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Abstract

The problem of translating a query specified in a user data
content ontology into queries that can be answered by the
individual data sources is an important challenge in data in-
tegration in e-science applications. We develop the notions
of semantics-preserving query translation and maximally in-
formative query translation in such a setting. We describe
an algorithm for maximally informative query translation and
its implementation in INDUS, a suite of open source software
tools for integrated access to semantically heterogeneous data
sources. We summarize experimental results that demon-
strate the scalability of the proposed approach with very large
ontologies and mappings between ontologies.

Introduction

New discoveries in biological, physical, and social sci-
ences are increasingly being driven by our ability to dis-
cover, share, integrate and analyze disparate types of data.
This has led to a compelling vision for cyber-infrastructure
for collaborative e-science. Inevitably, autonomous data
sources will differ with respect to their structure, organiza-
tion, query capabilities, and more importantly data seman-
tics. Data sources that are created for use in one context
often find use in other contexts. For many applications,
there is also no single universal choice of data semantics
that meets the needs of all data providers and users in all
contexts. Therefore, differences in data semantics among
data sources, users, or for that matter, even the same users in
different contexts are fairly common.

Effective use of multiple data sources by a user in a given
context requires context and user-specific reconciliation of
differences in data semantics among them. Hence, ontolo-
gies that make explicit, the usually implicit data model-
ing assumptions (ontological commitments) regarding se-
mantics of the data sources are beginning to play increas-
ingly important roles in the reconciliation of semantic dif-
ferences across data sources (Hull 1997; Wache et al. 2001;
Levy 2000).

It is useful to distinguish between two distinct types of
data semantics: the semantics of terms used in specifying
the structure (e.g., names of attributes used to describe the
data) of the data source, i.e., data schema semantics; and the
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semantics associated with contents (e.g., values of attributes
used to describe the objects) of the data source i.e., data
content semantics.

Much of the work in data integration has focused on
bridging the semantic gaps between different data source
schema definitions (See survey papers (Hull 1997; Ziegler
& Dittrich 2004a; Wache et al. 2001)). However, bar-
ring a few exceptions (Wache & Stuckenschmidt 2001;
Goh et al. 1999), the problem of bridging the semantic
gaps with respect to data content semantics has received rel-
atively little attention.

Consequently, there is an urgent need for approaches that:

• Facilitate a separation of concerns between data schema
semantics and data content semantics;

• Allow each user to impose his or her own point of view
(ontology) on the content of data sources of interest and
formulate queries using terms in that ontology;

• Can automatically transform user queries into queries that
are understood by the respective data sources;

• Can map the query results into the form expected and un-
derstood by the users;

• Can scale up to settings with very large ontologies and
mappings.

Hence, in this paper, we focus on the problem of
semantics-preserving translation of queries expressed using
terms from a user ontology into queries that can be under-
stood and answered by data sources. Our major contribu-
tions include:

• Separation of data schema semantics and data content se-
mantics. Such a separation of concerns makes it possible
to more effectively reuse mappings designed for bridg-
ing gaps in data content semantics and for bridging dif-
ferences in data source schemas across a broader range
of data integration scenarios. For example, we can use
the same mappings between data content ontologies in
settings where the data source schema can differ greatly
(e.g., XML schema versus RDF schema versus relational
database schema). It also allows us to leverage appro-
priate (and in some cases, relatively mature) techniques
for each type of data source (relational versus XML or
RDF) to answer aggregate queries against large data sets,
in a manner that accommodates differences between data
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sources in terms of data content semantics (e.g, due to
different levels of granularity in data description).

• Investigation of the query translation from a user’s point
of view. The proposed approach circumvents the need for
a global view of the data, and offers a principled approach
to user and context-specific reconciliation of differences
in data content semantics.

• Study of the semantics-preserving query translation pro-
cess across different data content ontologies based on
ontology-extended tuple relational calculus (OE-TRC).
Specifically, we establish criteria for sound, complete and
exact query translation in the presence of differences in
data content semantics. We illustrate the proposed ap-
proach in the case of hierarchical ontologies. A novel
feature of our approach is the ability to take into consid-
eration, the semantics of not only constant terms but also
ontological assertions about those terms in the query for-
mulae.

