
Efficient Message Passing and Propagation of Simple Temporal Constraints

Hung H. Bui, Mabry Tyson, and Neil Yorke-Smith
Artificial Intelligence Center, SRI International

333 Ravenswood Ave., Menlo Park, CA 94025, USA
{bui,tyson,nysmith}@AI.SRI.COM

Abstract

The Simple Temporal Network (STN) is a widely used frame-
work for reasoning about quantitative temporal constraints
over variables with continuous or discrete domains. De-
termining consistency and deriving the minimal network
are traditionally achieved by graph algorithms (e.g., Floyd-
Warshall, Johnson) or by iteration of narrowing operators
(e.g., �STP). However, none of these existing methods ex-
ploit effectively the tree-decomposition structure of the con-
straint graph of an STN. Methods based on variable elimina-
tion (e.g., adaptive consistency) can exploit this structure, but
have not been applied to STNs, in part because it is unclear
how to efficiently pass the ‘messages’ over a set of continuous
domains. We first show that for an STN, these messages can
be represented compactly as sub-STNs. We then present an
efficient message passing scheme for computing the minimal
constraints of an STN. Analysis of the new algorithm, Prop-
STP, brings formal explanation of the performance of the ex-
isting STN solvers �STP and SR-PC. Preliminary empirical
results validate the efficiency of Prop-STP in cases where the
constraint network is known to have small tree-width, such as
those that arise in Hierarchical Task Network planning prob-
lems.

Introduction
Quantitative temporal constraints are essential for many
real-life planning and scheduling domains (Smith, Frank,
& Jónsson 2000). Many systems adopt a Simple Temporal
Network (STN) (Dechter, Meiri, & Pearl 1991) to represent
and reason over the temporal aspects of such problems, as-
sociating time-points with the start and end of actions, and
modeling the temporal relations by binary simple temporal
constraints. We present a general, efficient message passing
scheme for propagation of such constraints.

The central role of STNs in deployed planning systems
(Myers et al. 2002; Castillo, Fdez-Olivares, & O. García-
Pérez 2006) makes efficient inference with STNs especially
important. The two principal inference tasks, determin-
ing consistency of an STN and deriving its minimal net-
work, can be achieved by enforcing path consistency (PC)
(Dechter, Meiri, & Pearl 1991). The common approach is
to run an All-Pair Shortest Path graph algorithm on the dis-
tance graph of the STN. Algorithms such as Floyd-Warshall

(denoted F-W or PC-1) (time complexity Θ(N3)), or John-
son (complexity Θ(N2 log N +NM), where M is the num-
ber of edges in the constraint graph) can be used (Cormen,
Leiserson, & Rivest 1990).

To achieve better efficiency, significant efforts have been
made to apply more sophisticated constraint propagation
techniques to STNs. Partial Path Consistency (PPC) (Bliek
& Sam-Haroud 1999) can be applied to a triangulated con-
straint graph rather than a complete graph and is sufficient
for backtrack-free reconstruction of all solutions. The state-
of-the-art �STP (Xu & Choueiry 2003) is a specialized
solver based on PPC and operates over triangles of the tri-
angulated STN. If only consistency is required, but not the
minimal network, Directional Path Consistency (DPC) can
be used with time complexity O(Nw2), where w is the
induced tree-width along the node ordering used (Dechter
2003). Empirical comparisons on random STNs (Xu &
Choueiry 2003; Shi, Lal, & Choueiry 2004) show that �STP
outperforms PC-1, Johnson’s Algorithm (“Bellman-Ford”),
and is comparable to (on dense graphs) or outperforms (on
sparse graphs) DPC. The complexity of �STP, unstated in
(Xu & Choueiry 2003), is not known, but can be bounded
by O(N3).

Despite the variety of methods for solving STNs, no
dedicated STN solver takes full advantage of the tree-
decomposition of the STN constraint graph (i.e., the ability
to decompose a constraint graph into a ‘tree’ of variable and
constraint clusters (Dechter & Pearl 1989)). One exception
is the specialized solver SR-PC (Yorke-Smith 2005) that ex-
ploits the structure of STNs associated with plans in the Hi-
erarchical Task Network (HTN) planning paradigm (Erol,
Hendler, & Nau 1994). The HTN planning process gives
rise to STNs with the sibling-restricted (SR) property. Such
an SR-STN can be decomposed into a tree of smaller sub-
STNs, mirroring the shape of the hierarchical structure in
the plan. SR-PC traverses this tree, invoking an STN solver
at each sub-STN. While SR-PC shows strong empirical per-
formance on SR-STN, it does not operate on general STNs.

