
Preferences Improve Learning to Solve Constraint Problems

Smiljana Petrovic1 and Susan L. Epstein1,2

1Department of Computer Science, The Graduate Center of The City University of New York, NY, USA
2Department of Computer Science, Hunter College of The City University of New York, NY, USA

spetrovic@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract
Search heuristics that embody domain knowledge often re-
flect preferences among choices. This paper proposes a va-
riety of ways to identify a good mixture of search heuristics
and to integrate the preferences they express. Two prefer-
ence expression methods inspired by the voting literature in
political science prove particularly reliable. On hard prob-
lems, good methods to integrate such heuristics are shown to
speed search, reducing significantly both computation time
and the size of the search tree.

Introduction

In the eighteenth century, the Marquis de Condorcet (1745-
1794) argued that a democracy as a whole is more effective
than any of its individual members. His Condorcet Jury
Theorem asserted that the judgment of a committee of
competent advisors is superior to the judgment of any indi-
vidual advisor. In the context of a complex search prob-
lem, that would suggest that the judgment of a committee
of likely heuristics would be superior to the judgment of
any individual heuristic.

The thesis of this work is that a weighted selection of
appropriate heuristics and nuances from their comparative
opinions (here, heuristics’ preferences) can improve search
performance. When multiple search heuristics are available
for complex problems, using more than one often proves
more effective (Valentini and Masulli, 2002). Nonetheless,
precisely how to combine a set of putatively appropriate
heuristics is not well understood. The given heuristics may
be potentially ineffective on a given class of problems, and
not necessarily independent of one another (Wallace,
2005).

This paper explores the impact of two kinds of prefer-
ences: preferences for heuristics and preferences of heuris-
tics. Preferences for heuristics identify appropriate deci-
sion-making components in a search algorithm. Because a
larger set of heuristics is likely to consume more computa-
tional resources, we study how the number of selected heu-
ristics affects search performance. Preferences of heuristics
express the opinions of a single heuristic about a set of
choices. When comparative opinions are expressed in dif-
ferent ways, heuristics’ preferences can result in different
search decisions. We therefore propose and study a variety
of approaches for expressing heuristics’ preferences. We
harness both, so that preferences guide search in two dif-
ferent ways:
• The solver’s preference for an individual heuristic is ex-

pressed as a weight assigned to each heuristic.
• Each heuristic’s preferences over the set of possible
choices is expressed as a number assigned to each possible
search decision.
Our principle results are that both kinds of preferences can
significantly improve heuristic-guided search.

Our domain of investigation is constraint satisfaction
problems (CSPs). A CSP is a set of variables, each with a
domain of values, and a set of constraints, expressed as re-
lations over subsets of those variables. A solution to a CSP
is an instantiation of all its variables that satisfies all the
constraints. Despite the CSP context, we stress that this pa-
per does not use “preferences” as traditionally employed,
in soft constraints. There, preferences on constraints are
used to optimize a solution

The test-bed here is ACE (the Adaptive Constraint En-
gine). It learns a customized combination of pre-specified
search-ordering heuristics for a class of CSPs (Epstein,
Freuder, et al., 2005). ACE’s heuristics are gleaned from
the CSP literature. Each heuristic has its own underlying
descriptive metric, a function from the set of available
choices to the real numbers. That metric returns a score for
each choice. The heuristic then expresses its preferences
for actions whose scores are most in agreement with its
own predilection. (For example, min-domain uses a metric
that calculates the domain size of each variable; the heuris-
tic then prefers those variables with the smallest domain
size.) In this way each of ACE’s heuristics indicates its de-
gree of preference for each available action. To make a de-
cision during search, ACE uses a weighted mixture of ex-
pressions of preference from a large number of such heu-
ristics. During learning, ACE refines those weights after
each problem.

Scores returned by the heuristics’ metrics, however, can
be very large or very small. Prior to the work described
here, ACE’s heuristics simply expressed their preferences
as a rank on a common scale. We propose here five alter-
native methods that consider both the scores returned by
the metrics and the distributions of those scores across a set
of possible actions. We also test them on a variety of
problems. In addition, prior to this work ACE labeled
“competent” for a problem class all heuristics with better
than random performance there. We investigate here fur-
ther reductions in the number of heuristics included in the
mixture.

The next two sections provide background on constraint
satisfaction and related work on combining heuristics. The
paper then describes the architecture used to combine heu-
ristics. In subsequent sections we propose methods that ex-

71

ploit heuristics’ preferences, describe recent experiments,
and discuss the results.

Constraint satisfaction problems

A problem class is a set of CSPs with the same characteri-
zation. For example, CSPs in model B are characterized by
<n,�m,�d,�t>, where n is the number of variables, m the
maximum domain size, d the density (fraction of edges out
of n(n-1)/2 possible edges) and t the tightness (fraction of
possible value pairs that each constraint excludes) (Gomes,
Fernandez, et al., 2004). In a binary CSP, all constraints
are on at most two variables. A binary CSP can be repre-
sented as a constraint graph, where vertices correspond to
the variables (labeled by their domains), and each edge rep-
resents a constraint between its respective variables. (Be-
cause their number of variables and domain sizes uniquely
identifies the model B classes used here, we refer to them
simply as n-m .)