• Implementation of the proposed query translation algo-
rithm within INDUS (Caragea et al. 2005), an open
source suite of tools for data integration. Of particular
interest are optimizations that enhance the scalability of
the system, and experimental results that offer evidence
of such scalability in settings with very large ontologies
and mappings.

Motivating Example

We introduce the query translation problem through a
simple, intuitive example. Consider an academic depart-
ment that collects information about its students, classes
and instructors, as shown in Figure 1 (a). The data source
consists of 3 entity tables and 2 relations: entity tables
Students, Classes and Instructors; Students are related to
Classes through the RegisteredFor relation and Classes are
related to Instructors through the OfferedBy relation.

In this example, the (implicit) data schema semantics cor-
responds to the semantics of the terms used in the data
source schema definition. For example, both Students and
Instructors are People, therefore a query posed against the
data sources for names of People should return the names in
both Students and Instructors tables.

The data content semantics corresponds to the semantics
of the terms used to specify the values of attributes used to
describe the data instances. For example, the attribute value
of StudentStatus in the Student table can be used to infer that,
if a student status is “2nd year”, then that student must also
have status “Undergrad”. In general, attribute values can be
organized in an Attribute Value Hierarchy (see Figure 1 (b)
for an example).

Such implicit data semantics can be made explicit by
means of ontologies associated with the data sources. Sup-
pose the data providers specify the intended semantics of
the data, from the provider’s point of view, by associat-
ing the data source with an ontology that captures the rel-
evant semantic commitments. In a setting where both the
data providers and data users are autonomous, and the scope
of the relevant ontologies and their semantics are inevitably

context and user specific, there is no single context and user-
independent interpretation of data.

For example, consider a statistician named Bob who is in-
terested in the question: Do Ph.D. students spend less time
in classes than Masters students? Suppose the analysis
software that he uses has a different classification model for
student status (See Fig. 2 (a)). Recall that the data source
has no conception of what it means for the Student.Status
attribute to take the value “Masters”. Furthermore, Jane, a
second statistician, might subscribe to another point of view
(and hence ontology), that is different from Bob’s ontology
(See Fig. 2 (b)) and also from that of the data source describ-
ing the department of interest. How can we support users
like Bob and Jane with their needs to query a data source
from their own points of view, given that their queries can-
not be understood by the relevant data sources? We need to
translate a query expressed in terms of a user ontology into a
query that is expressed in terms of the data source ontology.

In what follows, we develop an approach to solving this
problem thereby yielding sound methods for flexibly query-
ing semantically rich relational data sources.

Ontology-Extended Data Sources

Inspired by ontology-extended relational algebra (Bon-
atti, Deng, & Subrahmanian 2003), we have introduced
ontology-extended data sources (OEDS), which make ex-
plicit the ontologies associated with data sources, thus facil-
itating specification of semantic correspondences between
data sources (Caragea, Pathak, & Honavar 2004). The sep-
aration of concerns between data source schema ontologies
and data content ontologies makes it possible to use exter-
nal knowledge with data, thereby expanding the universe of
queries that can be meaningfully answered from a set of au-
tonomous data sources.

Specifying an Ontology-extended data source

An OEDS is a tuple (S, D, O), where S is the schema
of the data source, D is the data set contained in the data
source, and O is the set of ontologies associated with the
schema and the data set.

A Schema captures the information about the structure of
the corresponding data source. Here, we restrict ourselves to
structured data sources with associated relational schemas.

A Data Set is an instantiation of the data source schema.
In relational databases, a data set consists of tables con-
taining data tuples that conform to the relational database
schema (see Figure 1 (a) for some examples).

