
Marginal Bidding: An Application of the
Equimarginal Principle to Bidding in TAC SCM

Tyler Odean, Victor Naroditskiy, Amy Greenwald, and John Donaldson
Department of Computer Science, Brown University, Box 1910, Providence, RI 02912

{todean,vnarodit,amy,jwd}@cs.brown.edu

Abstract

We present a fast and effective bidding strategy for the Trad-
ing Agent Competition in Supply Chain Management (TAC
SCM). In TAC SCM, manufacturers compete to procure com-
puter parts from suppliers, and then sell assembled comput-
ers to customers in reverse auctions. To address the bidding
problem, an agent decides how many computers to sell and
at what prices to sell them. We propose a greedy solution,
Marginal Bidding, inspired by the Equimarginal Principle,
which states that revenue is maximized among possible uses
of a resource when the return on the last unit of the resource is
the same across all areas of use. We show experimentally that
Marginal Bidding performs as well as a computationally in-
tensive integer linear programming approach on small prob-
lem instances. Moreover, unlike our ILP solution, Marginal
Bidding can cope with large problem instances. Hence, it can
incorporate Lookahead, that is, it can effectively reason about
predicted future as well as current demand.

Introduction
A supply chain is a network of autonomous entities en-
gaged in procurement of raw materials, manufacturing—
converting raw materials into finished products—and distri-
bution of finished products. The Trading Agent Competi-
tion in Supply Chain Management (TAC SCM) is a simu-
lated computer manufacturing scenario in which software
agents operate a dynamic supply chain (Arunachalam &
Sadeh 2005). We study the TAC SCM bidding problem,
which is to decide upon prices at which to offer to sell com-
puters to customers, balancing the tradeoff between maxi-
mizing revenue—by placing high bids—and maximizing the
quantity of customer orders secured—by placing low bids,
within the constraints of component availability and produc-
tion capacity.

In a dynamic market setting such as TAC SCM
there are often conditions under which the optimal bid-
ding/production decisions are greatly influenced by future
demand. For example, in an accelerating market it may be
worth reserving factory capacity for future, more profitable
demand. Conversely, in a bear market it may be optimal to
bid more aggressively early on, claiming a larger share of to-
day’s demand to fulfill with future production. As such, in-

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

corporating information about predicted future demand can
positively impact revenues. However, doing so increases the
size of bidding problem, and hence the computational re-
sources necessary to solve it. This is true even in an idealized
setting where future demand is known with certainty. But
in reality, future demand is uncertain, and this stochasticity
further increases the computational resources necessary to
make effective bidding decisions.

In this paper, we precisely formulate bidding in TAC
SCM as a recursive stochastic program, and we propose two
heuristic solutions: 1. Marginal Bidding, a greedy algorithm
that is motivated by the Equimarginal Principle; 2. a compu-
tationally intensive integer linear programming (ILP) solu-
tion to “expected bidding,” a deterministic approximation of
the (stochastic) TAC SCM bidding problem. These heuris-
tics are compared both with and without Lookahead, that
is, predicted future demand. We show experimentally that
Marginal Bidding performs as well as our ILP approach on
small problem instances. Moreover, Marginal Bidding can
cope with large problem instances. Hence, it can effectively
reason about predicted as well as current demand.

This paper is organized as follows. First we describe the
Equimarginal Principle of marginal utility theory, originally
posited in the mid 1800’s. We note that this principle applies
to a generalization of the classic knapsack problem, the so-
called nonlinear knapsack problem (NLK), and we note that
under certain conditions a greedy algorithm can approximate
an optimal solution to NLK. Then we formalize the TAC
SCM bidding problem as a stochastic program, and argue
that expected bidding, a deterministic approximation, is an
instance of NLK. Next we describe our key idea—Marginal
Bidding—an application of the aforementioned greedy ap-
proach to expected bidding. Finally, we compare experi-
mentally the performance of two heuristics, Marginal Bid-
ding and an ILP approach, in simulations of the TAC SCM
bidding problem.

The Equimarginal Principle
The Prussian economist H. H. Gossen is credited with ob-
serving two fundamental laws of utility: the Law of Dimin-
ishing Marginal Returns:

The amount of any pleasure is steadily decreasing as
we continue until the last saturation is reached.

27

and the Equimarginal Principle:

If a man is free to choose among several pleasures but
has not time to afford them all to their full extent, then
in order to maximize the sum of his pleasures he must
engage in them all to at least some extent before en-
joying the largest one fully, so that the amount of each
pleasure is the same at the moment when it is stopped;
and this however different the absolute magnitude of
the various pleasures may be.

The Equimarginal Principle applies to problems where
a limited resource needs to be distributed among a set of
independent possible uses. Such problems are ubiquitous.
Two problems commonly cited in economics textbooks in-
clude: a consumer allocating her income among different
commodities to maximize her utility; and a firm deciding
how to proportion its labor and capital to reach its desired
output.

