversal has been studied by psychologists in situa-
tions where trade-offs between two criteria need to be found
(Tversky & Thaler 1990). Suppose that the user of a vaca-
tion recommender system prefers swimming to hiking and
flat coasts to rocky coasts. When asked for a choice between
swimming at a rocky coast and hiking at a flat coast, she may
prefer the first choice. When asked which coast type would
make her switch from swimming to hiking she may answer
the flat coast. Hence, a change of the preference elicitation
method causes a change of the trade-off.

In this paper, we investigate a more extreme form of pref-
erence reversal. We suppose that more specific preference
statements can reverse more general statements. For exam-
ple, we may prefer swimming to hiking and flat coasts to
rocky coasts. The ceteris paribus principle then tells us that
we prefer swimming at flat coasts to hiking at rocky coasts.
However, we tell the system that we prefer hiking at rocky
coast to swimming at flat coasts. This upside-down rever-
sal of the ceteris-paribus preferences constitutes a change of
attitude in a particular situation that presents new opportu-
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nities. Hiking at rocky coasts, for example, offers an excit-
ing panoramic view. More specific preference statements
can thus override more general preference statements. A
classic ceteris-paribus preferences between a and b imposes
ax � bx for all contexts x. We introduce reversible ceteris
paribus preferences that impose the preference between ax
and bx by default for all contexts x. However, if a more spe-
cific preference imposes by � ay for some context y then
the preference between a and b is overridden in this case.

We elaborate a precise semantics for preference reversal
which defines the conditions in which a reversible ceteris
paribus preference can be overridden. We can thus represent
preference relations that do not obey the strong monotonic-
ity property mentioned above and that capture more complex
interactions between multiple criteria. As the ceteris paribus
principle is used as a default rule, only exceptions need to
be stated by the user, which permits a compact representa-
tion of a nonmonotonic preference relation. This reduces
not only the burden of preference elicitation, but also im-
proves the efficiency of optimization algorithms. We will
show that the number of optimization steps for computing
a single preferred solution is proportional to the number of
preference statements.

We first introduce combinatorial problems with multiple
criteria. We then review ceteris paribus preferences, before
introducing the preference reversal semantics. We relate this
new preference relation to prioritized Pareto-optimization in
order to derive an optimization algorithm.

Decision Space and Criteria Space
We consider problems where a decision has to be chosen
from a combinatorial space. Two decisions can be compared
in terms of multiple criteria. We thus encounter a combina-
torial decision space which is subject of constraints and a
combinatorial criteria space which is subject of a preference
relation. The criteria define a function from the decision
space to the criteria space.

The decision space is specified in form of a finite set of
constraints C that are formulated over a finite set of vari-
ables X . Each variable x in X has a domain D(x), which
defines the possible value assignments to this variable. The
domain D(X) of a set X of variables is defined by the union
of the domains D(x) of all the variables x in X . An as-
signment to X is a function σ from X to D(X) that maps
each variable x to a value v from D(x). The set of all
assignments to X is called the problem space of X and
we denote it by S(X). We often write an assignment in
relational form {(x1, v1), . . . , (xn, vn)} or in logical form
x1 = v1 ∧ . . . ∧ xn = vn to facilitate definitions and read-
ability. As assignments are relations, they can easily be com-
bined in terms of set operations.

A constraint c formulates restrictions on a subspace which
is identified by a subset Xc of the variables. The restriction
is expressed by a (finite) set Rc of the admissible assign-
ments to the variables Xc. We can project an assignment
σ over X to a subset Xc by defining σ[Xc] := {(x, v) ∈
σ | x ∈ Xc}. We say that σ satisfies the constraint c iff
σ[Xc] is an element of Rc. We say that an assignment in the
problem space S(X ) is a solution of C iff it satisfies all the

constraints in C. The solutions of this constraint satisfaction
problem constitute the decision space.

The criteria space is specified by a finite set of criteria
Z . Each criterion z has an outcome domain Ω(z) and is
a function from the problem space S(X ) to Ω(z). We de-
fine the outcome domain Ω(Z) of a set of criteria Z as the
union of the outcome domains of those criteria. The func-
tion can be formulated in terms of numerical or symbolic
expressions over the variables xj . Examples are linear ex-
pressions, piecewise linear expressions, minimum, and max-
imum. Given a solution σ of the constraints C, we denote the
value of the criterion z for this decision by z(σ). We can also
view the criteria as variables and say that a solution σ gener-
ates an assignment to Z which associates each element z of
Z with its value z(σ) under σ, i.e. Z(σ) := {(z, z(σ)) | z ∈
Z}. The criteria space is the set of all the assignments to Z
which are generated by solutions. If there is no ambiguity,
we also call these generated assignments solutions.