An Ontology represents commitments regarding seman-
tics of the vocabulary used in the data source schema and in
the data. In other words, an ontology is a knowledge base
that associates additional semantics with a database. Thus,
in our example, we might find it useful to have an ontology
that states that:

• (a) Students are People, where the concept People is
more general than the concept Student;

• (b) The expression Classes.Duration refers to time ex-
pressed in minutes;
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(a) The Data Schema and The Example Data Set

(b) The Data Content Ontology for Attribute Student Status

Figure 1: Ontology-Extended Data Source Example

• (c) Student status “2ndY ear” implies that the student is
an “Undergrad”.

As noted above, it is useful to separate ontology O asso-
ciated with a data source into a data schema ontology OS

(e.g., item (a) above) and data content ontologies OC (e.g.,
items (b) and (c) above). In this paper, we will focus our dis-
cussion on data content ontologies. The related work section
discusses some work on data schema ontologies.

Formally, we have the definition:

Definition 1 (Ontology-Extended Data Source) An
ontology-extended data source is specified by a tuple
(S, D, O) where

• S is the schema of the DS, which is a first order language
that corresponds to the relational language defined with a
finite set of constants dS , denoted domains ∆, no function
symbols and a finite set RS of predicate symbols (corre-
sponding to relational tables); for every R ∈ RS , we call
every argument of R an attribute of R; for every attribute
a, its domain domain(a) is a subset of ∆.

• D is the data set (i.e., an extension) corresponding to the
DS, i.e., a first order interpretation ID of S on ∆.

• O is the data content ontology, which is a tuple (LO, DO),
where LO is a first order language defined by a set of con-
stants dO , denoted domains ∆, and a finite set of predi-
cate symbols RO , disjoint from RS; DO is a first order

interpretation IO of LO on ∆. O is called the data source
ontology of DS if dO = dS .

The definition of relational schema follows the model-
theoretical description of Relational Model by (Reiter
1982). Note that we may also associate a schema ontology
to a data source, i.e., a first order language with a predi-
cate set R′, such that RS ⊆ R′ and R′ is disjoint from
RO . Typically, a schema ontology is aimed at extending
the data source with intensional knowledge (e.g., TBox in
description logics) about schema symbols (e.g., relational
table names), whereas a data content ontology is aimed at
extending the data source with extensional knowledge (e.g.,
ABox in description logics). Such a separation is useful
from a modeling standpoint because processing extensional
and intensional knowledge efficiently typically requires dif-
ferent mechanisms. For example, relational databases pro-
vide extremely efficient techniques for dealing with exten-
sional knowledge (or instances).

In what follows, we assume that there are no semantic dif-
ferences on the schema ontologies between data users and
the data source, and focus on how to deal with semantic dif-
ferences in data content ontologies.

Example: the OEDS description of the data source intro-
duced in our example contains:

• The schema S with predicates RS = { Students,
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(a) (b)

Figure 2: User Data Content Ontologies (a) Bob’s Ontology (b) Janes’s Ontology

Classes, Instructors, RegisteredFor and
OfferedBy}; for the predicate Students, its attributes
are Student.ID, Student.Name and Student.Status;
the set of constants is the set of all strings and integers
that are legal in the database1; the domain ∆ corresponds
to the data contained in the database.

• The data set D is the instantiation of S, e.g.,

Student(s1, John, Grad)

Classes(572, AI, 60, Grad)

• The data content ontology O = (LO, DO), where LO has
a binary transitive predicate isa, DO contains an assertion
set:

isa(MasterOfScience, Grad)

isa(DoctorofPhilosophy, Grad)...

Ontology-extended Query

Once the data content ontologies and the data source
schema are specified, we can construct the usual relational
queries with respect to such a data source. In what follows,
we will use an extended form of the tuple relational calculus
(TRC) to represent queries.

