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Abstract

When exploring a game over a large strategy space, it may not
be feasible or cost-effective to evaluate the payoff of every
relevant strategy profile. For example, evaluating each payoff
of an empirically defined game may require Monte Carlo sim-
ulation or other costly computation. Analyzing such games
poses a search problem, with the goal of identifying and con-
firming pure-strategy equilibrium profiles by evaluating pay-
offs of candidates and potential deviations from those candi-
dates. Sureka & Wurman (2005) studied this problem and
proposed a search method based on best-response dynamics.
We introduce a family of best-first algorithms, which prior-
itize unconfirmed profiles by their known bound away from
equilibrium and select the profile with the current minimum.
We compare algorithms by measuring the fraction of profile
space explored to confirm equilibria, as well as the search
effort required to confirm approximate equilibria, on several
game classes. Our best-first approach compares similarly to
the existing best-response algorithms when searching for ex-
act equilibria, and favorably when searching for approximate
equilibria.

Introduction

In attempting to understand agent interactions in multiagent
systems, researchers often appeal to game-theoretic solution
concepts in characterizing the strategic stability of hypothet-
ical outcomes. Unfortunately, the strategy space of the game
or interaction being modeled is often so complex to render
infeasible exact game-theoretic modeling and analysis. One
common compromise is to consider stylized versions of the
game that are amenable to computational analysis, at the ex-
pense of fidelity. One alternative pursued by experimental
AI researchers in recent years is to estimate games through
simulation and sampling, an approach that has been termed
empirical game-theoretic analysis (Reeves, 2005; Wellman,
2006). This approach has held particular appeal for re-
searchers interested in trading agent games, including our-
selves as well as the authors of much of the related work
cited herein.

In empirical game modeling, the outcome of a joint strat-
egy, or profile, is estimated by repeatedly sampling the
game. These samples can be generated by a game simu-
lator or other model describing the game. Such an approach
is quite general, but incurs an estimation cost in proportion
to the size of the profile space, which is exponential in the

number of players and the number of strategies available per
player. For many games of interest, the strategy set is ex-
tremely large or infinite. Thus, in practice we cannot explore
the space exhaustively, but instead focus on profiles that are
most promising as solutions or otherwise pivotal in game-
theoretic analysis. The choice of profiles to explore is essen-
tially a process of heuristic search, and effective heuristics
are essential to computationally feasible strategic analysis in
empirical games.

Figure 1 gives an overview of empirical game-theoretic
analysis. The payoff function mapping profiles to payoffs,
which is found in a typical game definition, has been re-
placed by a simulator and a set of sample observations. Us-
ing this framework, agent designers can construct and an-
alyze heuristic strategies from a large strategy space (Kiek-
intveld, Wellman, & Singh, 2006), and mechanism designers
can optimize an objective function whose computation was
previously intractable (Vorobeychik, Kiekintveld, & Well-
man, 2006). For both of these design problems, it is useful
to determine the set of exact or approximate Nash equilibria,
which thus constitutes a core search problem for empirical
strategy design and empirical mechanism design.

Previous research has explored directed sampling of pro-
files (Walsh, Parkes, & Das, 2003; Reeves et al., 2005) by
using value of information estimates and interleaving sam-
pling and equilibrium calculations, respectively. Both tech-
niques require at least a small number of samples to be gen-
erated for each of the profiles in the full joint strategy space.
Since it may be possible to establish that a particular profile
is an equilibrium or near-equilibrium without considering all
profiles, a search approach can potentially relax this require-
ment. This was part of the motivation for Sureka & Wurman
(2005) to develop an algorithm, based on tabu best-response
search, to search for pure Nash equilibria within the profile
space.