The Equimarginal Principle states that total value is
maximized when marginal values per unit of resource—
“marginal value densities”—are equated across all areas of
use: MV1/P1 = . . . = MVi/Pi = . . . = MVn/Pn, where
MVi is the marginal value of i and Pi is the amount of re-
source required for one unit of i (e.g., a price). The principle
relies on the assumption that the marginal values associated
with each use i are decreasing in the amount of the resource
allocated.

It is easy to see that in an optimal solution to such a
resource allocation problem, marginal value densities are
equal. Indeed, if the marginal value densities were unequal,
a better allocation could be achieved by redistributing a unit
of the resource from the use with a lower marginal value
density to the use with a higher marginal value density.
Gossen’s claim is less obvious: that equal marginal value
densities imply an optimal solution, assuming diminishing
marginal values. For proof, see, for example, (Varoufakis
2002).

As an example, suppose Alice has $12 to spend, and fur-
ther, suppose she derives her pleasure from apples and or-
anges. An apple costs $2 and an orange costs $3. Alice’s
marginal values of the fruit and her marginal value densi-
ties (per dollar) are shown in Table 1. Note that marginal
value densities are diminishing. Alice can attempt to find an
optimal solution by allocating her money in a greedy man-
ner to uses with the highest marginal value densities. Doing
so, she would allocate her $12 as follows: spend $2 on ap-
ple 1, spend $2 on apple 2, spend $3 on orange 1, spend $3
on orange 2, spend $2 on apple 3. This procedure equates
marginal value densities: the marginal value density of buy-
ing apples is 4, as is the marginal value density of buying or-
anges. Hence, by the Equimarginal principle, this solution—
buy 3 apples and 2 oranges—is optimal.

Note that it is not always possible to equate marginal
value densities in discrete settings. Indeed, marginal value
densities across uses can be arbitrarily far apart, rendering
this greedy approach arbitrarily bad.

Apples Oranges
Fruit # Price MV MVD Price MV MVD

1 2 14 7 3 15 5
2 2 12 6 3 12 4
3 2 8 4 3 6 2
4 2 2 1 3 3 1

Table 1: Apples and Oranges. MV denotes marginal value.
MVD denotes MV density per dollar spent.

The Nonlinear Knapsack Problem
The problem domains in which the Equimarginal Principle
applies have the flavor of the knapsack problem. In this clas-
sic problem, we are given a set of n items, each with a value
vi and a weight wi, and our objective is to choose a subset
of the items that maximizes the sum of the weights but does
not exceed the capacity C of the knapsack. Formally,

max
x

n∑
i=1

vixi (1)

s.t.
n∑

i=1

wixi ≤ C (2)

More generally, in the aforementioned sample economics
problems, the decision faced is one of choosing not only the
best uses for the resource, but the quantity of the resource
to be allocated to each use as well. Moreover, the value of
each use depends on the quantity selected. This latter differ-
ence creates a knapsack problem with a nonlinear objective
function: i.e., a nonlinear knapsack problem (NLK) problem
(see, for example, (Hochbaum 1995)). Specifically,

max
x

n∑
i=1

fi(xi)xi (3)

s.t.
n∑

i=1

gi(xi) ≤ C (4)

Typically, the value functions fi are assumed to be real-
valued, concave, and nondecreasing, and the weight func-
tions gi are assumed to be real-valued, convex, and nonde-
creasing. The convexity and concavity assumptions ensure
that marginal values (and hence, the corresponding densi-
ties) are diminishing.

Like the traditional knapsack problem, NLK comes in
various flavors: discrete (binary or integer) and continuous.
In the former, the resource can be allocated to uses only in
discrete quantities (e.g., xi ∈ {0, 1}); in the latter the re-
source can be allocated to uses in any real-valued quantity
(i.e., xi ∈ IR). We pose and solve a special case of the con-
tinuous NLK, and to solve it we reformulate it as a very spe-
cial discrete (linear) knapsack problem for which the greedy
approach is optimal.

An Approximately Optimal Greedy Solution in a
Special Case
Consider a continuous nonlinear knapsack problem with fi

concave, gi(xi) = cixi for some ci ∈ IR, and xi ∈ IR, for

28

all i = 1, . . . , n. Given K ∈ IN, we discretize this problem
as follows: let k = 1

K ; for j = 1, . . . , K , let

vij = fi

(
jk

ci

)
− fi

(
(j − 1)k

ci

)
(5)

be the marginal value of the jth “piece” of i and let wij =
k be the weight associated with this piece. Rewriting the
objective and the constraints yields:

max
x

∑
ij

vijxij (6)

s.t.
∑
ij

xij ≤ C′ (7)

where C′ = CK and xij ∈ {0, 1}, for all i = 1, . . . , n
and j = 1, . . . , K . This problem is a very special 0/1 (lin-
ear) knapsack problem in which weights are constant. Since
the value functions fi are concave, marginal value densi-
ties are guaranteed to be diminishing. Hence, this prob-
lem can be solved greedily by including pieces in order of
their marginal value densities, from highest to lowest, until
the knapsack’s capacity is reached. As in the correspond-
ing continuous problem, a greedy solution to this discrete
knapsack problem never includes the ith piece without first
including the i − 1st piece.

