
Semantic Annotation for Persistence

Stephen L. Reed

Texai.org
3008 Oak Crest Avenue

Austin, Texas USA 78704
stephenreed@yahoo.com

Abstract
An enhancement of the Java Persistence API is described in
which source code annotations contain meaning-denoting
statements. Java domain entities are persisted in a
knowledge base that is implemented by a database, rather
than persisted in a database directly. The knowledge base
format facilitates information exchange via the Semantic
Web by having a reusable commonsense ontology.

Introduction�

Application developers who seek to benefit from
information exchange via the Semantic Web have to
develop a new ontology, or re-use an existing ontology that
describes the meaning of the domain concepts and the
meaning of their properties. Often, applications written in
an object-orientated language, such as Java, store and
retrieve database information as objects using an
object/relational mapping (ORM) technique. The
developer then has the burden of either hand-coding
database access methods for object persistence, or
specifying the object/relational mapping to a framework
such as Hibernate (Bauer and King, 2007) in XML. The
most recent releases of Java (beginning with version 1.5)
greatly improve the ease of mapping program object
instances to relational database tables and columns. Java
1.5 introduced source code annotations, including a set
designed for object persistence, (Sun Microsystems, 2006
and Bauer and King, 2007).

Our research extends the notion of object persistence
annotation to include semantic attributes. We reuse the
ontology of OpenCyc (Matuszek et. al., 2006), a large
commonsense knowledge base that is freely available. We
stored the ontology of OpenCyc, the content of the
WordNet lexical database, the content of Wiktionary, and
the content of the CMU Pronouncing Dictionary in a
relational format that we have named the Texai
Knowledge Base (KB). The annotation attribute values
designate Texai KB concept classes, context, and
properties that hold between persisted domain entities. This

�Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

semantic information is required to utilize the Texai KB.

The chief benefit of our technique is to move the
application data from a semantically impoverished
relational database into a semantically rich KB. In
particular, interfacing to the Semantic Web is generally
easier using a KB rather than a database. Additionally, the
application benefits from the ability to reason about the
domain objects within the KB by using class or property
subsumption with respect to context. Henceforth we shall
refer to a Java domain object instance as a domain entity.

Brief Illustration

By way of illustration, consider a simple Java use case in
the health science domain. Two of the domain entities are
as follows: a bird flu epidemic and the location in which
the epidemic occurred.

public class BirdFluEpidemic {
 ...
private String location;

 ...
}

To publish this data on the Semantic Web, the developer
must create an adapter that describes the semantic class of
the epidemic and location domain entities and determine
the appropriate semantic property that holds between pairs
of these domain entities. With our technique, semantic
annotations authored by the developer declare the required
information in the Java source code during the initial
design of the class.

@DomainEntity(type=”TemporalStuffType”,
subclassOf=”Epidemic”)
public class BirdFluEpidemic {
 ...
@DomainProperty(

 name=”epidemicExposureOccursAt”)
private GeographicRegion location;

 ...
}

The Java annotation @DomainEntity is defined by our

57

framework and, as used here, declares that
BirdFluEpidemic is a class in the Texai KB, has
TemporalStuffType as its type, and that it is a subclass of
the class Epidemic. The BirdFluEpidemic class will be
automatically defined in the KB using these attributes if
not already present.

The annotation @DomainProperty declares that the KB
property has the name epidemicExposureOccursAt. By
default, the property domain, which is its first argument,
must be an instance of the KB BirdFluEpidemic class. The
second argument is the property range and it defaults to an
instance of the KB GeographicRegion class. In this
example, the first argument type constraint is implicitly
given by the domain entity class, and the second argument
type constraint is implicitly given by the field type
declaration. Note that the location type has been changed
to the semantically meaningful GeographicLocation type
rather than the semantically opaque String type.