While search strategies such as tabu best-response allow
for partial sampling of the profile space, they do not exploit
information contained in the interactions of strategies of par-
tially specified profiles. We have encountered many games
where particular combinations of strategies predictably do
not interact well regardless of the remaining players’ strate-
gies. This type of substructure can be exploited to prune the
search space. In general, predictive models for the best devi-
ation of a particular partial or full profile can be constructed
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Figure 1: Overview of empirical game-theoretic analysis where directed search is used to reduce the number of observations
sampled in confirming profiles with low ε. These profiles are extensively used in strategy and mechanism design.

to attempt to improve directed search and allow more inter-
esting regions of the profile space to be explored.

Background
This section describes the formal notation and experimen-
tal measures of success we use to compare algorithms. We
follow standard game-theoretic notation, but consider only
the pure strategy space of players within a game. Our first
performance measure is a variant of the measure described
by Sureka & Wurman (2005), and the second extends this
to consider approximate equilibria. Approximate equilib-
ria may be of interest in general, and are especially salient
when searching among pure profiles for games that may not
exhibit pure-strategy Nash equilibria.

Formal Notation

Definition 1 (Normal Form Game). Γ = 〈I, {Si}, {ui(s)}〉
is a normal form game where I is the set of players, Si is the
set of strategies available to player i, and ui : ×|I|

j=1Sj → R

is the utility function for player i mapping the joint strategy
s to the real-valued payoff received by player i when s is
played.

We refer to the joint strategy set ×|I|
j=1Sj for a particular

game Γ as S(Γ) and we drop the Γ parameterization when
the context is clear. The term profile is used interchangeably
with joint strategy.
Definition 2 (Unilateral Deviation Set). For some joint
strategy s ∈ S(Γ), the unilateral deviation set Di(s) is

Di(s) = {(ŝi, s−i) : ŝi ∈ Si − {si}} (1)
and

D(s) =
⋃

i∈I

Di(s). (2)

Definition 3 (ε of a joint strategy). For some joint strategy
s ∈ S(Γ), the maximum gain from deviation, ε(s), is

ε(s) = max
i ∈ I, ŝ ∈ Di(s) ∪ {s}

ui(ŝ) − ui(s). (3)

Definition 4 (Pure Strategy Nash Equilibrium). For some
joint strategy s ∈ S(Γ), s is a pure strategy Nash equilib-
rium (PSNE) iff ε(s) = 0.

Repeated Sampling Approach

In games with stochastic payoffs multiple samples may be
required to accurately estimate the expected value of a pro-
file. Generally, solutions to this problem have been of the
form
(a) Gather an initial sample for each possible profile
(b) Update the payoff estimates
(c) Repeatedly sample interesting profiles
(d) Go to (b)

Walsh, Parkes, & Das (2003) approach the sampling prob-
lem by using the value of information framework developed
by Russell & Wefald (1991). The idea of this approach is
to select the sample s that is expected to provide the great-
est reduction in estimated error in the equilibrium choice. In
the original setting, sample s is selected in an attempt to re-
fute an equilibrium. Since this computation is very costly,
Walsh, Parkes, & Das (2003) propose an alternate computa-
tion which selects profiles based on the confirmational value
of information.

A second approach is due to Reeves et al. (2005). The al-
gorithm uses replicator dynamics to select samples from an
initially uniform distribution. This form of biased sampling
assigns higher probability of sampling to profiles with more
density in the replicator dynamics mixture. In essence, the
hope is that more important samples will be selected more
often so that we can obtain accurate equilibrium mixtures
without repeatedly sampling less important regions of the
profile space.

As previously mentioned, these approaches require that
the entire space has been partially sampled. In many
games of interest this is prohibitively expensive. For games
amenable to search with best-response dynamics, we show
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empirically that pure-strategy Nash equilibria are typically
confirmed with less than 1% of the space searched. If an
approach is taken such that each profile searched is sampled
repeatedly, say 30 times, for statistical significance tests, this
results in a sample count equal to approximately 30% of the
search space. This is at worst a 70% savings over just the
initial sampling step in the procedure sketched above.