As an example, suppose Alice is shopping at a bulk food
store and has $8 to spend on oats and granola. Oats cost $2
per pound and granola costs $6 per pound. Alice’s utility
from oats and granola is given by the following functions of
quantity, respectively: uo(qo) = 20qo − 2q2

o and ug(qg) =
24qg − 3q2

g . The optimal quantities that Alice should buy
can be calculated analytically. The solution is to spend $ 44

7

on oats and $ 12
7 on granola. The value of this solution has

utility ∼ 49.71.
Suppose this bulk food store does not accept denomina-

tions less than one dollar. Alice pays with single dollar bills.
Her marginal value densities (per dollar) are shown in Ta-
ble 2. Because her marginal value densities are diminishing,
Alice can find an optimal solution to this discretized prob-
lem by allocating her money in a greedy manner to uses in
order of marginal value densities. Alice would allocate her
$8 as follows: spend her first $6 on oats, spend her last $2
on granola.

Note that this optimal solution to the discretized problem
is nearly an optimal solution to the corresponding continu-
ous problem: its value is 42+7.67 = 49.67. In this situation,
as in most real-life problems, the resource ($8) has to be al-
located in discrete amounts (e.g., one dollar or one cent). If
the store accepted pennies, and if Alice had $8 in pennies,
this approach would find a solution that is even closer to the
optimal solution. We formalize this intuition presently.

Let OPTcon(B) denote the optimal value of the con-
tinuous problem given a budget (i.e., a knapsack capac-
ity) of B. Let OPTdis(B) denote the optimal value of
the analogous discretized problem. In addition, let v∗i de-
note use i’s marginal value density in an optimal solution
to OPTdis(B). (NB: Marginal value densities need not be
equated in optimal solutions to discrete knapsack problems.)

$ Oats Granola
lbs Utility MVD lbs Utility MVD

1 0.5 9.5 9.5 0.167 3.92 3.92
2 1 18 8.5 0.333 7.67 3.75
3 1.5 25.5 7.5 0.5 11.25 3.58
4 2 32 6.5 0.667 14.67 3.42
5 2.5 37.5 5.5 0.833 17.92 3.25
6 3 42 4.5 1 21 3.08
7 3.5 45.5 3.5 1.167 23.92 2.92

Table 2: Oats and Granola at a bulk food store. MVD de-
notes marginal value density (i.e., MV per dollar).

Theorem 1 Let v∗min = max(0, mini v∗i). Given K ∈
IN and k = 1

K , OPTcon(B) ≤ OPTdis(B) + ε(k) where
ε(k) = k

∑
i|v∗

i >0(v
∗
i − v∗min).

Proof If marginal value densities are equated in the so-
lution to the discretized problem, this solution is an op-
timal solution to the continuous problem as well by the
equimarginal principle.

Suppose marginal value densities are not equal in the dis-
cretized solution. Choose the lowest marginal value density
and add additional budget Δ to the other uses until marginal
value densities are equated across all uses in the continuous
problem. Again, by the equimarginal principle, this solution
is optimal.

Of course, OPTcon(B) ≤ OPTcon(B + Δ), because
Δ is additional budget. Also, OPTcon(B + Δ) =
OPTdis(B) + ε, because ε is the extra value derived from
equating marginal value densities across uses. Therefore,
OPTcon(B) ≤ OPTdis(B) + ε.

In some sense, the above theorem is quite weak, since
as noted above, in discrete NLK problems, marginal value
densities across uses can be arbitrarily far apart. However,
the following theorem shows that taking a discretized ap-
proach to solving a continuous NLK problem of the form
stated above can be valid nonetheless.

Corollary 2 Via the above procedure, as K → ∞, the
value of an optimal solution to the discretized 0/1 (linear)
knapsack problem approaches the value of an optimal so-
lution to the continuous NLK problem, assuming the value
functions fi are bounded.

Proof By Theorem 1, it suffices to show that ε → 0 as
K → ∞. This follows immediately from the fact that the
values based on which ε is computed are bounded.

Next we define the TAC SCM bidding problem and a
tractable approximation called expected bidding. We note
that the latter is a continuous NLK problem with gi linear
and diminishing marginal returns. Hence, the discretization
procedure described above, followed by an application of
the greedy algorithm, yields decent approximate solutions
to this problem.

Bidding in TAC SCM
In TAC SCM, six software agents compete in a simulated
sector of a market economy, specifically the personal com-

29

puter (PC) manufacturing sector. Each agent can manufac-
ture 16 different products (i.e., types of computers), char-
acterized by different stock keeping units (SKUs). Building
each SKU requires a different combination of components,
of which there are 10 different types. These components are
acquired from a common pool of suppliers at costs that vary
as a function of agent demand. At the end of each day, each
agent converts a subset of its components into SKUs accord-
ing to a production schedule that it generates for its factory,
within a maximum capacity of 2000 cycles. It also reports
a delivery schedule assigning the SKUs in its inventory to
outstanding customer orders.