The user can compare two decisions in terms of the cri-
teria values. We model the resulting preference order by a
preorder on the outcome space S(Z) which contains all the
assignments to Z . A preorder � is a reflexive and transi-
tive binary relation. If ω1 � ω2 holds for two outcomes
ω1, ω2 ∈ S(Z), then this means that the outcome ω1 is at
least as preferred as ω2. The strict part � of a preorder �
contains all tuples (ω1, ω2) that satisfy ω1 � ω2, but not
ω2 � ω1. We do not require that the preference order �
is complete. It is thus possible that neither ω1 � ω2, nor
ω2 � ω1 hold. This addresses cases where ω1 and ω2 are
incomparable and cases where a preference between ω1 and
ω2 is not known. In the second case, the considered prefer-
ence relation may be refined when additional information is
elicited.

A decision σ∗ dominates a decision σ w.r.t. a preference
order � iff Z(σ∗) � Z(σ) holds, but not Z(σ) � Z(σ∗),
i.e. Z(σ∗) is better than Z(σ) w.r.t. the strict order �. A
decision σ is a preferred solution w.r.t. a preference order �
iff it is not dominated by any other decision.

Although the representation of an arbitrary preference or-
der over a combinatorial space is doubly exponential, many
interesting preference orders have a specific structure allow-
ing a compact representation. This paper tries to identify one
of those structures and thus addresses an emerging research
topic (cf. e.g. (Lang 2004)).

Conjunctive Preference Statements
Although preference representations in form of numerical
utility functions are ubiquitous in combinatorial optimiza-
tion, there is a general agreement that users express their
preferences in a qualitative form. For example, consider
a (web-based) recommender system that proposes vacation
packages to the user. It is a usual assumption that a deci-
sion support system can elicit the user’s preferences by ask-
ing questions such as ‘do you prefer vacation package A at
least as much as vacation package B?’. If this question is
posed for each pair A and B of possible decisions, then a
complete preference order on the decision space can be ac-
quired in this way. However, the choice of a vacation pack-
age may require a combination of more basic choices such

59



prefer a1 to b1
prefer a2 to b2

a1, a2

b1, a2a1, b2

b1, b2

a) Preferences on values.

prefer a2 to b2
prefer a1, b2 to b1, a2

prefer a1 to b1

a1, a2

b1, a2a1, b2

b1, b2

b) Trade-off preference.

prefer a1 to b1

prefer b1, b2 to b1, a2

prefer a1, a2 to a1, b2

b1, b2

a1, a2

a1, b2 b1, a2

c) Conditional preferences.

prefer a1 to b1

prefer b1, b2 to a1, a2

prefer a2 to b2

b1, b2

a1, a2

a1, b2 b1, a2

d) Annihilation by reversal.

Figure 1: Ceteris Paribus Preference Orders.

as the vacation destination, the hotel chain, the time period,
and different extras. As a consequence, the recommender
system has to deal with a combinatorial decision space and
the exhaustive elicitation is not practical in this case. Hence,
the system will usually elicit an incomplete preference order
which may be refined during further interactions.

Furthermore, as the decisions are complex objects and
consist of many details, the user will not compare the de-
cisions in their full extent, but base the comparison on crite-
ria which are attributes of the decisions. For example, a user
may compare two vacation packages in terms of the possible
vacation activities, such as swimming, hiking, windsurfing,
and the kind of the landscape, such as flat coast, rocky coast,
and mountain. For example, the user may prefer a swim-
ming vacation as least as much as a hiking vacation sup-
posing that all other criteria are equal for the two vacations.
Here, the user compares two possible values for one crite-
rion and states a ceteris paribus preference between those
values. We can write this statement as a preference between
two assignments to the same criterion z:

prefer z = v to z = w

Each such ceteris paribus preference statement defines a
preference order on the outcome space. We simply com-
plete the preference by an assignment to the other criteria.
Then {(z, v)} ∪ ξ is preferred to {(z, w)} ∪ ξ and this for
all assignments ξ to the criteria Z − {z}. If multiple ceteris
paribus statements are given, we take the union of their re-
spective preference orders. Figure 1a shows the preference
order for two ceteris paribus preference statements, namely
a preference of swimming (a1) to hiking (b1) and a prefer-
ence of flat costs (a2) to rocky coasts (b2). Since this order
is generated for single-criterion preferences, it corresponds
to the well-known notion of Pareto-dominance and the pre-
ferred solutions correspond to Pareto-optimal solutions.

Usually the set of Pareto-optimal solutions is quite large.
It can be reduced by stating trade-off preferences between
several criteria. For example, the user may state that she
prefers swimming at rocky coasts (a1, b2) to hiking at flat
coasts (b1, a2). Here, we consider two assignments which
combine the best value for one criterion with the worst value
of the other criterion. Such a trade-off preference refines the
previous preference relation and also refines its strict part as
illustrated by Figure 1b. As such, each preferred solution of

the refined order is also a preferred solution of the original
order. As a trade-off preference compares two assignments
to the same criteria z1, . . . , zk, we obtain preference state-
ments that compare two conjunctions:

prefer z1 = v1 ∧ . . . ∧ zk = vk to z1 = w1 ∧ . . . ∧ zk = wk

Let us now define a (finite) set P of ceteris paribus prefer-
ence statements as follows. Each preference in P has the
form (α, β) where α and β are two assignments to the same
criteria set Z ⊆ Z and expresses a (weak) preference of α
to β. The criteria set Z is called the scope of the prefer-
ence. As we compare the same criteria, the all-else-equal
condition thus concerns exactly the criteria in the comple-
ment Z −Z of the scope. Doyle and Wellman also consider
more general forms of preference statements between propo-
sitional formulas. An example are importance preferences.
If we prefer z1 = v1 to z2 = v2, then a decision supporting
z1 = v1 is preferred to a decision supporting z2 = v2 and
this independent of the value of z2 in the first decision and
the value of z1 in the second decision. The investigation of
importance preferences is beyond the scope of this paper.