A problem class can also mandate some non-random
structure on its problems. For example, a composed prob-
lem consists of a subgraph called its central component
loosely joined to one or more subgraphs called satellites
(Aardal, Hoesel, et al., 2003) . The class of composed
problems used here is referred to as Comp.

Traditional CSP search iteratively selects a variable and
assigns it a value from its domain. After each assignment,
some form of inference detects values that are incompatible
with the current instantiation. All experiments reported
here used the MAC-3 inference algorithm to maintain arc
consistency during search (Sabin and Freuder, 1997).
MAC-3 temporarily removes currently unsupportable val-
ues to calculate dynamic domains that reflect the current
instantiation. If every value in any variable’s domain is in-
consistent (violates some constraint), the current instantia-
tion cannot be extended to a solution, so some retraction
method is applied. Retraction in all experiments reported
here backtracks chronologically: the subtree rooted at the
inconsistent node (digression) is pruned, and the most re-
cent value assignment(s) withdrawn.

Search for a CSP solution is an NP-complete problem;
the worst-case cost is exponential in n for any known algo-
rithm. Often, however, a CSP can be solved with a cost
much smaller than the worst case. Although CSPs in the
same class are ostensibly similar, there is evidence that
their difficultly may vary substantially for a given search
algorithm (Hulubei and O'Sullivan, 2005). All data re-
ported here was, of necessity, generated under a generous
step limit (maximum number of search decisions) to con-
trol resources and measure search tree size. All cited dif-
ferences in this paper are statistically significant at the 95%
confidence level.

CSP heuristics direct the selection of the next variable
and its value. Typically such a heuristic reports only the
choice with the highest preference and requires a tie-
breaking mechanism. Of necessity, this paper references
many CSP heuristics. A full listing of their underlying met-
rics and associated definitions appears in the appendix.

Combining heuristics

There are several reasons why a combination of experts
can offer improved performance, compared to a single ex-
pert (Valentini and Masulli, 2002). If no single expert is
best on all the problems, a combination of experts could
enhance the accuracy and reliability of the overall system.
On limited training data, different candidate heuristics may
appear equally accurate. In this case, one could better ap-
proximate the unknown, correct heuristic by averaging or
mixing candidate heuristics, rather than selecting one
(Dietterich, 2000). For supervised learning algorithms, the
performance of such a mixture of experts has been theoreti-
cally analyzed in comparison to the best individual expert
(Kivinen and Warmuth, 1999). Under the worst-case as-
sumption, even when the best expert is unknown (in an on-
line setting), mixture-of-experts algorithms have been
proved asymptotically close to the behavior of the best ex-
pert (Kivinen and Warmuth, 1999).

Selection of appropriate heuristics from the many touted
in the constraint literature is non-trivial. Table 1 illustrates
that even well-trusted individual heuristics vary dramati-
cally on their performance on different classes. For exam-
ple, max-weighted-degree (Boussemart, Hemery, et al.,
2004) is among the best individual heuristics on model B
random problems where the number of variables is sub-
stantially larger than the maximum domain size (e.g., 50-
10). It appears to be less effective, however, when there are

Table 1: Search tree size under individual heuristics on 50
problems from each of four classes. Heuristic definitions
appear in the Appendix.

Heuristic 50-10 20-30 30-8

min-domain 51,347 10,411 563

max-degree 46,347 5,267 206

max-forward-degree 43,890 10,150 220

min-domain/degree 35,175 4,194 234

max-weighted-degree 30,956 5,897 223

min-dom/dynamic-deg 30,791 3,942 211

min-dom/weighted-deg 30,025 4,090 205

Table 2: Performance of 3 popular heuristics (in italics)
and their duals on 50 composed problems (described in the
text) under a 100,000 step limit. Observe how much better
the duals perform on problems from this class.

Heuristic Unsolved problems Steps
Max degree 9 19901.76
Min degree 0 64.60
Max forward-degree 4 10590.64
Min forward-degree 0 64.50
Min domain/degree 7 15558.28
Max domain/degree 4 10922.82

72

more potential values than variables (e.g., 20-30).
A dual for a heuristic reverses the import of its metric

(e.g., max-domain is the dual of min-domain). Duals of
popular heuristics can be superior to traditional heuristic on
real-world problems and problems with non-random
structure (Lecoutre, Boussemart, et al., 2004; Otten,
Grönkvist, et al., 2006; Petrie and Smith, 2003). For exam-
ple, a composed problem whose central component is sub-
stantially larger, looser (has lower tightness) and sparser
(has lower density) than its satellite is particularly difficult
for some traditional heuristics. Composed problems are
typically solved either with minimal backtracking or go un-
solved after many thousands of steps. For example, the tra-
ditional max-degree heuristic (prefer variables with the
largest degree in the constraint graph) tends to select vari-
ables from the central component for some time, until,
deep within the search tree, inconsistencies eventually arise
with satellite variables. In contrast, the decidedly untradi-
tional min-degree heuristic tends to prefer variables from
the satellite and thereby detects inconsistencies much ear-
lier. Table 2 shows how traditional heuristics and their du-
als fare on composed problems. Surprisingly, the simplest
duals do by far the best. We emphasize that the character-
istics of such composed problems are often found in real-
world problems as well. To achieve good performance
without knowledge about a problem’s structure, therefore,
it is advisable to consider many popular heuristics along
with their duals.