The next day, the agents compete in first-price reverse
auctions to sell their finished products to customers: i.e.,
an agent secures an order by underbidding the other agents.
More specifically, each day the customers send RFQs to the
agents. Each RFQ contains a SKU, a quantity, a due date, a
penalty rate, and a reserve price—the highest price the cus-
tomer is willing to pay. Each agent sends an offer in response
to each RFQ, representing the price at which it is willing to
satisfy that RFQ. After each customer receives all its offers,
it selects the agent with the lowest-priced offer and awards
that agent with an order. After 220 simulated days of pro-
curement, production, delivery, and bidding each of which
lasts a total of 15 seconds, the agents are ranked based on
their profits.

The Stochastic Bidding Problem
The decision problem faced by a TAC SCM agent can be di-
vided into three central subproblems (Benisch et al. 2004):
procurement of components from suppliers, bidding on cus-
tomer requests for quotes (RFQs), and scheduling of factory
production and deliveries. Here we focus on the bidding
problem, which subsumes the scheduling problem. A study
of how our methods extend to procurement remains for fu-
ture work.

For simplicity, we assume all due dates are set past the
end of the game, making penalties irrelevant. Also, as we
are concerned only with bidding and not with procurement
in this paper, all components are assumed to be infinitely
available at no cost.

Agents are assumed to have perfect price prediction, that
is, they know the probability of winning an order as a func-
tion of any bid they submit. We encode this information
in “price-probability models.” They are also assumed to
have access to an accurate stochastic model of future de-
mand (i.e., the number and variety of RFQs that will arrive
each day).

A decision-theoretic version of the TAC SCM bidding
problem, under the aforementioned assumptions, can be for-
mulated as a recursive stochastic program. We do so here,
using the notation explained in Figure 1.

The recursive function takes five inputs: today’s product
inventory, today’s outstanding orders, today’s RFQs, the his-
tory of RFQs received on previous days, and today’s date.
The objective is to choose bids on today’s RFQs and to de-
cide upon today’s production and delivery schedules in such
a way as to maximize today’s revenue plus expected future
revenue.

Variables
xr ≥ 0 bidding policy: bid price for RFQ r
yj ≥ 0 production schedule: quantity of SKU j
zi ∈ {0, 1} delivery schedule:

1 if order i is delivered; 0 otherwise

Indexes
t day index
j SKU index

Functions
p(r, xr) probability of winning RFQ r with bid xr

Constants
aj number of units of SKU j delivered
bj number of units of SKU j in inventory
cj cycles expended to produce one unit of SKU j
dij 1 if order i is for SKU j; 0 otherwise
πi revenue for delivering order i
qi quantity of order i
N total number of days
C daily production capacity in cycles
O set of outstanding orders
Q set of (today’s) orders
R set of (today’s) RFQs
R′ set of tomorrow’s RFQs
h history of RFQs received until now

Figure 1: Notation for Recursive Stochastic Program

Bids on day t are placed on RFQs received that day. The
set of RFQs R′ received on day t+1 is a random variable that
is independent of any decisions but depends on the history
of past RFQs received.

The bids placed on day t determine the likelihoods of re-
ceiving various sets of orders on day t + 1. Each set of new
orders is called a scenario. Each scenario Q is weighted
by probability Pr(Q) as determined by the given price-
probability model. Specifically, Pr(Q) equals the product
of the probabilities of winning all RFQs that are part of Q
and the probabilities of not winning RFQs that are not part
of Q (Equation 9).

Delivery and production scheduling decisions today af-
fect what will remain in product inventory tomorrow. In-
deed, tomorrow’s product inventory equals today’s product
inventory b minus any product inventory depleted by today’s
deliveries a plus any additional inventory produced today y.

Each day capacity and allocation constraints are enforced.
Equation 10 ensures that there are enough products in inven-
tory for today’s delivery schedule. Equation 11 ensures that
today’s production schedule does not consume more cycles
than the daily capacity.

The base case (Equation 12) of the recursion pertains to
the last day. Orders can be scheduled for delivery but there
is no production or bidding.

30

if 0 ≤ t < N,

F (b, O, R, h, t) = max
x,y,z

∑
i∈O

ziπi+

∑
Q∈2|R|

Pr(Q)ER′|h [F (b − a + y, O ∪ Q, R′, h ∪ R, t + 1)]

(8)
subject to:

Pr(Q) =
∏
r∈Q

p(r, xr)
∏
r/∈Q

(1 − p(r, xr)) (9)

aj =
∑

i|i∈O,dij=1

ziqi ∀j; a ≤ b (10)

∑
j

yjcj ≤ C (11)

if t = N,

F (b, O, R, h, t) = max
z

∑
i∈O

ziπi (12)

To find the set of optimal bids on day 0, ideally one would
solve F (0, {}, R, {}, 0), where R is the set of RFQs received
on day 0. However, this recursive stochastic program is in-
tractable because of an exponentially increasing number of
scenarios after each recursive call.