A hypothetical instance of the Java BirdFluEpidemic class
having the identifier BirdFlu_1 that was published in
London could easily be expressed in the Semantic Web
notation RDF with the following statement. It is expressed
as an RDF triple consisting of rdf-subject, rdf-property,
rdf-object:

BirdFlu_1 exposureOccursAt CityOfLondonEngland

Java Object Persistence
Large scale applications are often developed in the Java
programming language and may have large amounts of
data stored in relational database tables. Because each
individual program execution is transient, application data
cannot usually be initialized from the program source code;
rather, it must be saved in the database when created or
updated, and then retrieved from the database. That data is
used to construct Java objects, in the application as needed.
These objects are defined as persistent. In the past,
developers had to manually specify the mapping between
database fields, residing in named tables/columns, and Java
object variables. Developers had to create code to
load/store/update each Java object from the database with
explicit SQL operations. Yoder et. al., (1998) describe a
set of implementation patterns for Smalltalk, a classic
object-orientated language that preceded and influenced
Java. In recent years, declarative frameworks have become
available to automatically perform the object-relational
mapping, some going so far as to create the database
schema given only the persistent Java class definitions
(Frederickson, 2006). Presently, the most popular of these
frameworks is Hibernate (Bauer and King, 2007) which
includes an implementation of the new Java Persistence
API. This API is also a key feature of the latest version of
the Java 2 Enterprise Edition (J2EE) software, which
greatly simplifies the development of persistent Java
objects in large scale enterprise applications compared to

the previous version that required implementing
framework persistence interfaces.

Texai Knowledge Base
The Texai KB supports the usage of semantic annotation
for persistence. It contains commonsense facts, formulas
and rules that facilitate the development of intelligent
applications (Reed, 2006). A wide variety of application
domains can be uniformly represented in the KB using a
comprehensive open-source ontology. Java language
bindings and in particular, the use of specialized Java
source code annotations make this KB interesting for Java
application developers. Annotated Java domain entities
can be persisted to and loaded from a set of propositions in
the KB.

Although this method of persistence is slower than the
conventional method of persisting Java objects to a single
database row, for Semantic Web applications there are
benefits in having the data stored in an RDF-compatible
format. Chief among these benefits is the ability to easily
export the data as RDF triples. Another benefit occurs
when the developer begins with a set of RDF triples and
desires to create a Java application that processes this data.
The Texai KB enables a concise object modeling of the
RDF data graph as semantically annotated classes that
define the domain entities.

The Texai KB has, as its foundation, the ontological
definitions imported from the OpenCyc KB, version 1.1.
Cyc is described as “a large knowledge base containing a
store of formalized background knowledge suitable for a
variety of reasoning tasks in a variety of domains” in
Matuszek et. al., (2006). Imported OpenCyc terms and
propositions comprise about 12% of the total Texai KB
content of 12 million propositions. Content imported from
WordNet version 2.1 constitutes about 20% of the total,
and the remaining content was imported from the CMU
Pronouncing Dictionary and from Wiktionary. Research
by Reed and Lenat (2002) describes how the Cyc ontology
accommodates the mapping of other ontologies, including
WordNet, due to its wide coverage and expressiveness. In
contrast to Cyc, the Texai KB does not have a
sophisticated deductive inference engine, instead it uses
only lookup, subsumption and context filtering. The Texai
KB also lacks the majority of Cyc's natural language
facilities.

Like Cyc, the Texai KB represents concepts as logical
terms, which can be symbols, variables, numbers, character
strings, named things, term formulas, propositions or rules.
KB facts are logical propositions that each consist of a
predicate and an argument list of related terms.

The following are the Texai KB objects used to represent
knowledge:

Symbols are defined as uppercase character strings whose

58

first character is a colon. They do not represent a concept,
but are rather used to designate formula placeholders.
Examples: :ARG1, :DEPTH

Variables are defined as mixed-case character strings
whose first character is a question mark. They appear only
in rules as described below. Examples: ?SIT-TYPE, ?
SOMEONE.

Numbers are either 64-bit signed integers or 64-bit
floating point. Examples: -1, 0, 3.1416.