In contrast to STNs, tree-decomposition methods are of-
ten applied to the general Constraint Satisfaction Prob-
lem (CSP). These methods, such as variable elimination
(adaptive consistency) and cluster-tree elimination (Dechter
2003), operate by decomposing a triangulated constraint
graph into a tree of variable clusters and solving the sub-

                                                
Copyright © 2007, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved.

9



problem in each.
In this paper we apply the ideas of such tree-

decomposition methods to the STN. We note that a direct
application of tree-decomposition method to the STN is non-
trivial. Since the STN represents a CSP with continuous
variables, it is not clear how to represent the ‘messages’,
i.e., the sets of additional constraints resulting from elim-
inating some variables. We first show that, for an STN,
these messages can be represented compactly as sub-STNs.
We then present an efficient message passing scheme, called
Prop-STP. Like �STP, our Prop-STP requires the STN to
be triangulated. However, unlike �STP, our algorithm oper-
ates over the set of maximal cliques of the triangulated con-
straint graph. The time complexity of Prop-STP is O(Kw3)
where K is the number of cliques, and w is the induced tree-
width (the size of the largest clique minus 1). For STNs with
known and bounded tree-width (e.g., SR-STNs), Prop-STP
thus achieves linear time complexity, a substantial improve-
ment over the use of All-Pair Shortest Path algorithms. We
demonstrated this empirically by showing that on structured
SR-STNs, Prop-STP achieves the same level of performance
as the specialized solver SR-PC, while greatly outperform-
ing �STP.

For general STNs, triangulation can be carried out effi-
ciently by greedy methods (Kjaerulff 1990). The results of
(Shi, Lal, & Choueiry 2004; Xu & Choueiry 2003) demon-
strate empirically that with a triangulation step, �STP out-
performs current STN solvers. Our analysis of Prop-STP
offers insight into how to order the triangles in �STP, and
also shows that �STP’s complexity can be characterized in
terms of the induced tree-width. Our preliminary experi-
ments with randomly generated STNs indicate that Prop-
STP often performs better than �STP, thus, showing that
it is more efficient to operate on cliques rather than on trian-
gles (as anticipated by (Choueiry & Wilson 2006)).

The next section presents necessary background on STNs
and variable elimination. The following sections introduce
our message passing scheme for STNs and the resulting
Prop-STP algorithm. We present a proof of its correctness
and analyze its theoretical complexity. Finally, we present
preliminary empirical validation of Prop-STP on SR STNs.

Background
We are concerned with relations among a set of variables
{xi, i ∈ S}, each taking values from the domain Xi. A
relation R over S is simply a subset R ⊆

∏
i∈S Xi. The

index set S is called the scope of R. We make use of two
standard relational operators, namely, projection and join.
The projection of a relation R onto the index set V ⊆ S is
denoted by πV R, and the join of R1 and R2 is denoted by
R1 �� R2.

Simple Temporal Networks
An STN is formally represented by a set of variables {xi| i ∈
S}, representing time-points, with domain Xi = R

1; a set of

1While one can consider STNs with discrete domains, we focus
on the more difficult case of continuous domains. The theory in
this paper can be readily specialized to the discrete case, and the

interval unary constraints Ti ⊂ R where Ti = {xi | xi ∈
[ai, bi]}; and a set of binary constraints Tij ⊂ R

2, i < j
where Tij = {(xi, xj) | xi − xj ≤ −aij , xj − xi ≤ bij}.2

Generally, we assume that there are N variables, so S =
{1, . . . , N}. Given an STN T , its constraint graph G is an
undirected graph with vertices representing the variables; an
edge links xi and xj iff the binary constraint Tij exists.