It is important to note that the preferences in P can dif-
fer in their scope. We synthesize the local preferences in P
to a global preference order over all the criteria. The stan-
dard way of doing this is to interpret the statements as ceteris
paribus statements:

Definition 1 (ceteris paribus) A preorder � on S(Z) is a
ceteris paribus order for P iff α ∪ ξ � β ∪ ξ holds for all
statements (α, β) ∈ P and for all assignments ξ to the com-
plement of the scope of (α, β).

The intersection of two ceteris paribus orders for P is also
a ceteris paribus order for P . Hence, there is a unique min-
imal ceteris paribus orders for P . It is known that this min-
imal order can be generated from the ceteris paribus state-
ments in the following way:

Proposition 1 Let �cp be the minimal ceteris paribus order
and let α �cp β. There exists an n ≥ 1 and γ1, . . . , γn such
that α = γ1, β = γn, and for each i = 1, . . . , n − 1 there is
a (αi, βi) ∈ P and an assignment ξi to the complement of
the scope of (αi, βi) s.t.

γi = αi ∪ ξi �cp βi ∪ ξi = γi+1 (1)
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As observed in (McGeachie & Doyle 2004), conjunctive
preferences are sufficiently expressive to represent condi-
tional preferences (Boutilier et al. 1999) of the form:

if z1 = v then prefer z2 = v2 to z2 = w2

It can be reformulated into a conjunctive preference between
two assignments that agree in the value of z1:

prefer z1 = v ∧ z2 = v2 to z1 = v ∧ z2 = w2

Figure 1c shows the preference order for two conditional
preferences for z2 and a single-criterion preference for z1.

The conjunctive ceteris paribus statements are more ex-
pressive than CP-nets. Indeed, any preorder over a combi-
natorial space can be represented by a (doubly exponential
number of) conjunctive ceteris paribus statements.

However, conjunctive preference statements suffer from
two problems which are due to overlapping scopes and pref-
erence reversal. Firstly, we consider two statements that
have overlapping scopes:

prefer z1 = v1 ∧ z2 = v2 to z1 = w1 ∧ z2 = w2

prefer z2 = v2 ∧ z3 = v3 to z2 = w2 ∧ z3 = w3

We expect that z1 = v1 ∧ z2 = v2 ∧ z3 = v3 is pre-
ferred to z1 = w1 ∧ z2 = w2 ∧ z3 = w3 as the first as-
signment consists of the desired choices of the two state-
ments and the other assignment consists of the non-desired
choices of the two statements. To establish this, we need
to find a sequence of ‘improvement flips’ that transforms
the second assignment into the first assignment while ap-
plying a single preference in each flip. The first state-
ment transforms z1 = w1 ∧ z2 = w2 ∧ z3 = w3 into
z1 = v1 ∧ z2 = v2 ∧ z3 = w3, thus improving the values
of z1 and z2. But now we cannot apply the second state-
ment since z2 has already the value v2. Similarly, the first
statement gets blocked when we first apply the second state-
ment. If the two assignments z1 = v1 ∧ z2 = v2 ∧ z3 = w3

and z1 = w1 ∧ z2 = v2 ∧ z3 = v3 do not belong to the
criteria space, then the ceteris paribus semantics will pro-
pose z1 = w1 ∧ z2 = w2 ∧ z3 = w3, which consists of the
non-desired choices, as a preferred solution in addition to
z1 = v1 ∧ z2 = v2 ∧ z3 = v3, which consists of the desired
choices. As this result is counterintuitive, we advocate for a
parallel application of several preference statements.

A parallel application of several statements is possible if
these statements are compatible. We say that two assign-
ments α1 and α2 are compatible iff α1∪α2 is a function, i.e.
(z, v1) ∈ α1 and (z, v2) ∈ α2 implies v1 = v2. Two pref-
erence statements (α1, β1) and (α2, β2) in P are compatible
iff α1 and α2 are compatible and β1 and β2 are compatible.
A set P of preference statements is compatible iff any two
preferences p1 and p2 from P are compatible.

Definition 2 (parallel ceteris paribus) A preorder � on
S(Z) is a parallel ceteris paribus order for P iff each com-
patible subset P of P satisfies

⋃

(α,β)∈P

α ∪ ξ �
⋃

(α,β)∈P

β ∪ ξ (2)

for each assignment ξ to the complement of the scope of P .