Character strings are delimited by double quotes. For
example: “The creature of the protagonist in
Mary Shelley's Frankenstein.”

Dates are strings in SQL date format. For example:
“2006-12-06”.

Time points are strings in SQL timestamp format. For
example: “2006-12-11 02:12:24”.

Named things are either atomic or non-atomic terms.
Atomic terms are mixed-case symbols having the
following naming convention: Types of things and named
individuals begin with an upper case character. Predicate
terms begin with a lower case character. Here are four
example atomic terms:
Thing Brazil TransportationDevice equals

Non-atomic terms consist of a functional relation with
argument terms. They provide a way to compose new
named things from existing concepts. The Texai KB
renders formulas and propositions in the traditional
mathematical syntax with the relation term preceding the
argument list which is enclosed in parentheses and whose
argument terms are separated by commas.

Here are two example non-atomic terms:
CollegeFootballTeamFn(BostonCollege)
OrganismPartTypeFn(Person, Liver)

The Texai KB operates under the unique names
assumption in which named things are distinct.
Accordingly, different terms by default do not represent
the same concept unless explicitly related by an equality
proposition. For example:
equals(MarkTwain, SamuelClemmens).

Note that RDF and OWL, in contrast, assume non-unique
names.

Named things have the following three attributes, in
addition to their term name and preferred lexical form:
� Creator is a term (usually atomic) representing the

agent that created the term
� Creation purpose is a term (usually atomic)

representing the process that created the term

� Creation time point is the term timestamp

Contexts are named things that partition the knowledge
stored in the Texai KB. Each context term designates a
region within one of many possible dimensions of context
space. The foremost dimension of context space is the
generality dimension that is arranged as a most-general to
most-specific inheritance tree.

Term formulas consist of a property or function with an
argument list. They are primarily used to represent the
constituents of non-atomic terms and rules (described
below).

Propositions are the most numerous Texai KB objects.
They are also referred to as Ground Atomic Formulas
(GAFs). Each one represents a ground (non-variable) fact
in a specified context and is comprised of Creator, Creation
purpose, and Creation time point (as defined above) and
the following attributes:
� Predicate is the property term (usually atomic)
� Argument list is a list of non-variable terms, the first

of which is usually an atomic term
� Context is the context term (usually atomic)
� Strength is a 64-bit floating-point number between

-1.0 and 1.0 that ordinarily represents the degree to
which the Texai KB believes the proposition to be true.
A strength value of -1 indicates that the proposition is
certainly false, a strength value of 0 indicates that the
proposition's truth is unknown, and a strength value of
1 indicates that the proposition is certainly true.

An example proposition:
isa (TextualMaterial, StuffType)

Rules are quantified formulas having variables from which
new facts may be deduced by yet-to-be-developed
inference behavior. Each has the following attributes:
� Logical formula is a formula whose presentation

format features infix logical operators, including &&
(and), || (or) and -> (implies), as well as prefix
operators ! (not), and the two quantifiers forAll, and
thereExists.

� Strength as described above.
� Creator, creation purpose, and creation time point

as described for named things.

An example rule:
(isa(?x, Integer) && greaterThan(?x, 0))

-> isa(?x, PositiveInteger)

Java Source Code Annotation
Introduced as a part of Java version 1.5, the annotation
facility offers a structured way to add type-checked
attribute/value pairs to classes, class variables and
methods. These annotations do not directly change the
semantics of the Java source code, but external tools and
the executing program itself, via reflection, can access the

59

annotations and perform appropriate operations. For
example, the Java Persistence API defines the annotation
@Id which is associated with a class variable to indicate
that values of this variable should be mapped to the
database column that uniquely identifies the persistent
domain entity (i.e. its primary key). Application
developers can extend the set of built-in annotations with
their own annotation types.

Our research has led to a set of new annotations that
declare KB class and property mappings and that
consequently facilitate data exchange with the Semantic
Web.