We differentiate the constraints represented by T and the
relation they imply, denoted by sol(T ) and called the solu-
tion set of the STN. By definition, sol(T ) is a relation with
scope S that is the join of all the unary and binary constraints
Ti and Tij . Thus every solution in sol(T ) is an assignment
of values to time-points such that all constraints are satis-
fied. Relational operators such as join and projection can
be applied on the solution set with the usual set semantics.
An STN is consistent iff its solution set is non-empty. Two
STNs are equivalent (denoted T1 ≡ T2) iff their solution sets
are the same, while two STNs are equal (denoted T1 = T2)
iff they contain exactly the same set of constraints.

We introduce some useful operators that operate directly
on T . Let V be a subset of the variables. The subnetwork
of T restricted to V , denoted by TV , is the STN with scope
V and constraints Ti, Tij for i, j ∈ V . Any solution of T
of course will satisfy the constraints of TV , so πV sol(T ) ⊆
sol(TV ). When πV sol(T ) = sol(TV ), the STN is said to be
locally minimal on V . We next consider two STNs with dif-
ferent scopes S1, S2 and constraint graphs G1, G2. The join
of T1 and T2, denoted by T = T1∧T2, is the STN with scope
S1 ∪ S2 and constraint graph being the superimposition of
G1 and G2. All constraints in G1 (but not in G2) and in G2

(but not in G1) are taken from T1 and T2 respectively, and
all constraints in both G1 and G2 are the pairwise intersec-
tion between constraints of T1 and T2. It is straightforward
to show that sol(T1 ∧ T2) = sol(T1) �� sol(T2).

An STN T has an equivalent minimal network represen-
tation T min whose constraints satisfy T min

i = π{i}sol(T ),
and T min

ij = π{i,j}sol(T ) for all i < j. Hence, T min

is locally minimal on {i} for all i, and on {i, j} for all
pairs (i, j). The constraint graph of T min is thus a com-
plete graph. Further, it has been shown that STNs are also
binary-decomposable (Dechter, Meiri, & Pearl 1991), i.e.,
for every subset of variables V , the projection πV sol(T )
is expressible as a binary constraint network. Further still,
the minimal network of πV sol(T ) is precisely T min

V , the
minimal network of T , restricted to V . Thus for every V ,
πV sol(T ) = sol(T min

V ). The minimalization operation to
compute T min is the principal inference task for STNs.

A weaker notion, the partial minimal network, is denoted
by T pmin and defined by the set of constraints T pmin

i =
π{i}sol(T ), and T pmin

ij = π{i,j}sol(T ) for all i < j and
(i, j) ∈ edges(G). The partial minimal network thus shares
the same constraint graph G with the original network, and

algorithm we present operates effectively for either case.
2In some representations, such as the one used by (Xu &

Choueiry 2003), unary domain constraints are modeled as binary
relations to a distinguished temporal reference time-point, denoted
TR, which marks the start of time; thus, without loss of generality,
all constraints may be taken to have the binary form.
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can be obtained from the minimal network T min by remov-
ing all binary constraints on edges that are not present in G.
If the constraint graph of T is triangulated, given T pmin,
every solution to T can be constructed backtrack-free.

Variable and Clustering-Tree Elimination
Complementary to methods that solve a CSP based on the
iteration of narrowing operators, such as PC-1 and �STP
(which can be seen as AC-3 operating over triangles (Xu
& Choueiry 2003)), an alternative method for the general
CSP is called adaptive consistency or variable elimination
(Dechter 2003). Given a general (binary) CSP T with scope
S, consider two sets of variables (called clusters), W and
V that together cover the constraint graph G (this means
W ∪ V = S and every edge in G belongs entirely in W or
in V ). If every path between W and V in G passes through
W ∩ V , we say that the two clusters are separated by their
separator W ∩V , denoted by sep(W,V ). It is then possible
to project onto W as follows:

πW sol(T ) = sol(TW ) �� m(V,W ) (1)

where m(V,W ) = πsep(V,W )sol(TV ) is the message from
V to W . This operation effectively ‘eliminates’ all variables
in V −W . By eliminating the variables in a given order, we
can obtain the minimal constraints. The complexity of this
method thus hinges on the representation and the calculation
of the messages. Because of the difficulty in representing
the messages for variables with continuous domain, this idea
has not been applied to STNs whose domains are inherently
continuous (Dechter 2003, page 357).

