
Information Integration for the Masses

Jim Blythe
Dipsy Kapoor

Craig A. Knoblock
Kristina Lerman

USC Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

Steven Minton
Fetch Technologies

2041 Rosecrans Ave, El Segundo, CA 90245

Abstract

We have integrated three task learning technologies within a
single desktop application to assist users in creating informa-
tion integration applications. These technologies include a
tool to create agents for programmatic access to online infor-
mation sources, a tool to semantically model these sources
by aligning their input and output parameters to a common
ontology, and a tool that enables the user to create complex
integration plans using text instructions. We have integrated
these tools within the CALO Desktop Assistant. Our sys-
tem enabled even relatively novice users, who are not familiar
with information integration systems, to construct integration
plans for a variety of problems in the office and travel do-
mains.

Introduction

Intelligent information integration applications will soon as-
sist users in planning and managing many aspects of every-
day life, for example, planning travel or managing the pur-
chasing of equipment. These tasks require user to combine
information from a variety of heterogeneous sources and
process the information as the user wishes. The information
integration application may even be required to monitor in-
formation source and give user help where appropriate. For
example, when planning a trip, the user may want initially
to gather information about flights and hotels based on the
her preferences and budget. After this initial stage, the ap-
plication could monitor for changes in flight or hotel prices
and changes in flight schedule.

In order to use such information integration systems ef-
fectively for a wide variety of tasks, the user must be able
to easily integrate new information sources, and formulate
and execute appropriate integration plans. Currently, accom-
plishing these steps requires sophisticated technical knowl-
edge and familiarity with the workings of information inte-
gration systems, expertise that the average user cannot ob-
tain without specialized training. Our goal is to automate
the process of creating a new information integration appli-
cation to a degree that it can be done by a technically unso-
phisticated user.

We have integrated three learning technologies within
a single desktop tool to allow users to create executable

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

applications that integrate information from heterogeneous
sources. The technologies are (1) EzBuilder — a tool to cre-
ate agents for programmatic access to semi-structured data
on the web, such as online vendors or weather sources, (2)
PrimTL — a tool that assists the user in constructing a model
of the source by mapping its input and output parameters to
semantic types in a predetermined ontology and (3) Tailor
— a tool that assists the user in creating procedures, which
are executable integration plans, based on user’s short text
instructions.

These learned procedures are capable of gathering and
integrating information, monitoring the performance of the
application over time, communicating with the user about
that progress and even taking world-changing steps such as
booking a hotel. To the best of our knowledge, no previ-
ous tools have been developed that can allow users to create
procedures with such broad capabilities.

In this paper we describe our experiences integrating these
tools within the desktop application developed by DARPA’s
CALO project1. We used our system to create executable
integration plans for 14 sample problems chosen to test the
system in realistic scenarios. The tool was used both by the
developers and, independently, by a group at a different or-
ganization. The queries were subsequently executed within
the Calo desktop assistant.

In the next section we describe the architecture for the
learning system and introduce an example problem that we
use throughout the paper. In the following sections we de-
scribe the component technologies - EzBuilder, PrimTL and
Tailor - along with modifications made to allow for broad
integration between components. Next we discuss the 14
test problems that were chosen and describe experiences in
using the tool. We finish with a summary of future work.

Architecture and example problem

Figure 1 shows a simplified view of the overall architecture
for the intelligent desktop assistant, including the task ex-
ecutor and the task learning components within the assis-
tant. The Calo Desktop Assistant includes a variety of com-
ponents aiding in understanding, indexing and retrieving in-
formation from meetings, presentations and online sources
as well as calendar and email-based applications. Many of

1http://www.ai.sri.com/project/CALO

16

the actions taken by these components are coordinated by
the task execution agent, SPARK (Morley & Myers 2004).
SPARK interprets procedures defined in a language similar
to PRS and manages concurrent execution of tasks, includ-
ing cases where some may be active while others are waiting
for some external response or information. Desktop com-
ponents can cause complex procedures to be executed by
posting goals with SPARK and users can execute the same
procedures through an intuitive interface. The combination
of EZBuilder, PrimTL and Tailor allows users to create com-
plex integration plans, or procedures, that make use of on-
line information that are executed by SPARK, allowing them
to be invoked by the user or by other components within the
intelligent agent.