A Simple Example

The purpose of our semantic annotations is to declare, in
the Java source code, the mappings between a domain
entity (Java instance object) and a corresponding set of
propositions (binary GAFs) in the Texai KB. Henceforth,
we refer to propositions used that way as property
assertions. A domain entity contains fields and each field
has one or more values. We persist each field value by
using a property assertion whose predicate is specified by
the field's semantic annotation, and whose first argument
contains a reference to the domain entity, and whose
second argument contains a field value:
predicate(domain-entity, field-value)

Note that this property assertion is equivalent to an RDF
triple having this form:
domain-entity predicate field-value

A Java sample that illustrates semantic annotation is shown
in figure 1.
...
@DomainContext(
 context="SampleDomainContext",
 subContextOf="BaseKB")
@DomainEntity
public final class Sample {

@Id
 Long termId;
@DomainProperty(identifier=true)

 final private String myString;
...

Figure 1: Semantic annotation of a sample Java class.

If Sample001 is an instance of the Sample class, and that
the field myString contains “foo”, then this domain
entity field is persisted by the following property assertion
in the Texai KB context SampleDomainContext:
myString(Sample001, “foo”)

Domain entities are loaded from the Texai KB by first
constructing an uninitialized domain entity, then querying
its property assertions from the persistence context and
using them to populate the domain entity's fields.

Annotations begin with the @ character and can optionally
include a list of attribute/value pairs. Below are
descriptions of the semantic annotations that are used in
figure 1: @DomainContext, @DomainEntity, @Id and
@DomainProperty:

@DomainContext
This annotation is applied to the domain package or class,
and has the two following properties:
� context - This optional attribute defines the context

from which the property assertions are loaded and to
which they are persisted. Applied to a package-
info.java file, the attribute designates the KB context
for all the domain entities in that Java package. We
recommend that each related group of domain entities
have their own KB context.

� subContextOf - This optional attribute defines the
super contexts of the given context. Each value must
name an existing context in the KB, which is used
when defining a new persistence context.

@DomainEntity
This annotation is applied to the domain entity class, and
has the following properties:
� className - This optional attribute defines the name

of this domain entity class and defaults to the qualified
class name. It is used chiefly to map a domain entity to
an existing Texai KB class that was imported from
OpenCyc or somewhere else.

� typeOf - This optional attribute defines the types of this
domain entity. Each value must name an existing class
in the KB. Each value generates an “isa” assertion in
the KB. This attribute should be specified for a new
domain entity class.

� subClassOf - This optional attribute defines the super
classes of this domain entity. Each value must name
an existing class in the KB. This attribute should be
specified for a new domain entity class.

@Id
This annotation is adapted from the Java Persistence API
and is used to tag the Long-typed field that holds the
domain entity identifier.

@DomainProperty
This annotation is applied to each of the domain entity
fields and specifies the characteristics of the property
assertion that persists the field's value(s). Domain property
annotations neatly encapsulate information that otherwise
would require a Relationship Object as described by Noble
(1997). This annotation's nine attributes are described
below:
� name - This optional attribute defines the name of the

KB binary predicate that mapped to this association.
The default value is the name of the annotated field.

� subPropertyOf - This optional attribute defines the
more general property which has this property as a

60

specialization.
� domain - This optional attribute specifies the first

argument type for this property assertion in the KB.
The value must name an existing class in the KB. The
default value of this attribute is the class of the domain
entity that contains the field.

� range - This optional attribute specifies the second
argument type for this property assertion in the KB.
The value must name an existing class in the KB. The
default value of this attribute is the class of the field's
value.

� functional - This optional attribute defines whether the
property is functional, having only one range value for
a given domain value. The default value of this
attribute is “false”.

� inverse - This attribute defines whether the property is
an inverse property with respect to the annotated field,
in which case the field value is mapped to the domain
of the property and the domain entity is mapped to the
range of the property. The default value of this
attribute is “false”.