A good mixture of heuristics can outperform even the
best individual heuristic, as Table 3 demonstrates. The first
line shows the best performance achieved by any tradi-
tional single heuristic from Table 1. The second line of Ta-
ble 3 show that a good pair of heuristics, one for variable
ordering and the other for value ordering, can perform sig-
nificantly better than an individual heuristic. Nonetheless,
the identification of such a pair is not trivial. For example,
max-product-domain-value better complements m i n -
domain/dynamic-degree than it does max-weighted-degree.
The last line of Table 1 demonstrates that combinations of
more than two heuristics can further improve performance.
This paper furthers work on the automatic identification of
particularly effective mixtures.

The test-bed

The test-bed used here, ACE, is based on FORR, an archi-
tecture for the development of expertise from multiple heu-
ristics (Epstein, 1994). ACE learns to solve a class of
CSPs. It customizes a weighted mixture of pre-specified
heuristics for any given class (Epstein, et al., 2005). Each
heuristic is implemented as a procedure called an Advisor.
Advisors either address the next variable to be assigned a
value (variable-ordering heuristics) or the next value to as-
sign to that variable (value-ordering heuristics).

Guided by its Advisors, ACE solves problems in a given
class and uses its search experience to learn a weight pro-
file (a set of weights for the Advisors). To make a decision
(select a variable or a value), ACE consults all its Advisors.

Each Advisor Ai expresses the strength sij of its prefer-
ence for choice cj. Based on the weight profile, the choice
with the highest weighted sum of Advisors strengths to
choices is selected:

argmax
j

wisij

i

� [1]

Initially, all weights are set to 0.05. During learning, how-
ever, ACE gleans training instances from its own (likely
imperfect) successful searches. Positive training instances
are those made along an error-free path extracted from a
solution. Negative training instances are value selections at
the root of an incorrect assignment (a digression), as well
as variable selections after which a value assignment fails.
Decisions made within a digression are not considered.
ACE’s weight learning algorithm, RSWL (Relative Support
Weight Learning), uses those training instances to update
the weight profile. Thus it refines its search algorithm be-
fore it continues on to the next problem.

RSWL considers all heuristics’ preferences when a deci-
sion is made (Petrovic and Epstein, 2006b). Weight rein-
forcements under RSWL depend upon the normalized dif-
ference between the strength the Advisor assigned to that
decision and the average strength it assigned to all avail-
able choices. This results in a reward when the difference
is positive, and a penalty when the difference is negative.

The CSPs we address here are non-trivial. We therefore
bring to bear on them two powerful options available with
ACE: full restart and random subsets.
• Occasionally, on a challenging problem class, class-
inappropriate heuristics acquire high weights on a problem
early in training, and then control subsequent decisions. If
this results in repeated failure to solve problems, ACE re-
sorts to full restart: it recognizes that its current learning
attempt is not promising, abandons the responsible training
problems, and restarts the entire learning process with a
freshly-initialized weight profile (Petrovic and Epstein,
2006a).
• Given an initial set of heuristics that is large and incon-
sistent, many class-inappropriate heuristics may combine
to make bad choices, and thereby make it difficult to solve
the problem within a given step limit. Because only solved

Table 3: Search tree size under individual heuristics and
under mixtures of heuristics on three classes of problems.
Note that each class has its own particular combination of
more than two heuristics that performs better.

Mixture 50-10 20-30 30-8
The best representation
from Table 1 30,025 3,942 205

Min dom/dynamic degree +
Max Product Domain Value 15,091 2,764 156

Max-weighted-degree +
Max Product Domain Value 22,273 3,892 179

Mixture found by ACE 12,120 2,502 141

73

problems provide training instances for weight learning, no
learning can take place until some problem is solved. Ran-
dom subsets have proved a successful approach to this is-
sue; rather than consult all its Advisors at once, ACE ran-
domly selects a new subset of Advisors for each problem,
consults them, makes decisions based on their comments
(expressions of preference), and updates only their weights
(Petrovic and Epstein, 2007).