Cluster-Tree Elimination is a generalized variable elim-
ination method for computing the partial minimal network
T pmin for a triangulated constraint graph (Dechter 2003).
The algorithm works by decomposing the triangulated graph
G into a join-tree (also known as junction-tree) over a set of
variables clusters {V1, . . . , VK} that cover the original graph
G. The vertices V1, . . . , VK of a join-tree have the property
that, for every tuple (i, j, k) such that j lies on the path be-
tween (i, k), Vi ∩ Vk ⊂ Vj . Once a join-tree is constructed,
messages can be passed asynchronously among the clusters
along the edge of the join-tree. After two messages have
been passed, one in each direction, on every edge of the
join-tree, the resulting network can be shown to be locally
minimal on every cluster Vi. Solving the local networks at
each cluster then yields all the minimal constraints needed
for the partial minimal network.

STN Propagation
Variable Elimination for STNs
We now focus on the STN. First observe that, since every
STN is binary decomposable, its projection onto an arbitrary
subset of variables can be computed and represented by the
minimal network. Applying this to the calculation of the
message in variable elimination yields

m(V,W ) = πsep(V,W ) (sol(TV )) = sol
(
(TV )min

sep(V,W )

)

(2)

The message thus can be represented compactly and conve-
niently as the STN (TV )min

sep(V,W ), which is simply the min-
imal network of TV , restricted to the separator set. We call
this the message STN, denoted by μ(V,W ). Using this com-
pact representation of the messages, we immediately obtain
an efficient variable elimination procedure:
Theorem 1. Consider an STN T and let V,W be two clus-
ters of variables that cover the constraint graph G. Suppose
that V and W are separated by sep(V,W ) = V ∩W . Then
the projection of T onto W , πW sol(T ), can be represented
by the solution of the STN

(TW ∧ μ(V,W )) (3)

Proof. Substitute (2) into (1) and use sol(T1 ∧ T2) =
sol(T1) �� sol(T2).

The above expression involves only a minimalization op-
eration on TV and a simple restriction to the separator set.
Any of the STN solvers described earlier that produces the
minimal network can be used for the former operation.3

The constraint graph of the STN (TV )min
sep(V,W ) is a com-

plete graph over sep(V,W ) (because minimalization creates
a complete constraint graph). So unless T is also com-
plete over sep(V,W ), the operation in (3) will introduce
new edges to the original constraint graph of T .

Message Passing for STNs
Once we have a compact representation of the messages, the
cluster-tree elimination algorithm can be applied immedi-
ately to compute the partial minimal network T pmin. Let us
assume that we are given a join-tree J over a set of clusters
V1, . . . , VK that cover the original constraint graph G. In
some cases, such a join-tree can be found from the structure
of G, as in the case of sibling-restricted STNs, or it can be
found by first triangulating G and then extracting the set of
maximal cliques of the resulting triangulated graph.

The standard message passing scheme used in cluster-tree
elimination (Dechter 2003) computes a message from a clus-
ter Vi to a neighbouring cluster Vj , using the messages Vi re-
ceived from its other neighbours. Representing the message
from Vi to Vj by the message STN μi,j , we obtain

µi,j =

�
�TVi ∧

�
� �

k∈neighbour(i),k �=j

µk,i

�
�
�
	

min

sep(Vi,Vj)

To compute each message requires a minimalization op-
eration over one cluster. After computing all such mes-
sages, we must go through each cluster and minimalize each
one (with the neighbour messages included). Since there
are 2(K − 1) messages to compute, we need a total of
2(K − 1) + K = 3K − 2 minimalization operations. At
the end, we obtain the minimal domain T min

i for all i, but
only T min

ij for those (i, j) that belong to the same cluster.
Since any edge in G must belong to one of the clusters, we
obtain the partial minimal network.

3PPC-based methods such as �STP can also be used; however,
the subgraph in the separator must be complete, and the subgraph
in V must be triangulated.
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Figure 1: Illustration of the separator set P .

An Improved Propagation Scheme
We can exploit specific properties of STN to make the mes-
sage passing scheme more efficient. In the above, one mini-
malization operation is needed for each message. However,
binary decomposability of STNs implies that all possible
projections of T onto an arbitrary subset of its variables can
be computed in a single minimalization operation. Thus we
can rearrange the order of message passing so that one min-
imalization operation can compute multiple messages. Fur-
thermore, as we show below, it is possible to eliminate the
need to store the messages all together.