Definition 2 (Ontology-Extended Query) A tuple is an or-
dered multiset of attributes defined in the database schema,
in the form of (a1, a2, ..., an), where each ai is an attribute
name. An atomic formula is in one of the following forms:

• t.a op c, where t is a tuple variable, a is an attribute name,
c is a constant from a’s domain, op is an operator defined
on domain(a) ;

• t1.a1 op t2.a2, where t1, t2 are tuple variables, a1, a2

are attribute names, op is a common operator defined on
domain(a1) and domain(a2) ;

• R(t), where t is a tuple variable, R ∈ RS ∪ RO.

A TRC formula is constructed from atomic formulae using
boolean connectors ∧ (and), ∨ (or), ¬ (not), the existential
quantifier (∃) and the universal quantifier (∀).

A query q(t) is a TRC formula where t is the tuple of free
variables. A query is said ontology-extended if it contains
predicates from RO. The answer set of a query q(t) against
an OEDS (S, D, O) is the set of tuples of constants in D that
satisfies q and it is enoted as {q(t)}.

1Length of strings and range of integers are limited in realistic
databases, hence they form a finite set.

For example, the set of “all students with the status of
Master of Science” can be formulated as

q(t) = Students(t) ∧ isa(t.Status, MasterOfScience)

Query Translation for OEDS

Query Translation and Ontology Mapping

Query translation involves transforming a query ex-
pressed in one ontology into a query expressed in another
ontology using a specified set of mappings that assert se-
mantic correspondences between the two ontologies, while
preserving the semantics of the original query.

We first define the notion of mapping between two data
content ontologies.

Definition 3 (Ontology Mapping) Let O1 = (L1, D1) and
O2 = (L2, D2) be two data content ontologies, where Li

(with the predicate set Ri) is the language of Oi, and Di

is an interpretation of Li over a domain of ∆. A mapping
between O1 and O2 contains a set of predicates RM which
is disjoint from R1 and R2, and a set of rules in the form of

∀x, p1(x, c1) ∧ m(c1, c2) → p2(x, c2)

∀x, p2(x, c1) ∧ m(c1, c2) → p1(x, c2)

m(c1, c2)

where x are tuples of free variables and c1, c2 are tuples of
constants, pi is a formula in Li, m is a predicate in RM . The
rules in the last form are called ground rules.

For example, suppose we have two ontologies O1, O2 that
model hierarchies, with R1={isa1}, R2={isa2}, where isai

is a transitive predicate. The mapping M between O1 to O2

contains predicates into and onto, along with the rules:

∀x, isa1(x, c1) ∧ into(c1, c2) → isa2(x, c2) (1)

∀x, isa1(c1, x) ∧ onto(c1, c2) → isa2(c2, x) (2)

∀x, isa2(c2, x) ∧ into(c1, c2) → isa1(c1, x) (3)

∀x, isa2(x, c2) ∧ onto(c1, c2) → isa1(x, c1) (4)

Definition 4 (Sound, Complete and Exact Query Translation)
Given a schema S and a data set D, two data content on-
tologies O1 and O2, an ontology mapping M between O1

and O2, Let Qi be the set of all possible queries posed
against (S, D, Oi) (i = 1, 2). A query translation procedure
γ is a mapping from Q1 to Q2. γ is

• sound if ∀q, q′, (q, q′) ∈ γ, we have {q′, M, O1, O2} |= q.
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• complete if ∀q, q′(q, q′) ∈ γ, we have {q, M, O1, O2} |=
q′.

• exact if γ is both sound and complete.

where |= is logical entailment.
A complete query translation procedure ensures that the

desired result set is a subset of the returned result set. A
sound query translation procedure ensures that the returned
result set is always a subset of the desired result set. In an
ideal setting, it is desirable for the query translation to be
both sound and complete. However, since different ontolo-
gies usually represent different local points of view of the
domain of interest, exact translations across different dis-
tributed data interpretations may not always be feasible. For
example, in the motivating example, suppose that Bob wants
to find out all students of the “MA” program:

Students(t) ∧ isa(t.Status, MA) (5)

However, the data source does not contain the constant
“MA” but only “Grad”; the available mapping contains the
rules (1)-(4) and a ground rule into(MA, Grad). Hence,
there is no exact translation but only a complete translation
for (5).