How to exploit heuristics’ preferences

Each Advisor takes a heuristic view of the current search
choices based on its own descriptive metric. A metric can
return large scores, for example, the size of a potential
search tree after some value assignment, estimated as the
product of all the dynamic domain sizes. A metric can also
return small scores, for example, the likelihood of search
failure estimated as the average tightness over the neigh-
bors in the original constraint graph to the power of the
original degree of the variable. To combine heuristics,
therefore, scores returned by metrics should be scaled into
some common range. We illustrate here several ways of
doing so.

Advisor A calculates some score on each choice c in the
set C of all current choices. In this way, an Advisor’s met-
ric partitions C into t subsets C1, C2,…, Ct where choices in
the same subset share a common score. These subsets are
ordered decreasingly by their Advisor’s predilection: if A
prefers choices from Ci to choices from C j, then i < j.

In all the methods considered here for expressing heuris-
tics’ preferences, the number of choices on which an Advi-
sor comments depends upon the parameter p. An Advisor
assigns positive strengths to choices from the first p sub-
sets. Choices from Ck for k > p are given strength 0; this
makes them irrelevant during voting. For example in Table
4, if a heuristic is presented with 30 choices and p�=�5, it is
expected to comment on those choices with the 5 highest
scores, 18 choices in all. Equation [1] expects that those
comments will be accompanied by some strength, how-
ever. The strength s (sij in equation [1]) of A’s support for
choice c is calculated by applying some function f to the
score vk associated with the subset Ck that contains c:

�c � C
k

,s c() = f (v
k

) [2]

We address the impact of f with six different approaches. A
sample use of each preference expression method on the
same set of scores appears in Table�4.
Ranking: Use vk to order the choices.Assign strength p to
all choices from C1, p–1 to the choices from C2, and so on:

(�c � C
k

,k � p) rank (v
k

) = p � k +1 [3]

Ranking is ACE’s original preference expression method.
It reflects the preferences of one choice over another, but it
loses information contained in the score vk in two ways.
First, it ignores the extent to which one choice is preferred
over another. For example in Table 4, if the metric were for
variables’ domain sizes, c1 and c3 differ by 25, while the

domain sizes of c3 and c13 differ by only one. Nonetheless,
ranking assigns equally distant strengths (5, 4 and 3) to
those variables. Second, ranking ignores how many choices
share the same score. For example in Table 4, the ranks of
choices c3 and c13 differ by only 1, although the heuristic
prefers only 2 choices over c3 and 12 choices over c13.
Linear interpolation: Linear interpolation not only consid-
ers the relative position of choices, but also the actual dif-
ferences between scores. Strength differences are made
proportional to the differences in scores. The strength for
choice c is determined by a linear function on its score vk

through points (v1, p) and (vp, 1).

(�c � C
k

,k � p) linear (vk) =
p �1

v
1
� v

p
(v

k
� v

p
) +1 [4]

Here, the strengths for choices are real numbers in the in-
terval [1, p]. Choices in C1 have strength p, choices in C p

have strength 1, and the strengths of other choices are line-
arly interpolated from the scores of their underlying metric.
For example, in Table 4, the strengths are determined by
the value of the linear function through points (50, 5) and
(10, 1).
Exponential scaling based on rank: Exponential scaling
emphasizes choices with large metric scores. In the first
variation, the rank of each choice is scaled exponentially:

(�c � C
k

,k � p) exp – rank (v
k

) = a � b
rank(v

k
) � rank(v

1
)
[5]

where a and b are constants. For example, in Table 4,
a�=�10, b�=�2, and the strength 10 of the highest-scoring
choices is halved for each subsequent subset.
Exponential scaling based on linear interpolation: The
second variation on exponential scaling emphasizes
choices with the highest metric score as well as relative
strengths. It scales the linearly interpolated score of each

Table 4: An example of how different preference expres-
sion methods impact a single metric. Strengths that express
preferences over 30 available choices are calculated under
6 different methods. |Ci| is the total number of choices with
the score vi. Only the 5 highest scores were under consid-
eration here.

Choices c1-c2 c3-c12 c13 c14-c16 c17-c18 c19-c20 c21-c30

Score vi 50 25 24 15 10 3 2

Subset size |Ci| 2 10 1 3 2 2 10

Method Strengths

rank 5 4 3 2 1 0 0

linear 5.00 2.50 2.40 1.50 1.00 0.00 0.00

exp–rank 10.00 5.00 2.50 1.25 0.63 0.00 0.00

exp–linear 10.00 1.77 1.65 0.88 0.63 0.00 0.00

Borda–up 30.00 28.00 18.00 17.00 14.00 0.00 0.00

Borda–down 28.00 18.00 17.00 14.00 12.00 0.00 0.00

74

choice exponentially:

(�c � C
k

,k � p) exp – linear(v
k

) = a � b
linear(v

k
) � linear(v

1
)
[6]

For example, in Table 4, with a�=�10, b�=�2, the strength 10
of the highest-scoring choices in C1 is divided by 22.5 to
obtain the strength for the choices in C2, and by 22.6 for the
choices in C3.
Borda methods: The Borda election method was devised
by Jean-Charles de Borda in 1770 (Brams and Fishburn,
2002). It inspired the next two preference expression meth-
ods. Borda methods consider the total number of available
choices and the number of choices with a smaller score.
Thus the strength for a choice is based on its position rela-
tive to the other choices. Our first variation on Borda sets
strength equal to the number of choices scored no higher
than this choice:

(�c � C
k

,k � p) Borda – up (v
k

) = | C j |
j= k

t

� [7]

where t is the number of subsets created by the partition.
For example, in Table 4, the 2 highest-scoring choices (in
C1) are assigned strength 30, the next highest (in C2) are as-
signed strength 30–2=28, and so on.