The intersection of two parallel ceteris paribus orders for
P is also a parallel ceteris paribus orders for P . Hence, there
is a unique minimal parallel ceteris paribus order for P . If
an assignment is better than another one under the minimal
parallel ceteris paribus order, then we find a sequence of par-
allel ceteris paribus flips:
Proposition 2 Let �pcp be the minimal parallel ceteris
paribus order and let α �pcp β. There exists an n ≥ 1
and γ1, . . . , γn such that α = γ1, β = γn, and for each
i = 1, . . . , n − 1 there is a Pi ⊆ P and an assignment ξi to
the complement of the scope of Pi s.t.

γi =
⋃

(α,β)∈Pi

α ∪ ξi �pcp

⋃

(α,β)∈Pi

β ∪ ξi = γi+1 (3)

Preference reversal is obtained if the (parallel) ceteris
paribus order has a cycle. This means there are two different
assignment ω1 and ω2 such that ω1 � ω2 and ω2 � ω1. The
first preference is thus reversed by the second one. As a con-
sequence, there is no strict preference between ω1 and ω2,
meaning that both assignments may be optimal. Hence, the
preference statements that generated ω1 � ω2 and ω2 � ω1

get annihilated. Annihilation can also occur in the extended
semantics of CP-nets (Brafman & Dimopoulos 2004). We
distinguish two cases of preference reversal. In the first
case, we suppose that the cycle is caused by preferences of
same scope. Hence, the cycle is already present in the state-
ments given by the user. For example (Tversky & Thaler
1990) reports a reversal of trade-off preferences. Consider
the preferences in Figure 1b and suppose that another elici-
tation method adds a preference of b1, a2 to a1, b2. Hence,
the trade-off preferences annihilate themselves and we re-
turn to the strict order of Figure 1a. This case of preference
reversal can only be addressed by further user interaction.

The other case of preference reversal is obtained if the
statements differ in their scope. For example, suppose that
the user prefers hiking at rocky coasts to swimming at flat
coasts, although she prefers swimming to hiking in gen-
eral and flat coasts to rocky coasts in general. The reason
might be a nice panoramic view, which could be expressed
by a third criterion if it were present. As a consequence the
Pareto-dominance order is turned upside-down when com-
paring the best Pareto-optimal choice with the worst Pareto-
optimal choice. This upside-down reversal leads to an an-
nihilation of all stated preferences, meaning that all choices
become optimal (cf. 1d). Indeed, the ceteris-paribus seman-
tics expresses a strong monotonicity principle stating that
a1a2 is preferred to b1b2 whenever a1 is preferred to b1 and
a2 is preferred to b2. This monotonicity principle is a cen-
tral axiom in multi-attribute utility theory (Le Huédé et al.
2006). Although its violation may be rare and represents
a change of attitude in a particular situation, it is neverthe-
less legitimate from the stand-point of Artificial Intelligence,
which seeks cognitive adequateness. Therefore, we explore
a semantics for this upside-down preference reversal.

Preference Reversal
We now elaborate a semantics of preference reversal. If a cy-
cle in the preference relation is caused by an interaction be-
tween preference statements of different scope, then we will
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b1, b2

a1, a2

b1, a2a1, b2

prefer a1 to b1

prefer b1, b2 to b1, a2

prefer a2 to b2

a) Conditional preference.

b1, b2

a1, a2

a1, b2 b1, a2

prefer a1 to b1

prefer b1, b2 to a1, a2

prefer a2 to b2

b) Upside down reversal.

Figure 2: Reversible Ceteris Paribus Preference Orders.

give priority to the more specific statements. Since the user
has explicitly stated that she prefers hiking at rocky coasts
to swimming at flat coasts, we suppose that this statement
overrides the inverse preference which is derived from the
general preference for swimming and the general preference
for flat coasts via the ceteris paribus principle. If we relax
this principle and apply it only as a default rule, then we can
avoid the preference annihilation shown in Figure 1d.

However, the ceteris-paribus principle should only be re-
laxed in certain cases. Consider a preference which ex-
presses that z1 = w1 ∧ z2 = w2 is the desired choice:

prefer z1 = w1 ∧ z2 = w2 to z1 = v1 ∧ z2 = v2

This desired choice can be put into question by two general
preferences stating that v1 is preferred to w1, all else equal,
and that v2 is preferred to w2, all else equal:

prefer z1 = v1 to z1 = w1

prefer z2 = v2 to z2 = w2

We protect the preferred choice of the specific preference
against improvement flips based on less specific preferences.
More generally, if an assignment γ is the desired choice of
a preference of a scope Z, then only a preference of a scope
that is a superset of Z may be used to flip γ. In all other
cases, we block the second preference:

Definition 3 (blocking) An assignment ω to Z blocks a
preference (α, β) in P iff there is a preference (γ, δ) in P
s.t. β and γ are subsets of ω, β and γ have a non-empty
intersection and β is not a superset of γ, i.e. γ � β.