In the next subsection we discuss an alternative method
proposed by Sureka & Wurman (2005) which does not re-
quire the entire profile space to be searched. Since only pure
profiles are considered, we lose the guarantee that an exact
Nash equilibrium will be found.

Tabu Best-Response Search

The procedure introduced by Sureka & Wurman (2005)
samples all deviations of the active profile for a given player,
and selects the best response (i.e., the profile maximizing
gain from deviation) as the next active profile. The algo-
rithm then selects a new player and the process iterates. To
avoid best-response cycles, they maintain a tabu list record-
ing profiles that have already been visited. Two variants of
the algorithm were discussed: one with explicit memory and
another with attribute based memory. The explicit memory
version keeps a global tabu list holding all previously vis-
ited joint strategies, whereas attribute-based memory keeps
a separate tabu list for each player. The process terminates
once the algorithm selects a PSNE as its active profile.

The original experiments by Sureka & Wurman (2005)
focus on the time required to find a PSNE. The equilibria
of the games were pre-computed, therefore finding a PSNE
amounts to checking the active profile against a list of known
equilibria. We would like to consider games in which the
equilibria are not externally verified and, thus, the search
procedure must itself confirm their existence. Therefore, in
order to compare how well the algorithms confirm equilib-
ria, we slightly modify tabu best-response search. Now, in-
stead of immediately placing the active profile on the tabu
list T and branching to the best response, we branch to the
best response only if that profile is improving. Of course, no
player would choose to deviate in a Nash equilibrium, and
by keeping the profile active we allow it to be confirmed by
iteration through the players. With this modification, how-
ever, it becomes possible that we visit a profile for which all
neighbors are in the tabu list (explicit memory version). In
this case we allow the player to deviate to the best response
if that best response gives a higher payoff than the current
profile. Pseudo-code for the tabu best-response algorithm
used in our experiments is presented below.

TABU-BEST-RESPONSE-SEARCH(Γ)

Select initial profile at random
while Termination criteria not satisfied

do
i ← next player
if Di(s) ⊆ T

then s ← player i’s best response to s
else if s has an improving deviation in Di(s) \ T

then Push s onto T
s ← player i’s best response to s not in T

Performance Measure

We wish to compare best-first search (BFS) against tabu
best-response (TABU) in a test of search efficiency. Our
preference is for a search algorithm which confirms low ε
profiles sooner. When testing TABU, Sureka & Wurman
(2005) measured performance by the percentage of strategy
space examined to find a sample Nash equilibrium. To di-
rectly compare TABU to BFS we measure performance in
terms of the percentage of the strategy space examined to
confirm a sample Nash equilibrium. To confirm an equilib-
rium, all of the profile’s deviations must be sampled.

The unfortunate consequence of using the first measure is
that we are restricting our comparison to games with at least
one PSNE. In general we are concerned with games that
may not have a PSNE (at least with respect to the strategy
space considered), and even when such exist we may also
be interested in approximate equilibria. Therefore we intro-
duce a second performance measure which characterizes the
lowest confirmed ε as a function of the percentage of profile
space searched.

Best-First Search

The idea of BFS is to expand a search tree by exploring the
fringe node that is best according to some priority measure.
In our setting, the objective is to find a profile minimizing
potential gain from deviation, ε. Therefore we adopt as our
priority measure a lower bound, ε̂(s), on the possible gain to
deviation from profile s. The pseudo-code below describes
the BFS procedure as applied to game Γ.