Our second variation on Borda assigns one point for
each choice with a lower score.

(�c � C
k

,k � p) Borda – down (v
k

) = | C j |
j= k+1

t

� [8]

The difference between the two Borda methods is evi-
dent when many choices share the same score. Borda–up
considers how many choices score higher. A large subset
results in a big gap in strength between that subset and the
next (less preferred) one. Borda–down considers only how
many choices score lower, so that a large subset results in a
big gap in strength between that subset and the previous
(more preferred) one. In Table 4, for example, 10 choices
share the second-highest score. In Borda–up, that results in
a 10-point difference between the strengths of C2 and C3 (28
vs. 18). In Borda–down, there is a 10-point difference be-
tween the strengths of C1 and C2 (again 28 vs. 18).

Experimental Design

We tested these six approaches to heuristics’ preferences
with ACE on three classes of randomly-generated, model�B
CSPs: <50,�10,�0.38,�0.2> with many variables and rela-
tively small domains; <20,�30,�0.444,�0.5> with fewer vari-
ables but larger domains, and the somewhat easier
<30,�8,�0.26,�0.34>. (In the tables they are referred to as 50-
10, 20-30, and 30-8, respectively.) All these problem
classes are at the phase transition, that is, particularly diffi-
cult for their size (n and m). We also tested on Comp, a
class of composed problems, where the central component
was model B with <22, 6, 0.6, 0.1>, linked to a single
model B satellite with <8, 6, 0.72, 0.45> by edges with
density 0.115 and tightness 0.05. These are challenging but
solvable problems; some of them appeared in the First In-

ternational Constraint Solver Competition at CP-2005.
For each experiment, we report the search tree size dur-

ing testing, averaged over 10 runs. A run here is a learning
phase, during which ACE adjusts its weight profile and at-
tempts to solve problems with its Advisors, followed by
testing phase, during which the weights are frozen and
some weight-based subset of the Advisors is consulted.
The weight-learning algorithm was provided with 42 Advi-
sors, described in the Appendix: 28 for variable ordering
and 14 for value ordering. We used random subsets to
speed learning: for each problem in the learning phase, a
random number r in [0.3,�0.7] was generated, and then r of
the variable-ordering Advisors and r of the value-ordering
Advisors, were selected without replacement to make deci-
sions during search on that problem. We also had ACE
monitor learning reliability with full restart: during the
learning phase, failure on 8 of the last 10 tasks triggered a
full restart. At most 2 full restarts (3 attempts) were per-
mitted. During the learning phase, ACE was required to try
to solve 30 problems from the first solved problem in its
current full-restart attempt. Problems were never reused
during learning, even under full restart. During learning,
step limits on individual problems were set based on prior
experimental experience, to be high enough to allow ACE
to find solutions, but not so high that search wandered and
thereby produced poor training examples and learned poor
weight profiles. Here, the step limits on individual prob-
lems were 100,000 for 50-10, 10,000 for 20-30, 2,000 for
30-8 and 1,000 for Comp problems.

During ACE’s testing phase it attempts to solve a se-
quence of fresh problems with learning turned off. For each
problem class, every testing phase used the same 50 prob-
lems. (Those problems were also used in Tables 1 through
3.) The step limit on each testing problem was 100,000
steps, except for the composed problems, where it was
10,000.

To examine preferences for heuristics, the first group of
experiments all used ranking (equation [2]) but reduced the
number of Advisors in testing, and made decisions based
only on a pre-specified number of the top-weighted Advi-
sors. This is in contrast to ACE's original approach, which
included during testing every Advisor whose weight is
higher than that of its respective benchmark. (A benchmark
expresses random preferences over the same set of choices
an Advisor faces. Benchmarks are excluded from decision-
making.)

To examine the preferences of heuristics, the second
group of experiments tested the preference expression
methods described in the previous section, as defined in
equations [2] through [8]. Advisors commented on choices
with the p�=�5 highest scores. In exponential scaling meth-
ods, the scaling constant was a�=�10 and the base of the e x-
ponential function was b=2. During testing, a pre-specified
number of Advisors with the highest weights was con-
sulted.

75

Results and discussion

Preferences for heuristics
The first set of experiments sought to speed search by the
elimination of more heuristics during testing. The overall
time to solve a problem depends upon the number of Advi-
sors consulted, the computational cost of each of those Ad-
visors, and the number of decisions on which an Advisor is
consulted. Ideally, one would reduce the number of Advi-
sors and avoid costly (i.e., resource-greedy) Advisors with-
out increasing the size of the search tree. Often, however,
costly Advisors are worthwhile, since they produce valu-
able information.