� identifier - This optional attribute defines whether the
property is an identifier, having only one range value
for a given domain value, and only one domain value
for a given range value. When a domain property is an
identifier, it is also functional. The default value of
this attribute is “false”.

� fetch - This optional attribute is adapted from the Java
Persistence API and defines whether the value of the
field or property should be lazily loaded or must be
eagerly fetched. At present it is implemented only for
collection valued fields. Allowed values are
FetchType.LAZY, which is the default, and
FetchType.EAGER. Because loading all the collection
values of a persisted collection field can be time
consuming, lazy loading is the more efficient
alternative if there is low likelihood that the values will
be accessed.

� strengthField - This optional attribute defines the
associated double-typed field that contains the
assertion strength, which ranges from [-1.0, ... +1.0]. If
the domain property maps to a List-typed field then the
assertion strength field may have the type
List<Double>.

Domain Entity Operations

The framework class DomainEntityManager provides
Create (persistence), Read, Update, and Delete (CRUD)
operations.

Domain Entity Persistence Figure 2 is a Java code
snippet that creates and persists the first domain entity
(instance) of the Sample class.

final Sample sample =
 new Sample("Hello World");
domainEntityManager.persistDomainEntity(

 sample, creator, creationPurpose);

Figure 2: Code for domain entity persistence.

As a result, here are the property assertions created when
the Sample instance is persisted. Note that the majority of
these assertions define the class ontology. Subsequent
persistence operations will only create assertions similar to
numbers 6, 7 and 14.

1. comment(SampleDomainContext,
"SampleDomainContext is a domain entity
context.")

2. isa(SampleDomainContext, Microtheory)
3. genlMt(SampleDomainContext, BaseKB)
4. isa(

org.texai.kb.persistence.sample.Sample,
FirstOrderCollection)

5. genls(
org.texai.kb.persistence.sample.Sample,
Collection)

6. isa(org.texai.kb.persistence.sample.Sampl
e_7274497,
org.texai.kb.persistence.sample.Sample)

7. domainEntityClassName(
org.texai.kb.persistence.sample.Sample_72
74497,
"org.texai.kb.persistence.sample.Sample")

8. comment(myString,
"myString(org.texai.kb.persistence.sample
.Sample, CharacterString)")

9. isa(myString, FunctionalSlot)
10. arity(myString, 2)
11. genlPreds(myString,

conceptuallyRelated)
12. arg1Isa(myString,

org.texai.kb.persistence.sample.Sample)
13. arg2Isa(myString, CharacterString)
14. myString(

org.texai.kb.persistence.sample.Sample_72
74497, "Hello World")

Domain Entity Load Domain entities may be loaded by
an iterator. Figure 3 is a Java code snippet that loads a
domain entity of the Sample class from an iterator over all
the persisted instances in the Texai KB. This snippet omits
the transaction handling statements.

final Iterator sampleIter =
 domainEntityManager.domainEntityIterator(
 Sample.class);
final Sample sample1 =
 (Sample) sampleIter.next();

Figure 3: Code for domain entity load via an iterator.

Domain entities may be loaded by their term id. Figure 4
is a Java code snippet that loads a Sample domain entity

61

given its term id. This snippet omits the transaction
handling statements.

final Long termId = Long.valueOf(7274497L);
final Sample sample2 = (Sample)
 domainEntityManager.loadDomainEntity(
 termId);

Figure 4: Code for domain entity load via a term id.

Domain entities may be loaded by the atomic term that
names an instance in the Texai KB. Figure 5 is a Java code
snippet that loads a Sample domain entity given its
representing atomic term. This snippet omits the
transaction handling statements.

final AtomicTerm instanceTerm =
 domainEntityManager.findAtomicTermByTermNa
me(
 "org.texai.kb.persistence.sample.Sample_
7274497");
final Sample sample3 = (Sample)
 domainEntityManager.loadDomainEntity(
 instanceTerm);

Figure 5: Code for domain entity load via a given
instance KB term.