Students(t) ∧ isa(t.Status, Grad) (6)

The only possible sound translation for (5) is

Students(t) ∧ false (7)

which will always return an empty set.
A naive way to ensure completeness of the query trans-

lation would be to return all of the data from a data source
for any query. A naive way to ensure the soundness of the
query translation would be to return an empty result set for
any query. Neither of these approaches would be of much
use in practice. Hence, we introduce the notion of a most
informative translation:

Definition 5 (Most Informative Translation) A sound
query translation procedure is said to be the most infor-
mative sound query translation procedure if, ∀q∀M , given
the task of translating the query q using the mapping M ,
it returns a sound query q′ of q and for any other sound
translation q′′ of q, we have {q′′, M, O1, O2} |= q′.

A complete query translation procedure is said to be
the most informative complete query translation procedure
if ∀q∀M , given the task of translating the query q us-
ing the mapping M , it returns a complete query q′ of q
and for any other complete translation q′′ of q, we have
{q′, M, O1, O2} |= q′′.

For example, in Figure 3, different sound translation
procedures could translate isa1(t, x1) into isa2(t, y1) or
isa2(t, y2), but a most informative sound translation would
yield isa2(t, y1) ∨ isa2(t, y2).

Query Translation for Hierarchical Ontologies

In what follows we introduce concrete query translation
strategies for hierarchical ontologies. Precisely, a hierar-
chy is a set of isa assertions over a finite set of constants
S, where isa is a transitive and reflexive binary predicate.

x1
y1

y2

O1
O2

Solid lines represent isai (i = 1, 2) relations (x → y
indicates isai(y, x)), dotted lines represent onto ground
mapping rules (x → y indicates onto(x, y)).

Figure 3: Multiple Possible Sound Translations

Ontology mappings between hierarchies contains into and
onto ground rules. To simplify the notation, we will use
partial-ordering notation “≤” and “≥” as follows:

• isa(x, y) iff x ≤ y, for x, y in one ontology

• into(x, y) iff x ≤ y, for x, y in different ontologies

• onto(x, y) iff y ≤ x, for x, y in different ontologies

• x ≤ y iff y ≥ x

• x ≡ y iff x ≤ y and y ≤ x

• super(x) = {y|x ≤ y, y 6= x}, for x, y in one ontology

• sub(x) = {y|y ≤ x, y 6= x}, for x, y in one ontology

By definition, the result of a most informative sound trans-
lation of a formula q must be a logical consequence of the
result of any other sound translation of q. Thus, we have
a most informative sound translation procedure, that works
as follows. Consider the translation of A ≤ O1 : x to an
ontology O2:

1. Find the term set S (called the greatest lower bound of
O1 : x in O2, denoted as GLB(x)) from O2 such that
for any term y ∈ S, (1) there exists a term x′, x′ = x
or x′ ∈ sub(x), such that there is a ground mapping rule
x′ ≥ y; (2) there is no another term y′ in S such that
y′ ≥ y.

2. Output the disjunction: ∨y∈SA ≤ y.

It can be easily shown that this procedure is guaranteed
to be a most informative sound translation procedure. Sim-
ilarly, we have the strategy for a most informative complete
translation. Suppose the task is to translate A ≤ O1 : x:

1. Find the term set S (called the least upper bound of O1 : x
in O2, denoted as LUB(x)) from O2 such that for any
term y ∈ S, (1) there exists a term x′, x′ = x or x′ ∈
super(x), such that there is a ground mapping rule x′ ≤
y; (2) there is no another term y′ in S such that y′ ≤ y.

2. Output the conjunction: ∧y∈SA ≤ y.

The translation rules for atomic queries using constants
from hierarchial ontologies is summarized in the Table 1.
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Exact translation requires that for every term in the source
ontology, there is an equivalent term in the target ontology.