In ACE’s traditional approach, the benchmark criterion
typically eliminates about half the initial Advisors. (Here,
16 out of 28 variable-ordering Advisors and 6 out of 14
value-ordering Advisors usually survived the benchmark
criterion on any given run.) These experiments began with
the 8 highest-weighted variable-ordering and the 4 highest-
weighted value-ordering Advisors that met the benchmark
criterion, thereby further halving the number consulted
during testing.

Table 5 reports the average search tree size during test-
ing with fewer Advisors. If any problems went unsolved
within the step limit, those are reported in Table 5 as well.
An initial reduction, to 8 variable-ordering and 4 value-
ordering Advisors, did not have a statistically significant
impact. With more extensive reductions, however, the
search tree sizes for the 20-30 and 30-8 problems eventu-
ally increased. For the 50-10 problems, the search tree size
remained stable. We believe the explanation lies in the na-
ture of the problems themselves. When there are many val-
ues compared to the number of variables, despite inference
with MAC-3, domains remain large and many values still
share the same scores (and strengths). With so few value-
ordering Advisors, ties among value choices occur more
often, so that random selection among tied values is more
likely.

The Comp problems were negatively affected by the use
of fewer Advisors. Recall that although these are solvable
problems, they are typically solved either with minimal

search or go unsolved after extensive search. Even inap-
propriate heuristics solve some of these problems quickly.
As result, such heuristics may achieve erroneously-high
weights under RSWL. When the number of Advisors is re-
duced, the influence of each surviving heuristic increases,
and overall performance can be worse.

The computation time required by an Advisor depends
on its metric and its commonalities with other Advisors.
Some Advisors have readily-computed metrics (e.g. min-
domain), while others’ metrics require substantial calcula-
tion time (e.g. min-product-domain-value uses the products
of the domain sizes of the neighbors after each potential
value assignment). Moreover, some Advisors’ metrics are
based upon metrics already calculated for other Advisors
(e.g. dynamic-domain/weighted-degree is based on
weighted-degree and dynamic-domain). If such Advisors
are consulted together, the total computation time can be
close to the time for some subset of them.

Table 6 compares the running time with fewer Advisors
to the time required by the traditional approach, which uses
every Advisor whose weight is greater than the weight of
its benchmark Advisor. Greater speedup occurred when
more value-ordering Advisors were eliminated, because
their metrics tend to be more costly. The exception here is
the Comp problems, where the increased search tree size
prevents any speedup.

Preferences of heuristics
In the second set of experiments, we investigated different
ways to express heuristics’ preferences. The strengths of
Advisors’ preferences are crucial in making a decision.
Strong preferences from low-weight Advisors can easily
overpower a slight preference from a high-weight Advisor.
Heuristics’ preferences were combined with linear inter-
polation (which respects the relative preferences of heuris-
tics), or with exponentiation on ranks (which strongly fa-
vors each heuristic’s top-scoring choice), or with a Borda
method (which emphasizes the relative position of a choice
among other choices).

During testing, ACE used its eight highest-weighted
variable-ordering Advisors and two highest-weighted
value-ordering Advisors. As observed above, for model B
problems, that combination had produced substantial

Table 5: Search tree size for 4 CSP classes when the num-
ber of Advisors during testing is reduced. Each statistically
significant reduction in performance compared to the tra-
ditional benchmark approach (> bmk) appears in bold.

50-10 20-30 30-8 CompVar.
Adv.

Val.
Adv. Steps Failed Steps Steps Steps Failed

>bmk >bmk 19,689 4.4 2,864 187 450 1.6

8 4 19,923 3.7 2,956 188 572 2.4

8 2 19,372 3.4 2,930 190 679 2.8

4 4 19,265 3.2 3,198 207 1,064 4.6

4 2 19,428 3.2 3,176 206 934 4.1

Table 6: Percent of computation time compared to the tra-
ditional (>bmk) approach when the number of Advisors
during testing is reduced.

Var.
Adv.

Val.
Adv. 50-10 20-30 30-8 Comp

>bmk >bmk 100% 100% 100% 100%

8 4 84% 71% 87% 95%

8 2 70% 55% 68% 106%

4 4 77% 87% 100% 158%

4 2 69% 67% 78% 122%

76

speedup without any significant change in the search tree
size (Tables 5 and 6). Search tree size for these three
classes under the six preference expression methods appear
in Table 7. Because fewer Advisors eventually degraded
performance on the Comp problems, we tested preference
expression on reduction with the benchmark criteria and on
eight variable-ordering Advisors and two value-ordering
Advisors. Those results appear in Table 8. Figures in bold
represent a statistically significant improvement over
ranking.