First, given the join-tree J , a cluster ordering V1, . . . , VK

is termed valid if whenever Vj lies on the path from Vi to
VK then j ≥ i. Such a valid ordering can easily be created
by choosing an arbitrary cluster to be VK and treating it as
the root of J . A valid cluster ordering then lists clusters that
are further away from the root first, and root cluster last.

Next, we define a simple operation on STNs, termed local
minimalization, which takes a subnetwork and replaces it
with its minimal network. To be precise, given a subset of
variables V , a local minimalization on V returns the STN
lmin(T , V ) = T ∧ (TV )min. Since (TV )min ≡ TV , it is
trivial to see lmin(T , V ) ≡ T (since, if T1 is a sub-STP of
T2, then T1 ∧ T2 ≡ T2). Note that this operation makes the
constraint subgraph in V complete.

Lemma 2. Let T ′ = lmin(T , V ). If T is locally minimal
on some W ⊆ S then so is T ′.

Proof. Observe that T ′ constraints are tighter, so
πW sol(T ) = πW sol(T ′) ⊆ sol(T ′

W ) ⊆ sol(TW ).
So if πW sol(T ) = sol(TW ) then we must have equality,
which implies that T ′

is also locally minimal on W .

Lemma 3. For any P ⊂ V such that P separates V − P
and V̄ = S − V , T ′ is locally minimal on V̄ ∪ P .

Proof. For an illustration of the sets V , V̄ and P , see Figure
1. Let W = V̄ ∪ P , so that P = sep(V,W ). Now by
Theorem 1, πW sol(T ) = sol

(
(TW ) ∧ (TV )min

P

)
. In this

equality, the LHS is the same as πW sol(T ′). In the RHS,
(TW ) ∧ (TV )min

P is the same as T ′
W . Thus πW sol(T ′) =

sol(T ′
W ) so T ′

is locally minimal on W .

Note that as long as we can find a separator P that is a
proper subset of V , then V̄ ∪P is a proper subset of S. Thus,
while the original STN T is (of course) locally minimal on

Algorithm 1 Prop-STP

1: T 0 = T
2: for i = 1, . . . ,K − 1 do { First Pass }
3: T i = lmin(T i−1, Vi)
4: end for
5: for i = K . . . 2K − 1 do { Second Pass }
6: T i = lmin(T i−1, V2K−i)
7: end for
8: return T 2K−1

S, the new STN T ′ is locally minimal on a proper subset of
S. By repeatedly applying the same kind of operation, we
can obtain the minimal constraints.

We call this algorithm Prop-STP; pseudo-code is shown
in Algorithm 1. We now show that this algorithm returns all
the minimal constraints of the original network.

Theorem 4. At the end of Prop-STP, T 2K−1 is locally
minimal on every cluster Vk; furthermore, the subnetwork
T 2K−1

Vk
is a minimal network. As a result, T 2K−1 is locally

minimal on every variable i, and on every pair of variables
{i, j} for all (i, j) belonging to the same cluster.

Proof. We proceed by induction on the number of clusters
K in the join-tree. The base case is trivial, so assume the
theorem holds for any join-tree with K − 1 clusters.

Let S1 =
⋃

i≥2 Vi. Since V1 must be a leaf node in J , if

we let P = V1∩S1 then P separates V1−P from V 1. Thus
by Lemma 3, T 1 is locally minimal on V 1 ∪ P = S1.

Let T ′ = T 1
S1

be the subnetwork of T 1 over S1 and J ′

be the join-tree J minus the cluster V1. Observe that J ′
has K − 1 clusters and the ordering V2, . . . , VK is a valid
one for J ′. Running Prop-STP on J ′ would produce the
STN T 2K−2

S1
. Applying the inductive hypothesis, we obtain

that T 2K−2
S1

is locally minimal on all Vi, i ≥ 2, as well
as on every variable and pair of variables contained within
these clusters. Observe that T 2K−2 is locally minimal on
S1 (since T 1 is, and using Lemma 2), so the projection of
T 2K−2 onto Vi (i ≥ 2) is the same as the projection of
T 2K−2

S1
. It follows that T 2K−2 itself is locally minimal on

all Vi, i ≥ 2, and on all variables and pairs of variables
within these clusters, and so is T 2K−1 (Lemma 2).