Table 1: Translation Rules for Atomic Query Formulas Us-
ing Hierarchical Ontologies

Translation A ≥ x A ≤ x
Sound ∨y∈GLB(x)A ≥ y ∨y∈LUB(x)A ≤ y
Complete ∧y∈LUB(x)A ≥ y ∧y∈GLB(x)A ≤ y
Exact A ≥ y |x≡O2:y A ≤ y |x≡O2:y

Note: Translation from ontology O1 to O2, x is a term in O1.

The task of translating a complex query formula can be re-
duced to the subtasks of translating its atomic formulas. We
denote a translation of a query p using a sound (complete)
translation procedure Ts as Ts(p) (Tc(p)). For an OE-TRC
formula p, a sound translation of p is obtained from the fol-
lowing rules:

• Ts(p) = Ts(p1) ∨ Ts(p2), if p = p1 ∨ p2

• Ts(p) = Ts(p1) ∧ Ts(p2), if p = p1 ∧ p2

• Ts(p) = ¬Tc(p1), if p = ¬p1

Similarly, a complete translation can be obtained from the
following rules:

• Tc(p) = Tc(p1) ∨ Tc(p2), if p = p1 ∨ p2

• Tc(p) = Tc(p1) ∧ Tc(p2), if p = p1 ∧ p2

• Tc(p) = ¬Ts(p1), if p = ¬p1

Recursively applying such translation rules, a complex
query formula can be transformed in a way that guarantees
the soundness (or completeness) of the overall translation
procedure.

Semantics Preserving Query Translation

Inappropriate mappings may result in incorrect transla-
tion. For example, in Figure 4, there are several ground
mapping rules O1 : x 6 O2 : y1, O1 : x 6 O2 : y2 and
O1 : x > O2 : y3. A query expressed in O1, A ≤ O1 : x1,
is to be translated into a most informative complete trans-
lation (A ≤ O2 : y1) ∧ (A ≤ O2 : y2) according to our
translation rules. However, this will always return an empty
data set since y1 and y2 in ontology O2 have no local com-
mon children. On the other hand, A ≤ O1 : x1 has a sound
translation A ≤ O2 : y3. Thus, a sound translation proce-
dure may return a data set that is a superset of the data set
returned by a complete translation procedure, which contra-
dicts the very definitions of soundness and completeness.

The cause for such an inconsistency can be traced to the
semantic differences between the mappings and the ontolo-
gies in question. While there is no common child of y1 and
y2 from the point of view of O2 alone, the given mapping
constraints (denoted as M ) actually introduce global com-
mon children for y1 and y2 in O1 and O2 (e.g. O1 : x1 and
O2 : y3). Thus, the set {M, O1, O2} infers new knowledge
(y3 ≤ y1) which is not inferable from O2 alone. In gen-
eral, to ensure that the semantic point of view adopted dur-
ing the mapping (i.e. {M, O1, O2}) and the semantic point

x1

y1

y2

O1 O2

y3

Figure 4: Impropriate mappings may result in incorrect
translation

of view adopted during query execution (O2) are consistent,
we should require the mapping to be semantics-preserving:

Definition 6 The set of interoperation constraints M from
an ontology O1(S2,≤) to another ontology O2(S2,≤) is
semantics-preserving iff
∀y1, y2 ∈ S2, {M, O1, O2} � y1 ≤ y2 ↔ O2 � y1 ≤ y2

The notion of semantics-preserving ontology mapping is
closely related to the notion of Conservative Extension of
ontologies (Ghilardi, Lutz, & Wolter 2006). An ontology
is a conservative extension of one of its subsets if it does
not entail new knowledge over the signature of the subset.
Hence, semantics-preserving mappings ensure the union of
the source ontologies and the mappings taken together, to
be a conservative extension of the target ontology, to avoid
interfering with the semantics of the target ontology. The
mappings must be semantics preserving in order for us to
be able to ensure that the query translation does not lead to
unexpected results, as illustrated by the above example.