The greatest improvements came on difficult problems
with Borda–up, Borda–down, and linear preference expres-
sion. On the 50-10 problems, the weights learned under the
Borda methods actually reduced the search tree size to less
than half what a traditional, off-the-shelf heuristic had
done. This demonstrates the power of exploitation of the
nuances of preference information. No such improvement
in search tree size was detected on either of the easier ran-
dom problem classes.

Under Borda–up, if only a few choices score higher, the
strength of the choices from the next lower-scoring subset
is close enough to influence the decision. If there are many
high-scoring choices, the next lower subset will have much
lower strength, which decreases its influence. With
Borda–down, when many choices share the same score,
they are penalized for failure to discriminate, and their
strength is lowered. On random problems, there is no sig-
nificant difference between those two Borda methods. On
Comp problems, however, that is exactly the difference that
improves the search (Table 8). A good combination of heu-
ristics for Comp problems forces the subproblem defined
by the satellite to be solved first. It appears that there are
many ties in the relatively large central component, so that
the subsets of choices with the same scores are relatively
large as well. When Borda–down assigns lower strengths
to large subsets from the central component, it makes them
less attractive. Table 8 also shows that reducing the number
of Advisors decreases performance on Comp problems
with every preference expression method, and that the
relative performance of these methods on Comp problems

is unaffected by using fewer Advisors.
From one run to the next, both the linear and the Borda

methods were consistent learners, that is, there was little
variation in the search tree size or in the Advisors selected.
For example, on 50-10 problems with Borda–down, the av-
erage search tree size per run ranged from 12,119.46 to
16,546.66, and in 6 out of 10 runs the same 8 Advisors had
the highest weight. (The other 4 runs included 7 of them.)
With exponential preference expression, there was consid-
erably more variation. For example, on 50-10 problems
with exp–rank, the average search tree size per run ranged
from 15,252.00 to 25,594.84.

The two exponential methods dramatically reduce the in-
fluence of low-scoring choices. As a result, the top choices
of the highest-weighted Advisors are more likely to domi-
nate the decision process. Because the RSWL algorithm
bases its credits and penalties on the deviation from each
Advisor’s average strength, exponential methods incur
particularly harsh penalties on an Advisor whose metric
errs.

Future research will further evaluate the dynamics be-
tween preferences for heuristics and preferences of heuris-
tics. Given the factor analysis results in (Wallace, 2005),
we intend to explore the impact of heuristics’ preferences
on the synergy among heuristics, including the combina-
tion of preference expression methods with a variety of
weight learning algorithms. In addition to Advisors’ pref-
erences, RSWL can consider other factors to determine
when and how much to reinforce weights (e.g., the con-
strainedness of a subproblem, the number of available
choices, and the depth of the search subtree). Understand-
ing the interaction of those factors with preference expres-
sion methods and their parameters (e.g., the number of sub-
sets p considered, or the base of the exponential function)
could further improve search and learning performance.

Meanwhile, the work reported here illustrates the impact
preference expression can have on heuristic mixtures.
Making informed decisions speeds search, particularly on
difficult problems. Mere ranking ignores the degree of met-
ric difference. Exponential methods, which stress choices
with higher scores, reduce the influence of low-scoring

Table 7: Search tree size for 3 model B CSP classes under
6 preference expression methods with 8 variable-ordering
and 2 value-ordering Advisors. Statistically significant im-
provements over ranking appear in bold.

50-10 20-30 30-8

Method Steps Failed Steps Steps

rank 19,372.27 3.40 2,919.97 189.95

linear 15,385.27 2.30 2,859.77 152.74

exp_rank 19,916.80 3.10 2,700.16 170.46

exp_linear 20,657.03 3.10 2,695.39 188.50

Borda–up 14,480.07 1.90 2,941.70 175.08

Borda–down 14,338.02 2.30 3,091.35 175.70

Table 8: Search tree size for Comp class under a variety of
selection regimes. Statistically significant improvements
over ranking appear in bold.

Benchmark criterion
8 variable Advisors

2 value Advisors

Method Steps Failed Steps Failed

rank 449.62 1.60� 679.36 2.80

linear 589.77 2.10 959.49 3.80

exp_rank 737.23 3.10 838.84 3.80

exp_linear 413.10 1.60 537.32 2.10

Borda–up 563.74 2.00 672.30 2.40

Borda–down 264.87 0.70 369.04 1.20

77

choices dramatically. In contrast, the linear, Borda–up and
Borda–down methods use the nuances of preference infor-
mation: both relative difference and relative positions
among scores. When preference for fewer Advisors is
combined with more sensitive expression of those Advi-
sors’ preferences, it is possible to significantly reduce both
computation time and the size of the search tree on difficult
problems.