The Expected Bidding Problem
A tractable approximation of 1-day stochastic bidding called
expected bidding was considered in (Benisch et al. 2004).
In the expected bidding problem, it is assumed that a bid that
has probability p of winning an order for quantity q wins a
partial order for quantity pq with probability 1. In this deter-
ministic setup, a set of |R| bids results in exactly one set of
partial orders, that is, one scenario instead of 2|R| scenarios
in Equation 8.

Unlike (Benisch et al. 2004), where there was no model
(stochastic or deterministic) of future demand, here, we
study an N -day version of expected bidding. To do so, we
collapse the stochastic information contained in the price-
probability models into partial orders as in (Benisch et al.
2004), and we collapse the stochastic information contained
in the stochastic model of future demand into a single statis-
tic (e.g., the mean). Generally speaking, this approach to
solving stochastic optimization problems is called the ex-
pected value method (Birge & Louveaux 1997).

Define by “market segment” any subset in any partition-
ing of the customer demand.1 The objective in expected bid-
ding is to find a set of bids xi, one per market segment i,
that maximizes expected revenue, subject to the constraint
that expected production does not exceed available capac-
ity, given, for each market segment i, a demand curve fi(xi)
that maps bid prices into expected quantities together with

1In our experiments, we partition the customer RFQ market by
SKU type.

the number of cycles ci ∈ IN required to produce one unit of
i.

Expected bidding can be stated formally as a mathemati-
cal program:

max
x

n∑
i=1

fi(xi)xi (13)

s.t.
n∑

i=1

cifi(xi) ≤ C (14)

where xi ∈ IR is the bid in market segment i and fi(xi) is
the expected quantity of i at price xi. Equivalently, we can
state expected bidding as follows:

max
x′

n∑
i=1

f−1
i (x′

i)x′
i (15)

s.t.
n∑

i=1

cix
′
i ≤ C (16)

where x′
i ∈ IR is the expected quantity of i desired. Assum-

ing f−1
i is concave (so that marginal revenues are dimin-

ishing), this latter formulation is equivalent to Equations 3
and 4 with gi(x′

i) = cix
′
i.

To solve this continuous knapsack problem, we reformu-
late it as a discrete one as in the oats and granola exam-
ple and we solve this latter problem greedily. That is, we
develop an approximate solution to a deterministic approx-
imation of the bidding problem: i.e., an approximate solu-
tion to the approximate problem! Ultimately, we test both an
ILP bidder (feeding an N -day version of the expected bidder
studied in (Benisch et al. 2004) to CPLEX) and our greedy
approach on simulated instances of stochastic bidding.

A Greedy Algorithm
Since expected bidding is a continuous NLK problem with
gi linear where the assumption of diminishing marginal val-
ues holds, and since our discussion above shows that a
greedy algorithm yields a decent approximation for such in-
stances of the continuous NLK, we now describe a greedy
algorithm that relies on this latter assumption about the mar-
ket structure to solve the expected bidding problem in TAC
SCM. At a high level, our algorithm first fulfills outstand-
ing orders; second, it greedily schedules SKU production
for a given segment of the overall market in decreasing or-
der of marginal revenue per cycle; third and last, it deter-
mines its bids by computing the percentage of demand met
in this market segment, and then bidding the price associated
with this percentage according to the corresponding price-
probability model.

Price-Probability Models
A price-probability model is a mapping from prices to the
probability of winning an RFQ in a given market segment.
An example of a linear price-probability model is (see Fig-
ure 2(a)):

2200− bid price
800

= probability of winning the RFQ (17)

31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300
Price−Probability Model

Probability of Winning an RFQ

B
id

 P
ric

e

0 50 100 150 200 250 300 350 400
1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300
Market Segment Demand Curve

Quantity Demanded

B
id

 P
ric

e

Figure 2: (a) Sample price-probability model. (b) Sample market segment demand curve.

Here, it is assumed that a price of 2200 will have no chance
of winning the RFQ, whereas a price of 1400 is guaranteed
to win. At a price of 1800, then, a seller would win with
probability 0.50 Price-probability models need not be linear,
but can incorporate whatever techniques necessary to model
the likelihood of a bid price being the lowest offered on an
RFQ.

Market Segment Demand Curves &
Marginal Revenue Lists
In a competitive marketplace with indistinguishable prod-
ucts, a seller hoping to adjust its market share can do so
only by changing its offer price. To assist a seller in making
such pricing decisions, a price-probability model for a mar-
ket segment can easily be converted into a representation
of that segment’s demand curve: the expected quantity as-
sociated with a given price is determined by multiplying the
probability associated with that price in the price-probability
model by the total quantity demanded in that market seg-
ment.

For example, suppose we are using the same model as in
the previous section to represent a market segment consist-
ing of 80 RFQs of 5 SKUs each, 400 SKUs in total. By
aggregating the quantities of each SKU demanded by all the
RFQs in a market segment, we can use the probability speci-
fied by the price-probability model to calculate the expected
quantity of each SKU demanded at a given price (see Fig-
ure 2(b)). In our example, a price of 1800 wins with prob-
ability 0.50. Hence, if an agent wishes to capture 50% of
the market segment, it should make offers at a price of 1800.
Conversely, in a market segment with 400 SKUs, an agent
could expect to win 200 SKUs worth of demand.