In our example, the general preference of a1 to b1 and of
a2 to b2 are blocked in the state b1b2 as shown in Figure
2b. However, we do not block the general preferences in
other situations such as a1b2 and b1a2. When a preference
statement (α, β) is blocked in an assignment β ∪ ξ, then we
do not prefer α∪ ξ to β ∪ ξ. We use this relaxation to define
reversible parallel ceteris paribus orders:

Definition 4 (reversible parallel ceteris paribus) A pre-
order � on S(Z) is a reversible parallel ceteris paribus order
for P iff each compatible subset P of P satisfies

⋃

(α,β)∈P

α ∪ ξ �
⋃

(α,β)∈P

β ∪ ξ (4)

for each assignment ξ to the complement of the scope of P
such that no (α, β) ∈ P is blocked in

⋃
(α,β)∈P β ∪ ξ.

The intersection of two reversible parallel ceteris paribus
orders for P is also a reversible parallel ceteris paribus or-
ders for P . Hence, there is a unique minimal reversible par-
allel ceteris paribus order for P . If an assignment is better
than another one under this minimal order, then we find a se-
quence of parallel ceteris paribus flips where more specific
statements precede more general statements:

Proposition 3 Let �rcp be the minimal reversible parallel
ceteris paribus order and let α �rcp β. There exists an
n ≥ 1 and γ1, . . . , γn such that α = γ1, β = γn, and for
each i = 1, . . . , n−1 there is a subset Pi of the strict part of
the reflexive transitive closure P∗ of P and an assignment
ξi to the complement of the scope of Pi s.t.

γi =
⋃

(α,β)∈Pi

α ∪ ξi �rcp

⋃

(α,β)∈Pi

β ∪ ξi = γi+1 (5)

and for each (α1, β1) ∈ Pi s.t. i < n − 1 there is a
(α2, β2) ∈ Pi+1 s,t. α2 ⊂ β1.

The reversible ceteris paribus order agrees with the tradi-
tional order if all preference statements have disjoint scopes.
Furthermore, it does not impact trade-off preferences. How-
ever, preference reversal impacts conditional preferences as
it permits to simplify the representation of conditional pref-
erences. One of the conditional preferences can be turned
into a single-criterion preference which becomes the default
(see Figure 2a). Conditional preferences then represent re-
versals of standard single-criterion preferences, which are
the core of multi-attribute utility theory.

Preference Reversal and Pareto-Optimality
We now establish the correspondence between prefer-
ence reversal and a prioritized form of Pareto-optimization
(Junker 2002) by reformulating the problem. We can then
compute a preferred solution by applying an existing opti-
mization algorithm to the reformulated problem.

We add new dimensions to the criteria space. For each
preference (α, β) ∈ P , we introduce a binary criterion yα

which has the outcome domain {0, 1} and we define Y as the
set of all those criteria. The meaning of these new criteria
is as follows: whenever yα has the value 1 in an assignment
ω to Z∗ := Y ∪ Z , then ω must contain α. However, we
do not require the converse and permit that yα has the value
0 when ω contains α. We consider only those assignments
ω to Z∗ that respect these constraints and we call those as-
signments legal. Hence, the new criteria space is defined by
an extended set of criteria which we denote by Z∗ and an
extended set of constraints which we denote by C∗. Further-
more, we associate the criterion yα with a preference order
�yα

on the domain {0, 1}. As α represents a desired choice,
we try to make it true whenever possible and therefore prefer
the value 1 to the value 0 by defining v �yα

w iff v > w.
Hence, the binary criterion yα behaves like a default rule :α

α .
We define �z as the empty ordering for the criteria z in Z .

Furthermore, we define an importance ordering �Z∗ on
the criteria in Z∗. We say that yα ∈ Y is more important
than yβ ∈ Y , i.e. yα �Z∗ yβ , iff there is a preference (α, γ)
in the strict part of the reflexive transitive closure P∗ of P
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Algorithm PREFERENCEREVERSER(C, Z , P)

1. solve C and let σ be the result;
2. if σ = ⊥ then return ⊥;
3. let Y := {yα | (α, β) ∈ P};
4. add legality constraints for Y to C;
5. let O be the strict part of the
6. reflexive transitive closure of P;
7. let I := {(yα, yβ) ∈ Y 2 | ∃(α, γ) ∈ O : β ⊆ γ};
8. let y1, . . . , yn be the nodes of (Y, I)
9. in a topological order;
10. for each i = 1, . . . , n do
11. solve C ∪ {yi = 1} and let σ′ be the result;
12. if σ′ �= ⊥ then C := C ∪ {yi = 1}; σ := σ′;
13. return σ;

Figure 3: Computing a solution by preference reversal.

s.t. β ⊆ γ, and we say that yα ∈ Y is more important than
z ∈ Z , i.e. yα �Z∗ z, iff z is in the scope of α. We now
define a prioritized Pareto-order �pp on legal assignments:
Definition 5 (Prioritized Pareto-ordering) Let σ1 and σ2 be
two legal assignments to Z∗. Then σ1 is better than σ2 w.r.t.
the prioritized Pareto-order, i.e. σ1 �pp σ2, iff z(σ1) 	=
z(σ2) for some z ∈ Z∗ and for each z ∈ Z∗ with z(σ1) 	=
z(σ2) one of the following condition holds:

1. z(σ1) �z z(σ2) or
2. there exists a z∗ ∈ Z∗ s.t. z∗ �Z∗ z and z∗(σ1) 	=

z∗(σ2).
According to the traditional Pareto-optimality, a solution can
dominate a second solution only if all criteria have values
in the dominating solution that are better than or equal to
their values in the dominated solution. Prioritized Pareto-
optimality permits that certain criteria may have worse val-
ues in the dominating solution iff there is a more important
criterion which has a better value in the dominating solu-
tion. For example, yz1=v1∧z2=v2 = 1 ∧ yz1=w1 = 0 dom-
inates yz1=v1∧z2=v2 = 0 ∧ yz1=w1 = 1 if the criterion
yz1=v1∧z2=v2 is more important than yz1=w1 .

We now project the prioritized Pareto-dominance order-
ing �pp which is defined on the outcome space S(Z∗) onto
the original outcome space S(Z). We define ω1 �Z

pp ω2 for
two assignments ω1, ω2 to Z if and only if there are legal
assignments ω∗

1 and ω∗
2 to Z∗ such that ω∗

1 is a superset of
ω1, ω∗

2 is a superset of ω2, and ω∗
1 dominates ω∗

2 in the pri-
oritized Pareto-ordering �pp. We now state our main result:

Theorem 1 The projection �Z
pp of the prioritized Pareto-

dominance ordering �Z is equal to the strict part of the
minimal reversible parallel ceteris paribus order �rcp.

As a corollary, the preferred decisions of both orderings
coincide. The proof of this theorem (which is omitted for the
lack of space) exploits the particularities of the concepts that
we have introduced. It makes use of the parallel application
of ceteris paribus preferences. It relates the blocking notion
to that of prioritization under the importance order.

Furthermore, the theorem leads to an immediate algo-
rithm for computing one preferred solution under the re-
versible ceteris paribus ordering. As explained in (Junker

2006), we can find a Pareto-optimal solution by choosing a
lexicographical ordering that extends the Pareto-dominance.
We can find such an ordering even for prioritized Pareto-
optimality since it suffices to consider a linearization of the
importance ordering �Z∗ (which can be done by a topologi-
cal sort) and to do a lexicographic optimization based on this
linearization. The optimization steps for a binary criterion
y just consist in checking whether the assignment y = 1 is
consistent w.r.t. the other constraints. As the original criteria
z have an empty preference order �z , we need not perform
an optimization step for them. The resulting algorithm is
displayed in Figure 3. It returns ⊥ if the constraints C have
no solution. Otherwise, it returns a preferred solution under
�pp. Given n preference statements, it needs n calls of a
constraint solver and there is much room for optimizing the
algorithm in future work.

Conclusion
Generalized forms of ceteris-paribus preferences as studied
in AI permit the representation of any preference relation
over a combinatorial criteria space. However, the compu-
tation of this preference relation appears to be a difficult
task according to the experiences reported in (McGeachie &
Doyle 2004) and (Boutilier et al. 2004). Moreover, we have
shown in this paper that the preference relation may lead to
counterintuitive results if preferences overlap or if specific
preferences reverse more general ones and annihilate all the
preferences. We elaborated a new semantics that permits
preference reversal. More specific preference statements
can override more general preference statements. Prefer-
ence reversal does not only model interesting phenomena
in the interaction of multiple preferences, but also simplifies
the representation of the well-studied conditional preference
statements. However, the most surprising property is that
preference reversal can be mapped to a prioritized form of
Pareto-optimization and bears a natural lexicographical op-
timization algorithm. This algorithm does not require a com-
putation of the preference relation, but applies the preferred
choices of the preference statements starting with the most
specific ones. This approach can easily be implemented on
top of the system described in (Junker & Mailharro 2003).
Hence, preference reversal simplifies the elicitation, repre-
sentation, and utilization of complex form of preferences
and thus promises a more realistic preference handling in
personalized decision support systems such as recommender
systems and preference-based intelligent systems.

Appendix: Reversing Search Preferences
In this appendix, we illustrate preference reversal by an ex-
ample of reasoning as it occurs in AI research. We consider
systematic search methods for solving combinatorial prob-
lems. The current wisdom prefers dynamic decision order-
ings over static decision orderings. Furthermore, constraint-
based branching methods which either add a constraint (such
as a variable-value assignment) or its negation to the orig-
inal problem are preferred over ‘fancy branching’ meth-
ods that set up subproblems without adding a specific con-
straint to the solver. Forthcoming work (Junker 2007) shows
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that these preferences may be reversed in certain circum-
stances, thus preferring fancy branching with static order-
ings to constraint-based branching with dynamic orderings.
We summarize the essential ideas of this work.