Appendix

The metrics underlying ACE’s heuristic tier-3 Advisors
were drawn from the CSP literature. All are computed dy-
namically, except where noted. One vertex is the neighbor
of another if there is an edge between them. A nearly
neighbor is the neighbor of a neighbor in the constraint
graph (but not the variable itself). The degree of an edge is
the sum of the degrees of the variables incident on it. The
edge degree of a variable is the sum of edge degrees of the
edges on which it is incident. Each metric produces two
Advisors.
Metrics for variable ordering:
• Number of neighbors in the constraint graph (static)
• Number of remaining possible values
• Number of unvalued neighbors
• Number of valued neighbors
•�Ratio of dynamic domain size to degree
•�Number of constraint pairs for variable (Kiziltan, Flener,
et al., 2001)
• Edge degree, with preference for the higher/lower degree
endpoint
• Edge degree, with preference for the lower/higher degree
endpoint
• Dynamic edge degree, with preference for the
higher/lower degree endpoint
• Dynamic edge degree, with preference for the
lower/higher degree endpoint
Metrics for value ordering:
• Number of variables already assigned this value
• Number of value pairs on the selected variable that in-
clude this value
• Minimal resulting domain size among neighbors after this
assignment (Frost and Dechter, 1995)
• Number of value pairs from neighbors to nearly neigh-
bors supported by this assignment
• Number of values among nearly neighbors supported by
this assignment supported by this assignment
• Domain size of neighbors after this assignment, breaking
ties with frequency (Frost and Dechter, 1995)
• Weighted function of the domain size of the neighbors
after this assignment, a variant on an idea in (Frost and
Dechter, 1995)
• Product of the domain sizes of the neighbors after this as-
signment

Bibliography

Boussemart, F., F. Hemery, C. Lecoutre and L. Sais
(2004). Boosting Systematic Search by Weighting Con-

straints. ECAI 2004, pp. 146-150.
Brams, S. J. and P. C. Fishburn (2002). Voting procedures.

Handbook of Social Choice and Welfare Volume 1: 173-
236.

Epstein, S. L. (1994). For the Right Reasons: The FORR
Architecture for Learning in a Skill Domain. Cognitive
Science 18: 479-511.

Epstein, S. L., E. C. Freuder and R. Wallace (2005).
Learning to Support Constraint Programmers. Computa-
tional Intelligence 21(4): 337-371.

Frost, D. and R. Dechter (1995). Look-ahead Value Or-
dering for Constraint Satisfaction Problems. IJCAI-95,
pp. 572-278.

Gomes, C., C. Fernandez, B. Selman and C. Bessière
(2004). Statistical Regimes Across Constrainedness Re-
gions. 10th Conf. on Principles and Practice of Con-
straint Programming (CP-04) (M. Wallace, Ed.), pp. 32-
46, Springer, Toronto, Canada.

Hulubei, T. and B. O'Sullivan (2005). Search Heuristics
and Heavy-Tailed Behavior. Principles and Practice of
Constraint Programming - CP 2005 (P. V. Beek, Ed.),
pp. 328-342, Berlin: Springer-Verlag.

Kivinen, J. and M. K. Warmuth (1999). Averaging expert
predictions. Computational Learning Theory: 4th Euro-
pean Conference (EuroCOLT '99), pp. 153--167,
Springer, Berlin.

Kiziltan, Z., P. Flener and B. Hnich (2001). Towards Infer-
ring Labelling Heuristics for CSP Application Domains.
KI'01, Springer-Verlag.

Lecoutre, C., F. Boussemart and F. Hemery (2004). Back-
jump-based techniques versus conflict-directed heuris-
tics. ICTAI: 549–557.

Otten, L., M. Grönkvist and D. P. Dubhashi (2006). Ran-
domization in Constraint Programming for Airline Plan-
ning. Principles and Practice of Constraint Program-
ming CP-2006, pp. 406-420, Nantes, France.

Petrie, K. E. and B. M. Smith (2003). Symmetry breaking
in graceful graphs. Principles and Practice of Constraint
Programming CP-2005, pp. 930--934, LNCS 2833.

Petrovic, S. and S. L. Epstein (2006a). Full Restart Speeds
Learning. Proceedings of the 19th International FLAIRS
Conference (FLAIRS-06), Melbourne Beach, Florida.

Petrovic, S. and S. L. Epstein (2006b). Relative Support
Weight Learning for Constraint Solving. AAAI Workshop
on Learning for Search, pp. 115-122, Boston.

Petrovic, S. and S. L. Epstein (2007). Random Subsets
Support Learning a Mixture of Heuristics. Proceedings
of the 20th International FLAIRS Conference (FLAIRS-
07), Key West, Florida.

Sabin, D. and E. C. Freuder (1997). Understanding and
Improving the MAC Algorithm. Principles and Practice
of Constraint Programming: 167-181.

Valentini, G. and F. Masulli (2002). Ensembles of learning
machines. Neural Nets WIRN Vietri-02 (M. M. a. R.
Tagliaferri, Ed.), Springer-Verlag, Heidelberg, Italy.

Wallace, Richard J. (2005). Factor analytic studies of CSP
heuristics. Principles and Practice of Constraint Pro-
gramming CP-2005, pp 712-726.

78

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