By traversing the market segment demand curve at a con-
stant, exogenously declared incremental quantity (elsewhere
referred to as step size), we generate the marginal revenue
(per cycle) list that is input to our greedy bidding algo-
rithm. Corresponding to the sample market segment demand
curve shown in Figure 2(b), assuming a step size of 20%
(i.e., 80 SKUs), a sample marginal revenue list is shown
in Table 3. The prices in the first and second rows were
generated by querying the price-probability model for the
prices corresponding to the quantities 160 and 80. Then, the

marginal revenue per cycle in the second row was computed
as 160∗1880−80∗2040

80∗5 = 344, assuming that five cycles are
required to produce SKUs in this market segment.

Quantity Price Marginal Revenue / Cycle
80 2040 408
160 1880 344
240 1720 280
320 1560 216
400 1400 152

Table 3: Market Segment Marginal Revenue List

Marginal Bidding in Detail
In more detail, the Marginal Bidder proceeds as follows:

Inputs: Current and Future RFQs, Market Segment
Marginal Revenue Lists, Price-Probability Models, Out-
standing Orders, Product Inventory, Component Inventory

1. for each order

• if the order is fulfillable using product inventory, sched-
ule it for delivery

• if the order is not fulfillable using product inventory,
schedule it for production

• reduce product inventory or component inventory and
production capacity accordingly

2. repeat while there exist positive marginal revenues per cy-
cle, remaining production capacity and components in in-
ventory

• take from inventory or schedule production of one unit
of the product from the market segment with the high-
est marginal revenue per cycle, ignoring products that
are not in product inventory and cannot be built from
component inventory

• remove the first entry from the product’s market seg-
ment marginal revenue list and reduce product inven-
tory or production capacity and component inventory
accordingly

3. for each product

32

• bid the price at which the agent expects to win with
probability:

quantity of the product scheduled
quantity of the product requested

Outputs: A bid corresponding to each current RFQ

Experiments
Here, we report on experiments designed to compare the
performance of two bidding algorithms, one based on
our greedy algorithm (MB, for marginal bidding), the
other on our integer linear programming solution (ILP).
Both are tested with (MB-L,ILP-L) and without lookahead
(MB,ILP). The marginal bidders are run with both a 1% and
5% step size, and the ILP bidders are tested with a 1% dis-
cretization (100 possible price points) and 5% discretization
(20 possible price points).

Lookahead
One way to incorporate future demand is a technique we re-
fer to as Lookahead. With Lookahead, a bidder schedules
the game’s remaining demand in one long day with capacity
equal to Daily Capacity x Remaining Game Days. A daily
production schedule is generated from this game long sched-
ule by calculating the ratios at which each SKU is produced,
and then scaling the production schedule down proportion-
ally to one day’s capacity (using only the capacity remaining
after the production associated with orders is scheduled).

Setup
Recall that in TAC SCM an RFQ is awarded to the agent
presenting the lowest offer below the reserve price. We
tested our bidding algorithms in isolation, not against other
bidding agents, as in a true reverse-auction setting. The
awarding of contracts to RFQs was determined solely by
the simulator, which transforms an offer into an order with
the probability associated with the bid price under the price-
probability model for the relevant market segment. Agents
were endowed with perfect price prediction: i.e., the price-
probability model was shared between the agent and the sim-
ulator. Moreover, agents were also endowed with complete
and perfect knowledge of future demand. In other words,
the set of customer RFQs scheduled to arrive each day was
broadcast before the simulations began.

We tested our bidders in four setups, which differed only
in the level of customer demand (i.e., the number of RFQs)
each day. In all setups, demand was assumed to be uniformly
distributed across SKUs. For each setup 25 trials each last-
ing 25 days were run under identical conditions. The only
randomness arose in the awarding of orders, which was
done based on the linear price-probability model specifed
in Equation 17.

In our results tables, Revenue is reported in millions; Run-
time is reported in seconds on a per day basis; and Cycles
refers to the average number of factory cycles (necessarily
≤ 2000) used per day.

Constant Demand
In our first simulation, a constant customer demand of 100
RFQs per day was given to the bidding algorithms. Assum-
ing constant demand, there exist no particular advantage to
planning for future demand, since the optimal solution for
the whole game is a concatenation of the optimal solutions
on each of the individual days. Indeed, the revenues of all
the bidding algorithms under constant demand (Table 4) are
within one standard deviation of each other.