Let C be a conjunction of propositional clauses formu-
lated over the propositional variables x1, . . . , xn. We inves-
tigate the problem of deciding the satisfiability of C. The
approach in (Junker 2007) introduces selection operators on
the set of clauses in order to decompose the satisfiability
problem into disjoint subproblems. The positive subprob-
lem of C is denoted by ρ+

i (C) and is the conjunction of all
clauses from C that contain the literal ¬xi. The negative
subproblem of C is denoted by ρ−i (C) and is the conjunction
of all clauses from C that contain the literal xi. The neutral
subproblem of C is denoted by ρ0

i (C) and is the conjunction
of all clauses in C that do not contain any of xi and ¬xi. The
original problem C is equivalent to the conjunction of these
subproblems and each clause occurs in exactly one subprob-
lem. This decomposition is not obtained by adding a lit-
eral to the original problem and is thus ‘fancy’ as discussed
above. If a subproblem is empty then it is the conjunction
⊥ and we call it a failing leaf problem. A projection op-
erator π−i(P ) reduces each subproblem P by deleting the
literals xi and ¬xi from all clauses in P . The neutral sub-
problem ρ0

i (C) is equal to π−i(ρ0
i (C)). The positive sub-

problem ρ+
i (C) is equivalent to xi ⇒ π−i(ρ+

i (C)) and the
negative subproblem is equivalent to ¬xi ⇒ π−i(ρ−i (C)).
If a subproblem contains the unit clause xi or ¬xi, the pro-
jection operator π−i reduces this problem to the tautology
�. We call such a subproblem a successful leaf problem.

Furthermore, (Junker 2007) defines a family of anti-
lexicographical orderings on vectors of truth values T, F.
A value v is better than a value w iff v is equal to T and
w is equal to F. The lexicographic orderings are com-
paring the vectors starting from the end until they find
an index with different truth values in the two vectors:
(v1, . . . , vn) �antilex

1,...,n (w1, . . . , wn) iff there is a k s.t.
vk > wk and vj = wj for j = k + 1, . . . , n. In (Junker
2007), the lexicographical orderings are used to impose mul-
tiple lexicographical bound constraints

i∧

j=1

(uj,1, . . . , uj,j) 
antilex
1,...,j (x1, . . . , xj) (6)

in addition to the constraints of C. These bound con-
straints conserve intermediate results obtained from ex-
ploring the subproblems. Bound constraints on par-
tial vectors (x1, . . . , xi) conserve the results of neutral
subproblems. The bounds cannot be chosen arbitrar-
ily. The idea is that bounds on larger vectors must be
at least as tight as those on their subvectors. (Junker
2007) defines a bound matrix of size i as a tuple u :=
(u1, . . . , ui) of vectors uj := (uj,1, . . . , uj,j) that satisfy
(uj−1,1 . . . , uj−1,j−1) 
antilex

1,...,j−1 (uj,1, . . . , uj,j−1) for j =
2, . . . , i. A bound matrix can also be the inconsistency ⊥. A
particular bound matrix is the trivial bound matrix uT which
entirely consists of T-bounds. Given a bound matrix u, we
define B(u) as the constraint (6) applied to u if the bound
matrix is different to ⊥. Otherwise, B(u) is equal to ⊥.

Algorithm QuickLex(C, i, u)

1. if uC = ⊥ or C = ⊥ then return ⊥;
2. if C = 	 then return u;
3. u := min(u, uC);
4. while u �= uC do
5. uC := u
6. if u = ⊥ then return ⊥;
7. u0 := QuickLex(π−i(ρ

0(C)), i − 1, π−i(u))
8. if u0 = ⊥ then uC := ⊥; return uC ;
9. u := update(u, u0)
10. u+ := ⊥;
11. if ui,i = T then
12. u+ := QuickLex(π−i(ρ

+(C)), i − 1, π+
−i(u))

13. u− := QuickLex(π−i(ρ
−(C)), i − 1, π−i(u))

14. u := update(u, max(u+, u−));
15. if u+ �= ⊥ then ui := (u+

i−1,1, . . . , u
+
i−1,i−1, T)

16. else if u− �= ⊥ then ui := (u−
i−1,1, . . . , u

−
i−1,i−1, F)

17. else uC := u; return ⊥;
18. return uC ;

Figure 4:

(Junker 2007) introduces an algorithm called QuickLex
that is supplied with a conjunction C of clauses over vari-
ables x1, . . . , xi, the index i, and a bound matrix u of size i.
If C ∧ B(u) is unsatisfiable, then the algorithm returns ⊥.
Otherwise, it returns a bound matrix u′ of size i, from which
it is possible to extract a model of C.
QuickLex performs a set of operations on bound matri-

ces. The maximum max(v, v′) of two vectors v, v′ of size
i is the vector that is greater than or equal to the other
one in the anti-lexicographical ordering 
antilex

1,...,i . Similarly,
the minimum min(v, v′) of two vectors v, v′ of size i is
the vector that is smaller than or equal to the other one in
the anti-lexicographical ordering 
antilex

1,...,i . The maximum
max(u, u′) of two bound matrices u := (u1, . . . , ui) and
u′ := (u′

1, . . . , u
′
i) is (max(u1, u

′
1), . . . , max(ui, u

′
i)). The

minimum min(u, u′) is defined similarly. The maximum of
a bound matrix u and ⊥ is u. The minimum of a bound
matrix and ⊥ is ⊥.