BEST-FIRST-SEARCH(Γ)

Select initial profile at random
while Queue is not empty

do
Select lowest ε̂(s) profile s from queue
if s is confirmed

then Remove it from queue and assign ε(s) = ε̂(s)
else s̄ ← SELECT-DEVIATION(s)

Insert s̄ into queue if previously unsampled
Update ε̂(ŝ) for ŝ ∈ {s̄} ∪ D(s̄) in the queue

The lower bound ε̂(s) is simply the maximal gain found
among the deviations from profile s sampled thus far. A
profile s is confirmed if all the deviations from s have been
sampled. SELECT-DEVIATION(s) returns an unsampled de-
viation from s. Selection is done by predicting which un-
sampled deviation from s is likely to give the largest gain
from deviation. While the efficacy of the deviation selection
heuristic will depend on the class of games being tested, we
have empirically found one heuristic which works well in
a variety of cases (Jordan, Kiekintveld, & Wellman, 2007).
Consequently, the prediction model used in this paper will
calculate the percentage of historically improving deviations
and pick the deviation which maximizes the improving de-
viation probability.

As with any heuristic search, BFS can be hindered by un-
favorable terrain. Figure 2 illustrates how this can occur
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within the joint strategy space of a game. In this case, the
four profiles with high ε values (relative to the neighboring
profiles) are blocking the profile subspace that contains the
optimal low ε profile. In BFS the low ε profile will not be
confirmed until exploration of one of the four blocking pro-
files, unless the initial profile of the search happens to be one
of the five labeled profiles.

L

H

H

H

H

Figure 2: Blocking an optimal subspace. Profiles with high
ε are labeled H and the optimal profiles with low ε is labeled
L. Arrows represent position gain unilateral deviations.

When there is a known upper bound on the minimum ε
we can employ random restart to mitigate this kind of lo-
cal blocking problem. The standard BFS algorithm chooses
the next profile from among the unsampled deviations of the
profile with the lowest current ε. Using the known bound on
ε, we uniformly select a random profile over all unsampled
profiles if the ε̂ on the best profile is above this bound. We
denote this algorithm BFS-RR and use the bound of zero for
experimentation.

Random Games with Independent Payoffs

We tested various classes of games using GAMUT (Nudel-
man et al., 2005). Of those classes of games, one which re-
ceived substantial attention by Sureka & Wurman (2005) is
the class with payoffs that are independently identically dis-
tributed. Sureka & Wurman (2005) chose this class of game
to benchmark TABU, due to the lack of inherent structure.
We follow suit by presenting an algorithm specifically de-
signed to exploit this class, which we use as a benchmark
for BFS and TABU. We label this algorithm frequency first
search (FFS) for reasons that will shortly become apparent.

Notice that by the assumption of independent payoffs,

P(ε(s) = 0) =
∏

i ∈ I, ŝ ∈ Di(s)
P(ui(ŝ) ≤ ui(s)).

Therefore, for a given joint strategy s that has been sampled,
we can calculate the probability that s is a PSNE. In this
case ui(ŝ) is either a random variable and the probability
that the deviation gain is not positive is computed by evalu-
ating the cumulative distribution function of the payoffs, or
the deviation profile has been sampled and we can assign the
probability a 0 or a 1. Similarly, for an unsampled profile we

can determine the probability by evaluating the cumulative
distribution function at the sampled deviation payoff. In the
case that the density function of the payoffs is not known
we can approximate the calculation by using the sample dis-
tribution. FFS will similarly perform best-first search, but
rather than ordering by ε̂, FFS will instead order by proba-
bility of being a PSNE.

Experimental Results

Our experiments use games of various classes generated by
GAMUT (Nudelman et al., 2005) as well as a set of em-
pirical games in a trading agent domain. When applicable,
games similar in size to those given by Sureka & Wurman
(2005) are tested. Initially we experiment with the game
classes use in this prior study to establish a baseline for al-
gorithm comparison. We then proceed to evaluate various
game classes whose structure is known to be exploited by
the best-response dynamics so that we may test BFS in an
environment that should be favorable to TABU. Finally, we
conclude with our analysis of the algorithms by analyzing
their performance on a set of TAC/SCM games.