Table 4: 25-day simulation under constant demand.
Agent Rev. S.Dev. Time S.Dev. Cycles
MB 1% 16.91 0.77 0.38 0.73 1999.0
ILP 1% 16.92 0.64 1.82 1.38 1998.7
MB-L 1% 16.95 0.77 0.40 0.78 1997.3
ILP-L 1% 16.91 0.64 22.7 63.6 1997.5
MB 5% 16.91 0.71 0.08 0.37 1995.8
ILP 5% 16.94 0.70 0.55 0.71 1998.3
MB-L 5% 16.95 0.63 0.08 0.37 1997.2
ILP-L 5% 16.91 0.66 4.16 3.18 1997.3

High/Low Demand
High/Low demand is an artificial demand setup designed to
highlight the advantages of taking future demand into ac-
count. In our simulation, demand on even numbered days is
quite high (100 RFQs) whereas demand on odd numbered
days is quite low (0 RFQs).

Bidders with Lookahead are able to exploit this bimodal
demand by bidding aggressively on days when there is a sur-
plus in demand, and fulfilling orders with excess inventory
produced on the days when demand is low. Bidders without
Lookahead, because they are only able to consider a single
day’s demand, starve on the days when demand is lower than
their factory’s capacity. As expected, the revenues for Bid-
ders with Lookahead are substantially higher than their no
Lookahead counterparts in this setup (Table 5). In particu-
lar, the Marginal Bidder with Lookahead earns more revenue
than the ILP without Lookahead. Moreover, the former is
also more computationally efficient, finding it’s solution be-
tween 5 and 18 times faster than the ILP.

Note that in this setup (only) the Marginal Bidder without
Lookahead is performing approximately twice as fast as the
Marginal Bidder with Lookahead. On low demand days,
the Marginal Bidder without Lookahead has no demand to
consider, and so immediately returns the empty offer set. In
contrast, the Lookahead Bidder always has future demand to
consider, and so consumes runtime even on empty demand
days.

Decreasing Demand
A more realistic demand setup in TAC SCM is one of gently
decreasing demand. This is representative of supply effects
that are artifacts of the start of a typical game, when compo-
nent constraints cause the agents to leave an initially large
chunk of customer demand unfulfilled. As the game pro-
gresses and agents begin to manufacture products in greater

33

Table 5: 25-day simulation under high/low demand.
Agent Revenue S.Dev. Time S.Dev. Cycles
MB 1% 10.19 2.30 0.44 0.59 1243.2
ILP 1% 10.19 2.21 0.84 1.24 1244.1
MBL-L 1% 14.41 1.22 0.95 0.75 1992.2
ILP-L 1% 14.40 1.21 17.1 22.0 1997.6
MB 5% 10.18 2.26 0.09 0.31 1242.5
ILP 5% 10.17 2.36 2.15 4.79 1242.8
MB-L 5% 14.40 1.30 0.20 0.44 1991.8
ILP-L 5% 14.40 1.28 2.31 2.19 1992.6

numbers, this unfulfilled demand diminishes and then dis-
appears when the market reaches a competitive steady state,
subject to drift in customer demand.

Our simulation of decreasing demand begins with 120
RFQs decreasing by 5 RFQs each day until no RFQs ar-
rive on the last day. Again, unable to compensate for fu-
ture demand, the Bidders without Lookahead initially bid for
enough RFQs to fill one day of production and then starve
in later days when demand diminishes and a single day’s
RFQs no longer constitutes a full day’s worth of produc-
tion. The Bidders with Lookahead, knowing that future de-
mand will be insufficient to keep their factories running, bid
for a higher percentage of the excess early demand and are
able to sustain themselves for longer through the dry spell
at the end of the game. As above, the Marginal Bidder with
Lookahead outperforms the ILP without Lookahead, both in
revenue and in runtime. (See Table 6). The mirror case of
increasing demand (from 0 to 120 RFQs) is omitted here but
produces symmetric results.

Table 6: 25-day simulation under decreasing demand.
Agent Revenue S.Dev. Time S.Dev. Cycles
MB 1% 13.31 0.77 0.45 0.83 1724.9
ILP 1% 13.35 0.92 1.41 1.44 1721.3
MB-L 1% 15.46 0.89 0.49 0.83 1997.5
ILP-L 1% 15.42 0.92 16.8 34.6 1997.2
MB 5% 13.34 0.84 0.10 0.42 1723.0
ILP 5% 13.30 1.16 0.75 2.06 1711.7
MB-L 5% 15.46 0.94 0.10 0.40 1997.4
ILP-L 5% 15.41 0.89 2.40 2.85 1997.1

Related Work
Researchers at the Cork Constraint Computation Center im-
plemented an integer linear approach to bidding in a con-
straint based agent, Foreseer (Burke et al. 2005). Similar to
the expected bidder posited in (Benisch et al. 2004), Fore-
seer uses profit as the objective function, bid prices as the
decision variables, and constraints based on factory capac-
ity, component availability, and reserve prices.

Researchers at CMU reduce a probabilistic pricing prob-
lem (akin to TAC SCM bidding) to a nonlinear continu-
ous knapsack problem, under the assumption of diminishing
marginal returns, and present an ε-optimal solution to this
problem with arbitrary concave value functions (Benisch,
Andrews, & Sadeh 2006). Their approach is efficient as-
suming normally distributed customer valuations (an analog

of price-probability models). Our method’s efficiency does
not depend on the form of the price-probability model.