If v := (v1, . . . , vi) is a vector, then π−i(v) :=
(v1, . . . vi−1) is the vector obtained by removing the last
element of v. If u := (u1, . . . , ui) is a bound matrix,
then π−i(u) := (u1, . . . , ui−1) is the bound matrix ob-
tained by removing the last vector from u. A variant is
π+
−i(u) := (u1, . . . , ui−2, π−i(ui)) which removes the sec-

ond last vector and adapts the size of the last vector. We de-
fine the update update(v, v′) of a vector v := (v1, . . . , vi)
of size i by a vector v′ of size i − 1 by taking the min-
imum min(v′, (v1, . . . , vi−1)) = (w1, . . . , wi−1) and by
adding vi, i.e. (w1, . . . , wi−1, vi). We define the update
update(u, u′) of a bound matrix u := (u1, . . . , ui) of size
i by a bound matrix u′ := (u′

1, . . . , u
′
i−1) of size i − 1 as

(u′
1, . . . , u

′
i−1, update(ui, u

′
i−1)).

The algorithm QuickLex is initially called with the orig-
inal problem C, the number n of variables, and the trivial
bound matrix uT of size n. It then recursively decomposes
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the problem into subproblems for xn, xn−1, and so on un-
til reaching the leaf problems. We thus obtain a hierarchical
decomposition tree. A node of this tree is identified by a con-
junction C of clauses. There is at most one failing leaf for
each constraint of the original problem. Hence, the number
of failing leaves is bounded by the number m of constraints.
Consequently, the number of inner nodes is bounded simi-
larly. The algorithm maintains a bound matrix uC for each
inner node, thus avoiding that a failing leaf is explored twice.
This bound matrix is initialized by a trivial bound matrix of
adequate size. The space complexity for those bound matri-
ces is O(n2 · m).

Given a bound matrix u, the algorithm seeks to make it
tighter. As failing leaves are not satisfiable, the algorithm
returns ⊥ in this case (line 1). Similarly, ⊥ is returned if
the bound matrix of the subproblem is ⊥. As successful
leaves are satisfied by any solution, the given bound cannot
be tightened in such a case and is returned unchanged (line
2). In all other cases, the bound matrix of the subproblem is
used to tighten the bound matrix u (line 3). If the result is
equal to the bound matrix of the subproblem (line 4), then
the subproblem will not reduce u further and the algorithm
returns the result. Otherwise, the bound matrix u is tighter
now than uC , which is updated (line 5). If bound matrix u
is equal to ⊥ it cannot be tightened anymore (line 6). Oth-
erwise, QuickLex is applied to the neutral subproblem in
order to reduce π−i(u). If the neutral subproblem has no
solution, the current problem has no solution either (line 8).
Otherwise, its result is used to update u (line 9). If xi may
have a positive value (line 11), then the positive subprob-
lem is solved under a reduced form of u (line 12). As the
last element of u is valid if xi is chosen, it is kept and the
second last vector of u is removed when solving the posi-
tive subproblem. The negative subproblem is solved in all
cases (line 13), but here the last vector of u is removed as it
is not valid for the negative subproblem. The maximum of
the results of both subproblems is used to update u (line 14).
Furthermore, the last vector of u is updated by the positive
subproblem (line 15) if it was successful or by the negative
subproblem otherwise (line 16). If none of the subproblems
was successful, ⊥ is returned (line 17). The whole process is
continued until the bound of the neutral subproblem agrees
with the bound of the positive or of the negative subprob-
lems.

The algorithm has the following properties. Let u′ be the
result of QuickLex(C, i, u). Then B(u′) is a logical con-
sequence of B(u) ∧ C. If u′ is equal to ⊥, this means that
B(u) ∧ C is unsatisfiable. If u′ is different to ⊥, let σ be
an assignment of the variables to the truth values such that
σ(xi) = ui,i if π−i(ui) = ui−1 and σ(xi) = F otherwise.
Then σ is a model of B(u) ∧ C, meaning that B(u) ∧ C is
satisfiable. As the initial bound matrix is trivially satisfied,
this means that algorithm QuickLex can decide the satisfia-
bility of C.

Algorithm QuickLex clearly uses a problem decomposi-
tion based on a static ordering. Furthermore, it uses ‘fancy
branching’ as the neutral subproblem neither imposes xi,
nor ¬xi for some literal xi. Nevertheless, the complexity
analysis in (Junker 2007) suggests that this combination of a

static ordering and fancy branching is preferable to a dy-
namic ordering and constrained-based branching. Hence,
the standard search preferences are reversed by this specific
and unconventional combination of methods.
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