Domain entities may be loaded by specifying a value
object for an identifying property. Figure 6 is a Java code
snippet that loads a Sample domain entity given the String
value for the myString identifying property. An identifying
property is a functional property that has only one domain
entity associated with a unique value object. This snippet
omits the transaction handling statements.

final AtomicTerm property =
domainEntityManager.
 findAtomicTermByTermName("myString");
final Object value = "Hello World";
final Sample sample4 = (Sample)
 domainEntityManager.
loadDomainEntityByIndentifyingPropertyValue(
 property, value, Sample.class);

Figure 6: Code for domain entity load via a given
identifying property value.

Domain Entity Update Domain entities may be updated
after loading them. Figure 7 is a Java code snippet that
loads a domain entity of the Sample class from an iterator,
and then persists the instance after modification.

final EntityTransaction entityTransaction =
 entityManager.getTransaction();
entityTransaction.begin();

// load via an iterator

final Iterator sampleIter =
 domainEntityManager.domainEntityIterator(
 Sample.class);
final Sample sample1 = (Sample)
 sampleIter.next();

// modify the domain entity
final String myString = "Hello World - " +
 UUID.randomUUID().toString();
sample1.setMyString(myString);

// persist the modified state to the KB
domainEntityManager.persistDomainEntity(
 sample1, creator, creationPurpose);
entityTransaction.commit();

Figure 7: Code for domain entity update.

Domain Entity Delete Domain entities may be deleted
after loading them. Figure 8 is a Java code snippet that
persists a domain entity of the Sample class and then
deletes the instance after reloading it.

final EntityTransaction entityTransaction =
 entityManager.getTransaction();
entityTransaction.begin();

final String myString =
 UUID.randomUUID().toString();
final Sample sample1 = new Sample(myString);
domainEntityManager.persistDomainEntity(
 sample1, creator, creationPurpose);
entityTransaction.commit();

// reload via the identifying property value
entityTransaction.begin();
final AtomicTerm property =
domainEntityManager.findAtomicTermByTermName
("myString");
final Object value = myString;
final Sample sample2 = (Sample)
 domainEntityManager.
loadDomainEntityByIndentifyingPropertyValue(
 property, value, Sample.class);

// delete the persisted sample instance
domainEntityDeleter.deleteDomainEntity(
 sample2);
entityTransaction.commit();

Figure 8: Code for domain entity deletion.

Texai KB Implementation

The implementation of the Texai KB uses Enterprise Java
Beans (EJB) version 3.0 which is the first EJB framework
that supports Java annotation. There are several EJB
vendors whose software is open source. This

62

implementation uses the freely available JBoss Application
Server with EJB 3.0 extensions. The domain entity
manager that loads, stores, creates and updates domain
entities, is implemented as a set of EJB Session Beans.
The J2EE container provides scalable and robust life-cycle
support for the bean components, including dependency
injection, which is defined as the automatic setting of
references to system services and other application bean
instances. As shown in figure 9, the system consists of
modular layers which facilitate experimentation with
implementation alternatives.

Figure 9: The Texai KB software stack.

The Texai KB application can be executed either within
the container, using JBoss Application Server, or it can be
executed as a simple application using a customized driver.
The system is compatible with any database supported by
JBoss/Hibernate. Currently, the Texai KB uses the open
source MySQL database for the KB and persistent domain
entities stored therein.

With regard to performance, domain entities can be
persisted to the Texai KB at the rate of 200 propositions
per second on an AMD 4800+ CPU using 64-bit
Linux/Java/Hibernate/MySQL software. Each domain
entity field requires at least one property assertion and
consequently requires at least one database access per field
for persistence. As a result, the performance with semantic
annotations is slow in comparison with a non-semantic
application that persists domain entities more efficiently to
a relational database using one SQL statement for the
whole object. However, to partially overcome this
deficiency, the Texai KB uses Hibernate object caching to
compensate when loading semantically annotated domain
entities.