Implementation and Experimental Results

We have implemented the proposed query translation al-
gorithm for hierarchial ontologies inside the INDUS (INtel-
ligent Data Understanding System) environment2 and have
exploited several optimization techniques to handle large on-
tologies and ontology mappings:

• Database storage for large ontologies and ontology map-
pings: We store both ontologies and mappings as com-
pressed objects in a database. This greatly reduces the
space requirement for storage as well as the communica-
tion traffic between clients and the server (usually by an
order of magnitude).

• Combining query translation and query rewriting (to SQL
queries) using the transitive closure of ontologies: The
implementation of the query engine precomputes the tran-
sitive closure of partial-ordering in a meta ontology that
is constructed from the source ontologies and ontology
mappings. This allows us to combine query translation
and query rewriting into a single process.

• Avoiding expensive query formulas using server-side
caching: Expensive query formulas, such as SQL “IN”
clauses with long list of operands, can be replaced by

2http://www.cs.iastate.edu/ dcaragea/INDUS/documentation.htm
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more efficient ones using server-side caching, e.g, using
temporary tables on the data source server. Such a strat-
egy can improve query execution efficiency by three or-
ders of magnitude when working with large ontologies.

• Client-side caching. Once an ontology or ontology map-
ping is loaded by an INDUS client, it will be cached on
the client size. Thus, subsequent queries from the same
client will not be forced to reload them.

Our experiments have shown that the implemented al-
gorithm works well on very large ontologies and ontology
mappings. The data set we used in the experiment is an en-
zyme database (4,931 records) annotated with the Enzyme
Classification (EC) hierarchy3 (4,564 terms). The user on-
tology we used is the SCOP (Structural Classification of
Proteins) hierarchy4 (86,766 terms). The ontology mapping
from SCOP to EC is provided by Richard George et. al.5

with 15,765 mapping rules.
We randomly generated queries in the SCOP ontology

that specify enzyme data associated with particular struc-
tural families. For each query in the experiment, we ran-
domly selected a non-leaf term t from SCOP and construct a
query with selection condition “protein family <= t”. The
query is translated into another query that uses EC terms.

To estimate the cost of both local computation (e.g. query
translation) and communication overhead (e.g. reading re-
mote ontologies or retrieving result data set), we separated
the data source server and the INDUS query client on differ-
ent machines. The server runs on a Intel Pentium 4 2.4GHz
/2GB RAM machine with PostgreSQL 8.0 as the RDBMS.
The client runs on a Intel Celeron 631 MHz / 384MB RAM
machine with Windows XP OS. The two machines are phys-
ically separated in different LANs.

Table 2: Scalability Results
Branch Translation Execution. Result Query

Size Time(s) Time(s) Size Complexity

Avg 29.9 0.064 0.16 2.35 2.76
Max 86765 16.463 48.720 2,837 2,840

Table 2 shows the experimental results on the average and
maximal cost in the query translation and execution process
for 8,216 randomly selected queries. We measured:

• Branch Size, which indicates the size of the fragment of
the ontology involved w.r.t the given query. For a query
of the form A <= t, it is the size of sub(t). Branch size
gives an upper bound of the space complexity of the query
before the query translation.

• Translation Time, the time used in translating the query
from the user ontology to the data source ontology.

• Execution Time, the time used in executing the trans-
lated query and retrieving the data. It measures the time
used for sending the translated query to the data source
RDBMS via network (in this experiment over JDBC) and

3http://www.chem.qmul.ac.uk/iubmb/enzyme/
4http://scop.mrc-lmb.cam.ac.uk/scop/
5http://www.enzome.com

the time used to transfer the data fetched from the data
source to the INDUS cache database.

• Result Size, the size of the retrieved data set satisfied by
the translated query.

• Query Complexity, the space complexity of the translated
query (before any optimization). It is defined as the size
of the expression tree of the translated query.

Our results suggest that the query translation and query
execution strategies adopted in this study are tractable in
terms of both time and space requirements when working
with very large ontologies (over 100k terms in total in this
experiment) and ontology mappings.