Uniform Random Games

Our first class of games have payoffs that are uniformly
distributed in the range [-100,100] denoted URG(|I|, |Si|)
where |I| is the number of players and |Si| is the strat-
egy set size of each player. We compare BFS and TABU
on two sizes of games: the smaller URG(5,5) and the
larger URG(5,10). To construct the data sets for comparing
the algorithms we systematically generated the games and
checked whether these games contained a PSNE. Games
that fell within this criterion were tested using the first mea-
sure of efficiency (the % of profile space searched to confirm
an equilibrium), as well as, the second. For URG(5,5) the
results of this comparison are shown in Table 1.

BFS FFS Tabu
Mean (%) 53.42 34.36 52.25
Median (%) 52.12 33.40 49.28
BFS – 2.2e-16 0.18
FFS – 2.2e-16
Tabu –

Table 1: URG(5,5) with at least one PSNE. Statistics for
each method and p-value comparisons.

Our analysis of URG(5,5) included 12 games which con-
tained at least one PSNE. Seeds 0, 1, 3, 4, 8, and 15 con-
tained one PSNE; seeds 5, 13, 16, 17, and 18 contained two;
and seed 20 contained three. FFS was a statistically signif-
icant improvement over both BFS and TABU whose differ-
ence in the first measure was not significant. In each game
100 profiles were selected at random as starting points for
all algorithms. The performance of BFS and TABU varied
drastically according to the individual game. For instance,
in seeds 4, 8, and 15 TABU rarely succeeded in confirming
the solution.1 Similarly in seed 3, BFS on average requires

1Since TABU is not guaranteed to confirm an existing solution a
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nearly all the search space to be evaluated. It should be noted
that although the global optimal was not confirmed until near
the last iteration, many near optimal profiles were confirmed
much earlier.

Figure 3 shows the minimum confirmed ε as a function of
the space explored, which is our second performance mea-
sure. In many practical settings it may be that near equi-
librium profiles are just as useful as PSNE. Therefore in
those cases we consider the second measure more appropri-
ate. Notice that BFS confirms low ε profiles much earlier
than TABU, which is the desired result.
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Figure 3: Mean low ε for URG(5,5).

BFS BFS RR FFS Tabu
Mean (%) 37.10 35.68 23.88 41.79
Median (%) 31.41 28.88 20.31 34.75
BFS – 0.19 2.2e-16 3.5e-05
BFS RR – 2.2e-16 6.1e-08
FFS – 2.2e-16
Tabu –

Table 2: URG(5,10) with at least one PSNE. Statistics for
each method and p-value comparisons.

Our analysis of URG(5,10) also included 12 games which
contained at least one PSNE. All algorithm comparisons are
significant with the exception of the BFS and BFS-RR al-
gorithms. In these larger games the average performance of
BFS and TABU improves from approximately 50% of the
space searched to the mid-30% range. Here again, as ex-
pected, FFS produces the best performance with only 24%
of the space searched on average. Figure 4 shows the mini-
mum confirmed ε as a function of the space explored for the
large game. BFS shows a large improvement over TABU in
the large game as well.

Covariance Games

In covariance games payoffs are distributed normally with
zero mean, unit variance, and covariance r between player’s

timeout was placed on the number of iterations equal to the size of
the strategy space. If TABU exceeded the timeout it was credited
for finding the solution in the greatest possible number of steps
required by BFS.
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Figure 4: Mean low ε for URG(5,10).

payoffs in the same profile. The parameter r used by
GAMUT to create the range is randomly assigned according
to GAMUT’s parameter randomization routine. We generate
20 instances of this game type with 5 players and 10 actions
each and report the results of analyzing the algorithms ac-
cording to the first efficiency measure.

BFS Tabu
Mean (%) 0.22 0.36
Median (%) 0.17 0.15
p value 0.10

Table 3: Covariance Game (5,10). Statistics for each method
and p-value comparisons.