The Texai KB is open source software, licensed under the
GPL, and all of its dependent libraries are also open
source.

Related Research

RDFReactor (Völkel, M., 2006) is a Java code generator
that takes as input an RDF or OWL schema and generates
a set of domain classes. Each generated Java class models
an RDF class and has field accessing methods for each
property that is applicable to that class. In contrast to the
Texai KB, which allows the semantic annotation of POJOs
(Plain Old Java Objects), RDFReactor generates a built-in
class inheritance hierarchy that follows the input schema.

ActiveRDF (Oren, E. et. al., 2007) is a lightweight Ruby
application that can be easily adapted to a variety of RDF
data sources. Its object manager provides an API to
process RDF data as Ruby objects. Building Semantic
Web applications is facilitated by using ActiveRDF with
Ruby on Rails. Our approach is instead oriented towards
the Java developer, and currently lacks a web-facing front
end.

Future Work and Conclusion

The Texai KB and its existing set of semantic annotations
have proved sufficient for an e-Science English dialog
system under development. Future work will support
persisting a greater variety of Java data types as
applications require them. The current framework also
eagerly retrieves all non-collection value objects when
loading a persisted object. Hibernate, in contrast, uses Java
byte code modification at runtime to lazily load even
simple objects at their first access. The Texai KB
persistence framework could be extended in the same
fashion to more efficiently load persisted domain entities
having large value object graphs.

The Texai KB is currently implemented with Hibernate
and MySQL as the lowest architectural layer. It is possible
to adapt other ORM and storage engines to host the KB
content. Because current queries to find and load domain
entities do not use the full power of SQL, it would be
interesting to replace the Hibernate/MySQL layer with an
alternative such as Oracle Berkeley DB Java Edition,
which offers better performance in lieu of SQL
compatibility.

In conclusion, this research has demonstrated that Java
domain entities, semantically annotated during their initial
development, can be persisted to a knowledge base which
is implemented by a conventional database. The
framework is only slightly more complex than ordinary
EJB 3.0 object persistence but has the advantage of storing
all data in Semantic Web-friendly format. Thus, the data
may be easily accessed by other semantically based
applications.

63

References

Bauer, C., King, G. Java Persistence With Hibernate,
Manning Publications, 2007.

Frederickson, C.L. Object Mapping With Java
Annotations. M.S. Thesis, Dept. of Computer Science,
Montana State University, 2006.

Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J. An
Introduction to the Syntax and Content of Cyc. In
Proceedings of the 2006 AAAI Spring Symposium on
Formalizing and Compiling Background Knowledge and
Its Applications to Knowledge Representation and
Question Answering, Stanford, CA, March 2006.

Noble, J. Basic Relationship Patterns. In EuroPLOP
Proceedings, 1997.

Oren, E., Delbru, R., Gerke, S., Haller, A. and Decker, S.
ActiveRDF: Object-Oriented Semantic Web Programming.
In WWW 2007 Banff, Alberta, Canada, May 2007.

Reed, S.L., and Lenat, D.B. Mapping Ontologies into Cyc.
In AAAI 2002 Conference Workshop on Ontologies For
The Semantic Web, Edmonton, Canada, July 2002.

Reed, S.L. Reference Manual for the Texai Knowledge
Base v1.0, 2006, http://sf.net/projects/texai .

Sun Microsystems. The Java Persistence API - A Simpler
Programming Model for Entity Persistence, 2006,
http://java.sun.com/developer/technicalArticles/J2EE/jpa .

Völkel, M. RDFReactor – From Ontologies to
Programmatic Data Access in Jena Users Conference
Proceedings, 2006.

Yoder, J.W., Johnson, R.E., and Wilson, Q.D. Connecting
Business Objects to Relational Databases. In Proceedings
of the 5th Conference on the Pattern Languages of
Programs, Monticello-IL-EUA, August 1998.

64

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