Related Work

There is extensive study addressing the problems of struc-
tural heterogeneity or schema semantic heterogeneity (see
the survey paper (Shvaiko & Euzenat 2005)). Query trans-
lation (also called transformation, rewriting) (see the survey
paper (Calvanese, Lembo, & Lenzerini 2001)) under such
setting has also been studied. However, few of these studies
address the problem we investigated in this paper, i.e., trans-
lation of a query against data sources with context-specific
data content ontologies.

OBSERVER (Mena et al. 2000) processes query trans-
lation not only using term substitution but also considering
operators in query formulas. It allows subsumption relations
in ontology mappings and partial query translation, and pro-
vides a metrics to measure the loss of information. How-
ever, ontologies are only associated with data schema, thus
this approach does not address data content semantic hetero-
geneity problem as we addressed in this paper.

In SIRUP (Ziegler & Dittrich 2004b), the ontology is
added on the top of the data, therefore it is similar to our
ontology-extended data source approach. It also allows user
to have user-specific interpretations on the same set of data
sources. However, ontologies in SIRUP, built with ICon-
cepts, are also data schema ontologies, not data content on-
tologies. Users are required to build Semantic Prospectives
from a selected subset of the data source IConcepts, there-
fore are not allowed to adopt autonomous, context-specific
local ontologies. Thus, it is also not possible in this ap-
proach to do query translation form a user ontology to the
data source ontology.

The problem of data content semantic heterogeneity is ad-
dressed in part by the systems BUSTER and COIN:

BUSTER (Wache & Stuckenschmidt 2001) represents
both schema and content semantics explicitly in Descrip-
tion Logics. The approach they adopted uses a logic rea-
soner to do the query translation. However, this approach
does not address the problem of relational query translation
and query execution when query conditions include onto-
logical operations. Thus, query translation is equivalent to
term substitution. BUSTER assumes that all data source on-
tologies share a basic terminology, which seems unrealistic
in a setting with autonomous data sources, which calls for
context and user-specific semantic correspondence between
data sources.
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COIN (Goh et al. 1999) also addresses data content se-
mantic heterogeneity and uses ontologies as data types. In
this approach, semantics of each data source is contextual-
ized. Different contexts are linked by conversion functions.
However, the the focus was on only numerical scale units,
and not on handling more complex structures such as hier-
archies. COIN also only addresses the query translation as
term substitution (equivalent to our approach when there are
equivalence relations between terms in ontologies), without
considering ontological assertions about constants in the on-
tology and the query.

Our approach also differs significantly from attempts at
reconciling data-level heterogeneity by solving the data du-
plication or entity/object matching problem (Doan, Noy, &
Halevy 2004). Instead of matching data instances, our focus
is on exploiting the semantic relation between data instances
which need not necessarily represent the same object in the
domain of interest.

Conclusions

We have studied the query translation process for data
sources extended with context-specific data content on-
tologies. We have shown how to exploit ontologies and
mappings for flexibly querying (from a user perspective)
semantic-rich (relational) data sources in a setting where
each data source can be viewed as a set of relational tables.
We have proposed a query translation strategy that works
for hierarchial ontologies. We have analyzed the conditions
under which the soundness and completeness of such a pro-
cedure can be guaranteed.

There are several promising directions for further work:
Query Translation with More expressive ontologies:

This paper focused on query translation for hierarchical on-
tologies. However, the proposed framework is not necessar-
ily only limited to hierarchies. Study of query translation
using more expressive ontology languages, such as a proper
subset of description logics, would be interesting to explore.

Complexity Analysis: Study of the theoretical complex-
ity and decidability result of query translation when the on-
tologies in question are proper subsets of description logics
is also of interest.

Statistical query answering: The proposed query trans-
lation process can also serve as the basis for knowledge ac-
quisition from semantically heterogeneous distributed data
sources using statistical queries (such as SUM, COUNT or
AVERAGE).

Query Translation for non-relational OEDS: The dis-
cussion in this paper is focused on OEDS with relational
schema. It would be interesting to explore extensions to
XML-based data sources and RDF-based data sources.
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