Table 3 gives the results of the comparisons on covariance
games. The 0.36% mean percentage of space searched by
TABU is much lower than the approximate 1.1% given by
Sureka & Wurman (2005).2 This can probably be explained
by the fact that Sureka & Wurman (2005) ran experiments
initialized with each profile in the joint profile space. We
randomly select 100 profiles to initialize the search for each
algorithm and while some PSNE may have large basins of
attraction which result in quick convergence, there may ex-
ist a small region of the space which takes much longer to
search resulting in a low probability, large value event. As
with the uniform random games, neither algorithm shows a
significant improvement over the other.

Congestion Games

Here we repeat the description of congestion games gener-
ated by GAMUT given in the user documentation:

In the congestion game, each player chooses a sub-
set from the set of all facilities. Each player then re-
ceives a payoff which is the sum of payoff functions for
each facility in the chosen subset. Each payoff function

2Sureka & Wurman (2005) used a 5 player 11 action version of
the game.
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depends only on the number of other players who have
chosen the facility.
The class of congestion games have been shown to be

equivalent to the class of potential games (Rosenthal, 1973;
Monderer & Shapley, 1996), which are games that have pay-
offs given by a potential function. Congestion games have a
very special property proved by Rosenthal (1973): conges-
tion games always have a PSNE.

We compare BFS and TABU on four-player four-facility
congestion games. The results of the congestion game com-
parison are shown in Table 4. Twenty games were generated
for experimentation using GAMUT. In all cases TABU has
better performance than BFS. This is reflected in the results
table for this class of games, but it should be noted that the
difference in space explored, 0.05%, is negligible.

BFS Tabu
Mean (%) 0.15 0.10
Median (%) 0.15 0.10
p value < 2.2e-16

Table 4: Congestion game (4,4). Statistics for each method
and p-value comparisons.

Local Effect Games

Local effect games (LEGs) (Leyton-Brown & Tennenholtz,
2003) are symmetric games in which pairs of actions lo-
cally affect each other if the utility of agent taking one
of the actions depends on some function of the number of
agents taking the other action. Leyton-Brown & Tennen-
holtz (2003) find experimentally that myopic best-response
dynamics converge quickly to PSNE in sample LEGs. Given
this prior evidence we expect TABU to measure well on
these games and this expectation is confirmed in our exper-
iments shown in Table 5. As with the other experiments,
we generate 20 instances of this game type with 5 players
and 10 actions each, then report the results of analyzing the
algorithms according to the first efficiency measure.

BFS Tabu
Mean (%) 1.52 0.09
Median (%) 0.12 0.08
p value 7e-16

Table 5: LEG (5,10). Statistics for each method and p-value
comparisons.

Table 5 gives the results of the analysis. TABU has a sig-
nificant edge over BFS in both the mean and median of the
percentage of space searched. The relatively large mean of
BFS is due to seed 14 of the experiments. In this game BFS
did not find the PSNE until approximately 40% of the space
was searched.

TAC/SCM↓3 Games

We conclude our analysis by comparing the algorithms on
an empirical version of the Trading Agent Competition

Supply Chain Management (TAC/SCM) game. TAC/SCM
(Arunachalam & Sadeh, 2005; Eriksson, Finne, & Janson,
2006) is a six-player game in which agents representing PC
(personal computer) manufacturers compete to maximize
their profits over a simulated year. There are 220 scenario
days, and agents have approximately 14 seconds to make
decisions each day. Agents participate simultaneously in
markets for supplies (components) and finished PCs. There
are 16 different types of PCs (divided into three market seg-
ments), defined by the compatible combinations of 10 differ-
ent component types. Components fall into one of four cat-
egories: CPU, motherboard, memory, and hard disk. There
are four types of CPUs and two types of all other compo-
nents; one component from each category is required to pro-
duce a PC.