It remains to show that T 2K−1 is also locally minimal
on V1 and the subnetwork T 2K−1

V1
is a minimal network.

By Theorem 1, πV1sol(T 2K−2) is the solution of the STN
T 2K−2

V1
∧ (T 2K−2

S1
)min
P . Examining the separator P , we

see that it must be a subset of some Vi, i ≥ 2, so the rea-
soning in the previous paragraph implies that the subnet-
work T 2K−2

P is already a minimal one, that is T 2K−2
P =

(T 2K−2
S1

)min
P . Thus, πV1sol(T 2K−2) is the solution of the

STN T 2K−2
V1

∧ T 2K−2
P = T 2K−2

V1
. Therefore, T 2K−2 is lo-

cally minimal on V1, and so is T 2K−1. Finally, the last lmin
operation is invoked on V1, so after that T 2K−1 is locally
minimal on every variable and pair of variables in V1.
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Figure 2: Left: STN; right: join-tree of clusters

Example Figure 2 depicts an STN arising from a hierar-
chical planning problem. The edges labeled with letters re-
fer to tasks; each such edge models the duration between
the start and end time-points of that task. For example, let-
ter A refers to two time-points (variables) Astart and Aend.
The other edges model precedence constraints between par-
ent and child tasks, together with a representative sample
of other temporal constraints. The STN has the sibling-
restricted property, which provides a simple clustering of
the variables to yield the join-tree J shown on the right.
The separators of each cluster are depicted in the rectangu-
lar boxes on the edges. On this STN, the first pass of Al-
gorithm 1 processes the clusters in an order such as DJK,
ELM , BDE, CFGH , ABC. Hence the cluster ABC is
the root of the join-tree. The second pass processes CFGH ,
BDE, ELM , DJK. A single lmin operation on BDE in
the second pass effectively computes the two messages to
DJK and ELM at once. At the end, we obtain the minimal
subnetwork for each cluster, and thus the partial minimal
network for the whole STN.

Analysis of the New Algorithm
Different variants of Prop-STP can be implemented using
different STN subsolvers to perform the lmin operation.
For example, using PC-1 (Floyd-Warshall) leads to Prop-
PC1-STP. Since there are precisely 2K − 1 lmin opera-
tions,4 each with complexity O(w3), the overall complexity
of Prop-PC1-STP is O(Kw3).

Since Prop-STP effectively completes the constraint
graph within each cluster Vi, the resulting global constraint
graph is triangulated. In practice, one can triangulate G in
the initialization phase, and if so, the constraint graph is
already complete within each cluster. In this case, Prop-
STP returns the partial minimal network of the triangu-
lated G. Like other algorithms that work on triangulated
graph, such as PPC and �STP, our Prop-STP does not re-
turn the full minimal network. However, this is sufficient for
a triangulated graph since every solution can be constructed
backtrack-free from its partial minimal network.

It is interesting to examine the behavior of our algorithm
when we use �STP as the subsolver at each cluster (al-
though this is not likely to result in a performance improve-
ment since the subgraph at each cluster is already complete).

4Improvement can be made by keeping track of which clusters
have not been changed after the lmin operations in the first pass, so
that in the second pass we need not perform lmin on them again.

In this case, Prop-�-STP will process triangles in G, one
by one, but following the order imposed by our propagation
scheme: all triangles within each cluster are processed until
stabilized before moving on to triangles in another cluster.
As noted by (Xu & Choueiry 2003), the order in which tri-
angles are processed has a crucial effect on the performance
of �STP. The improved order of triangle processing in our
algorithm also agrees with the intuition of the authors of the
�STP algorithm and others (Choueiry & Wilson 2006).

Experimental Results
We investigate the performance of Prop-STP on two bench-
marks: structured STNs arising from Hierarchical Task Net-
work (HTN) plans, and random unstructured STNs.