The TacTex team developed a greedy bidder along the
lines of the marginal bidder presented here, with a few sub-
tle distinctions (Pardoe & Stone 2004). TacTex is initialized
to bid reserve prices on each RFQ and then iteratively re-
duces its bids according to some selection mechanism until
production capacity is reached or profits are no longer in-
creasing. The selection mechanism relies on a heuristic that
determines whether the most limiting resource is production
capacity (in which case it selects by profit per cycle) or com-
ponent availability (in which case it selects by change-in-
Profit / change-in-Probability).

Discussion and Conclusion
We have described a marginal revenue based method for bid-
ding on customer demand in the TAC SCM environment.
The greedy solutions found by the Marginal Bidders are
competitive with our ILP solutions in terms of revenue, both
with and without Lookahead, but take a fraction of the time
to compute. Since each day in TAC SCM is simulated in 15
physical seconds, this computational savings can in turn be
applied to other dimensions of the agent’s decision making.

Our ultimate goal is to develop a scalable bidding algo-
rithm so that it can be extended into a procurer capable of
reasoning about long-term future demand. Because the ILP
considers each RFQ as a separate decision variable, its com-
plexity grows rapidly as a function of the number of RFQs.
By reasoning about SKUs in collective market segments, the
Marginal Bidder avoids this complexity and appears to be
more readily extensible to the procurement problem.

As a first step towards procurement, we extended our
Marginal Bidder to handle due dates. Doing so involved
changing the multiday production schedule from being a
monolithic block of capacity equal to the entire game’s fac-
tory capacity into a collection of capacity constraints each
representing a separate day, and reorganizing the set of mar-
ket segment demand curves according to due date as well
as SKU. Products can then be scheduled backwards from
their latest possible production date, until all possible days
of production have been filled.

In practice, since our Marginal Bidder prioritizes schedul-
ing orders, due dates and penalties do not have a large impact
on bidding decisions, which is why they are not considered
in this paper. Consideration of due dates is crucial in pro-
curement, however, and makes for an exponentially larger
ILP.

It remains to be seen whether our Marginal Bidding
approach can be extended to handle interdependent uses,
where devoting resources to one use can affect the marginal
value density of another. Interdependencies arise naturally
in procurement because components are shared among SKU
types.

Since information about market prices is provided by the
TAC SCM server by SKU type, there exist no particular re-
turns to considering RFQs of the same type separately in
TAC SCM. However, one could conceive of more compli-
cated scenarios in which such segmentation of the overall

34

market results in a loss of information regarding specific
RFQs. The Marginal Bidding algorithm is agnostic towards
this market division, however, so whatever tradeoff between
specificity and complexity is deemed desirable can be trans-
parently integrated into our bidding module.

It is also worth noting that despite the game-theoretic na-
ture of bidding in TAC SCM, our focus here is on a decision-
theoretic (stochastic) optimization problem, not on game-
theoretic equilibrium calculations. The enormity of the de-
cision space in TAC SCM makes game-theoretic strategic
analysis intractable with current technology. It remains to
be seen whether an effective game-theoretic approach can
be developed to exploit strategic opportunities in the TAC
SCM game.

Finally, in the near future, we plan to test the robustness
of our algorithms to imperfect modeling of future demand
and trading prices. Doing so would lead to progress in ad-
dressing the challenging game-theoretic issues that arise in
environments like TAC SCM that are inhabited by multiple
artificially intelligent agents.

Acknowledgments
This research was supported by NSF Career Grant #IIS-
0133689.

References
Arunachalam, R., and Sadeh, N. M. 2005. The supply
chain trading agent competition. Electronic Commerce Re-
search and Applications 4(1):66–84.
Benisch, M.; Andrews, J.; and Sadeh, N. 2006. Pricing
for customers with probabilistic valuations as a continuous
knapsack problem. In ACM International Conference Pro-
ceeding Series, volume 156, 38 – 46.
Benisch, M.; Greenwald, A.; Grypari, I.; Lederman, R.;
Naroditskiy, V.; and Tschantz, M. 2004. Botticelli: A sup-
ply chain management agent. In Third International Con-
ference on Autonomous Agents and Multiagent Systems,
volume 3, 1174–1181.
Birge, J., and Louveaux, F. 1997. Introduction to Stochas-
tic Programming. New York: Springer.
Burke, D. A.; Brown, K. N.; Koyuncu, O.; Hnich, B.; and
Tarim, A. 2005. Foreseer: A constraint based agent for tac-
scm. In Trading Agent Competition - Supply Chain Man-
agement, IJCAI ’05, Edinburgh, Scotland.
Hochbaum, D. S. 1995. A nonlinear knapsack problem. In
Operations Research Letters, volume 17, p. 103–110(8).
Pardoe, D., and Stone, P. 2004. TacTex-03: A supply chain
management agent. SIGecom Exchanges 4(3):19–28.
Varoufakis, Y. 2002. Foundations of Economics: A Begin-
ner’s Companion. Taylor and Francis e-Library.

35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