The strategy space for our empirical version of game (Jor-
dan, Kiekintveld, & Wellman, 2007) comprises a subset of
the agents participating in the 2005 and 2006 TAC/SCM
competitions. Binary versions of these agents, listed in Ta-
ble 6, were provided to the TAC agent repository by their
designers. We employed hierarchical game reduction (Well-
man et al., 2005) to approximate the six-player game by a
three-player version, called SCM↓3. Each player in SCM↓3

is represented by two copies of its chosen strategy in the
original six-player game. We estimated the payoffs for two
empirical SCM ↓3 games, corresponding to the 2005 and
2006 agents, through repeated sampling of each distinct pro-
file of the respective strategy sets.

Tournament Scores
Agent Finals

Deep Maize 05 –0.22
Go Blue Oval 05 n/a
Mertacor 05 0.55
MinneTAC 05 –0.31
PhantAgent 05 n/a
TacTex 05 4.74
Deep Maize 06 F 3.58
Deep Maize 06 SF n/a
MinneTAC 06 –2.70
PhantAgent 06 4.15
TacTex 06 5.85

Table 6: Eleven TAC/SCM agents constituting the SCM↓3

2005 & SCM↓3 2006 strategy sets, along with their results
from their respective year’s final tournament round (in $M).

Using the resultant SCM↓3 2005 and SCM↓3 2006 games
we compare TABU and BFS on the two measures of perfor-
mance. The SCM↓3 2005 has no PSNE and we therefore use
this game to compare the algorithms on the search required
to approximate equilibria at varying levels of ε. Starting
from each of the 56 distinct profiles we run each algorithm
and report the mean minimum confirmed ε given by the per-
centage of space searched. The result is shown in Figure 5.
On average, BFS confirms low ε profiles sooner. In some
cases, TABU fails to ever confirm the lowest ε profile in the
game, resulting in a higher mean estimate when considering
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60% or more of the space searched.
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Figure 5: Mean low ε for SCM↓3 2005.

The second game, SCM↓3 2006, does have a PSNE. Start-
ing from each of the now 35 distinct profiles we run each
algorithm and report the mean search required to confirm
the PSNE. The result is shown in Figure 6. The mean per-
centage of space searched is 54.0% for BFS and 56.6% for
TABU. For TABU there were four cases where the algo-
rithm failed to confirm the PSNE.
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Figure 6: Kernel density plot showing the space required for
finding a PSNE in the SCM↓3 2006 game.

The analysis for the individual SCM↓3 games considered
by Jordan, Kiekintveld, & Wellman (2007) totaled 3210 val-

idated game instances each requiring 7 CPU hours to per-
form. A major component of their analysis was identifying
approximate or PNSE which give a background context for
comparison (NE-response ranking) and for which a best re-
sponse can be designed. Using BFS, the minimum ε profile
could have been determined using less than 60% of the com-
pute cycles required for the full game analysis.

Discussion

We have presented empirical results comparing BFS and
TABU on classes of algorithms varying in structure from
weakly structured to strongly structured games. In all cases,
the performance comparison of BFS and TABU on the space
exploration measure shows both are essentially equivalent.
An important attribute of the BFS algorithm is that it will
confirm all available profiles eventually, whereas TABU will
not necessarily do so. This is important not only in the case
where no PSNE exists, but also when we wish to analyze
low ε profiles when designing a best response. For many
games of interest it may be that the second proposed mea-
sure may provide a more relevant statistic. We have shown
empirically that BFS outperforms TABU on games with lit-
tle structure with this measure.

We have shown that in classes of games which there is
underlying structure (in this case potential and LEGs) both
algorithms converge quickly. If an empirical game is be-
lieved to possess characteristics of a known class of games,
for instance LEGs, it may be reasonable to model the empir-
ical game as an approximate LEG. In this case we could use
other sampling methods to approximate the underlying (po-
tential) functions. A comparison of BFS to such an approach
would provide a good understanding of the benefits of these
algorithms in the case where we have added intuition about
the structure of the game.
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