Sibling-Restricted STNs
HTN planning assumes a hierarchical flow, with high-level
tasks being decomposed progressively into collections of
lower-level tasks through the application of matching meth-
ods with satisfied preconditions. In a sibling-restricted STN,
constraints may occur only between parent tasks and their
children, and between sibling tasks. This restriction on
what STN constraints may exist between plan elements is
inherent to HTN planning models; in particular, there is no
way in standard HTN representations to specify temporal
constraints between tasks in different task networks (Erol,
Hendler, & Nau 1994). The specialized STN solver SR-PC
(Yorke-Smith 2005) transverses a tree of sub-STNs that cor-
respond to the decompositions in the HTN plan. Because
the STNs thus considered are small, compared to the global
STN corresponding to the whole plan, the overall amount of
work to enforce PC is much less.5

Despite its success on benchmark problems from the PAS-
SAT plan authoring system (Myers et al. 2002), SR-PC
has two drawbacks. First, standard HTN representations
have been extended to support coordination between differ-
ent task networks via landmark variables (Castillo, Fdez-
Olivares, & O. García-Pérez 2006) that allow synchroniza-
tion of key events in the plan. SR-PC can accommodate a
limited number of such landmark variables and their corre-
sponding constraints, but only awkwardly. Second, although

5Observe that not only does SR-PC impose no additional limita-
tions on the expressiveness of HTNs, but also that the SR condition
guarantees we can propagate on the tree of sub-STNs and lose no
information compared to propagating with the whole global STN:
hence the algorithm SR-PC is sound and complete.
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Figure 3: Random SR STNs (left); Random general STNs (right)

not exhibited in practice, SR-PC has poor and weakly char-
acterized worst-case theoretical complexity.6

The small tree-width w of an SR network means that
Prop-STP will be particularly efficient for this class of STNs,
provided we can find an optimal or near-optimal decompo-
sition of the constraint graph G of the global STN into a
join-tree, and a cluster ordering over this tree. Fortunately,
there is a natural decomposition based on each parent task T
and its children Ti. Namely, we form into a cluster the start
and end time-point variables of task T and all its Ti, and all
temporal relations between them (including those between
the children). Figure 2 illustrates this clustering. Since task
networks typically comprise a handful of tasks, the size of
each cluster is small. Therefore, performing minimalization
on each cluster, as done in Prop-STP, is much more efficient
than computing the minimal network for the global STN. In
general, if we consider a task network represented by a bal-
anced tree with depth d and branching factor f (hence the
number of nodes is O(fd)), the complexity of Prop-STP is
O(f2fd) (the join-tree has O(fd−1) clusters, each with size
O(f)). We also note that an SR STN has no articulation
points.7 Because each task in the HTN corresponds to two
variables, as can be seen in Figure 2, the constraint graph
is biconnected and decomposes only via separator sets of
cardinality at least two. This hampers algorithms that seek
articulation points, whether explicitly such as F-W+AP, or
implicitly, such as �STP.

Prop-STP also allows us to explain the strong perfor-
mance of SR-PC in practice, compared to its poor worst-case
theoretical complexity. Implicitly, SR-PC works over the
natural join-tree for SR STNs. Its recursion through the tree
of sub-STNs corresponds to a certain, albeit non-optimal, set
of minimalization operations on the clusters. We infer that
the number of iterations λ(Π) of the loop in Algorithm 1 of
(Yorke-Smith 2005) is bounded by 1, not 2, explaining the
empirical observation that SR-PC does not reconsider sib-

6For uniform tree-shaped random SR STNs with a depth of d,
a mean branching factor of f , the expected time complexity of SR-
PC, using PC-1 as the subsolver, is Θ(f4fd) (Yorke-Smith 2005).

7This is true even when the STN is represented without unary
constraints, i.e., there is no temporal reference TR that connects to
every time-point. In fact, planning systems such as PASSAT use
unary constraints in the STN representation, which precludes any
possibility of finding articulation points in the STN.

ling sub-STNs once all other siblings have been processed.

Prop-STP on SR STNs
To validate the concept of Prop-STP, we implemented the
algorithm within the PASSAT HTN plan authoring system.
Figure 3 (left) compares Prop-STP with PC-1 as the sub-
solver, SR-PC with PC-1, and �STP (with triangles queued
at end of the queue) on SR STNs.8 The STNs were extracted
from random plans with a uniform tree of tasks, as described
in (Yorke-Smith 2005). The figure shows runtime (in sec-
onds) as the mean branching factor of the HTN plan in-
creases (with depth fixed to five), representing random prob-
lems with increasing tree-width. It indicates that Prop-STP,
which is not restricted to this specialized class of STNs, is
as efficient as SR-PC on this specialized class. As expected,
�STP exhibits a poorer performance, since, with the trian-
gle orderings of (Xu & Choueiry 2003), it is unable to ex-
ploit the SR structure to decompose the constraint graph,
nor the triangle ordering Prop-STP infers from the join-tree.
At the highest branching factors, the STNs are largely over-
constrained and thus inconsistent; all three algorithms detect
this situation easily.

Prop-STP on Random STNs
We next report preliminary experimental results in compar-
ing the performance of Prop-STP and �STP on random
STNs. We experimented with two variants of Prop-STP, one
using PC-1 and the other using �STP as the STN subsolver.
The randomly generated STNs are produced by the gener-
ator of (Xu & Choueiry 2003).9 Figure 3 (right) compares
the algorithms on STNs with 30 time-points as the number
of constraints varies from a sparse to a complete graph (and
so the problems from under-constrained, through the critical
region, to over-constrained). The results confirm those in the
literature that �STP is most effective for sparse networks
(Shi, Lal, & Choueiry 2004). Prop-PC1-STP is relatively
insensitive to the constrainedness, while the performance of
Prop-�-STP is a blend of the two solvers from which it
is composed. Overall, we observe that PC-1 is somewhat

8The experiments were conducted on a Sun Blade 1500 with 2
GB RAM, using Allegro Lisp 6.2; the results average 100 runs.

9Both the generator and the �STP source code to were kindly
made available to us by their authors.
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more effective as a subsolver than �STP within the Prop-
STP framework which may be attributed to the subnetworks
(clusters) being complete.

Our current Prop-STP implementation is written in Lisp
to allow a fair comparison with the existing Lisp-based im-
plementations of �STP and SR-PC, and to allow integration
with the PASSAT planning system. Although our reported
CPU times agree qualitatively with previous experiments re-
ported in (Xu & Choueiry 2003), on the absolute scale, our
CPU runtimes are generally higher, especially for networks
with a large number of edges or triangles. We attribute this
artifact to the simplistic memory handling of our Lisp envi-
ronment. We are currently working on the reimplementation
of the algorithms in Java to facilitate a direct and meaning-
ful comparison with PC-1 and other STN solvers. Even with
the current implementation, however, our relative compari-
son of Prop-STP, �STP, and SR-PC is valid.

Conclusion
We have presented a new method, Prop-STP, for solving
Simple Temporal Networks. In contrast to methods based on
graph algorithms or on iteration of narrowing operators, our
algorithm is based on an efficient message passing scheme
over the join-tree of the network. The complexity of Prop-
STP depends on the minimalization operator, i.e. the STN
solver used to enforce path consistency on subproblems.
Thus consistency and the minimal constraints of an STN
(from which solutions can be derived backtrack-free) can
be determined with complexity O(Kw3) or better, where
K is the number of cliques and w is the induced tree-width.
For STNs with known and bounded tree-width, Prop-STP
thus achieves linear time complexity. The new propagation
scheme provides formal explanation of the performance of
the existing STN solvers �STP and SR-PC. For �STP, the
new algorithm also provides an efficient triangle ordering
based on the join-tree clusters.

Our motivation comes from the sibling-restricted STNs
that arise in HTN planning problems. Prop-STP is well-
suited to such STNs because these problems (1) have a small
tree-width w, and (2) the SR structure leads to an easy way
to decompose the network into a join-tree. Prop-STP gener-
alizes the best-known solver, SR-PC, for this class of prob-
lems. It avoids the poor worst-case complexity of SR-PC,
and it can accommodate landmark variables in SR STNs.
At the same time, empirical results validate that Prop-STP
retains the efficiency of SR-PC on problems which the lat-
ter can solve. For general STNs, our preliminary empiri-
cal results on a benchmark of randomly generated networks
indicate that Prop-STP outperforms �STP, except for the
sparest networks. Prop-STP with PC-1 as the subsolver is
empirically more effective overall than with �STP as the
subsolver as the problem size increases.

In our future work, we plan to perform a more thorough
empirical evaluation of Prop-STP and other solvers on gen-
eral STNs, as well as on STNs that are “almost” sibling-
restricted. We also plan to explore the practical use of Prop-
STP in an HTN planning system with support for landmark
variables. Another direction for future work is to employ

Prop-STP in incremental STN solving, where time-points
and constraints are added or removed incrementally.
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