Figure 1: Learning agent architecture

We illustrate the problem with the following scenario.
The user is planning travel and wishes to make use of a new
online site for hotels and rates. First she builds a procedure
to access the site, taking a city name as input and returning a
list of hotels, with a set of features available for each hotel.
Next, she creates a procedure that uses the first procedure to
find a set of hotels within a fixed distance of a location avail-
able over a given time interval. This procedure can be called
repeatedly with different locations, time intervals and dis-
tance thresholds. After choosing a hotel, the user would like
to be informed if the rate subsequently drops. She creates
a third procedure, also using the first one, that the assistant
will invoke daily to check the rate against the booked rate,
and email her if it has dropped.

This example illustrates two motivations for our approach
of providing access to online data sources within a general
procedure execution framework. First, users put the data to
use in several different ways. Second, the assistant’s task in-
volves more than simply data integration, in this case moni-
toring at fixed time intervals, sending email, and potentially
re-booking the reservation.

Automating access to web-based sources with

EzBuilder

Most online information sources are designed to be used by
humans, not computer programs. This design affects the
way the site is organized and how information is laid out

on its pages. The hotel reservations site shown in Figure 2
allows user to search for hotels available in a specified city
on specified dates. After the user fills out the query form
(Figure 2a) with her search parameters, the site returns a list
of hotels (Figure 2b). The user then can then select a hotel
from the list to obtain additional details about it (Figure 2c).

The Fetch Technologies’ EzBuilder tool assists the user
in creating agents that can automatically query and extract
data from information sources. To build an agent for the
online reservations site in Figure 2, the user demonstrates to
EzBuilder how to obtain the required information by filling
out forms and navigating the site to the detail pages, just as
she would in a Web browser.

Using this information, EzBuilder constructs a model of
the site, shown in the right pane of Figure 2c. Once the user
has collected several detail pages by filling out the search
form with different input parameters, EzBuilder generalizes
the learned model to automatically download details pages
from the site. During this step, EzBuilder also analyzes the
query form and extracts the names the source has assigned
to the various input parameters.

Next, the user specifies what data she wants from the site
and trains EzBuilder to extract it, as shown in Figure 3.
EzBuilder can extract a range of data structures, including
embedded lists, strings, and URLs. For the reservations site,
the user needs to extract for each hotel its name, address,
city, state, price and a list of amenities offered by the ho-
tel. After specifying the schema, the user trains the agent
to extract data by specifying where on the sample page data
examples are found. This is done by simply dragging the rel-
evant text on the page to its schema instance. Once the sam-
ple pages have been marked up in this fashion, EzBuilder
analyzes the HTML and learns the extraction rules that will
quickly and accurately extract the required data from the
pages (Muslea, Minton, & Knoblock 2001). If the pages are
fairly regular, the user has to mark up one to three samples.
However, if there is some variation in the format or layout
of the page, the user may need to mark up additional sam-
ples so that the wrapper can learn general enough extraction
rules. Generally, it is a good practice to leave some of the
sample pages for testing extraction accuracy.

Once the user is satisfied that the correct extraction rules
have been learned, she names the newly created agent - e.g.,
OnlineReservationZ - and deploys it to the server. This
agent can now take user-supplied input parameters, query
the source and return data extracted from the results pages.
The extracted data is encoded within an XML string, with
attributes defined according to the schema specified by the
user. We wrote SPARK functions to extract specified data
from the XML. These functions wrap Java methods imple-
menting Xquery calls. If the agent returns a single tuple,
requesting the attribute with a given name or label is suffi-
cient. If it returns a list of tuples, the caller needs to iterate
through the results, or access a given element, and return
the named attribute. The names of attributes are contained
within agent’s registration string.

17

(a) (b) (c)

Figure 2: Examples of the query form and result pages from the hotel reservations web site

Figure 3: Schema definition for the hotel agent

Modeling sources with PrimTL

Although the newly created agent is now available for query-
ing information sources, it cannot be used programmatically
by other CALO components because its input and output pa-
rameters are not yet aligned with a common ontology. This
is done by PrimTL, automatically launched after EzBuilder
exits, which assists the user in semantically modeling the
source by linking its input and output parameters to a com-
mon CALO ontology. PrimTL also registers the agent as a
fully typed primitive task, which can be automatically as-
sembled into complex procedures by other CALO compo-
nents.

In an earlier paper, we described a content-based clas-
sifier that learns a model of data from known sources and
uses the models to recognize new instances of the same se-
mantic types on new sources (Lerman, Plangprasopchok, &

Knoblock 2006). The classifier uses a domain-independent
pattern language (Lerman, Minton, & Knoblock 2003) to
represent the content of data as a sequence of tokens or token
types. These can be specific tokens, such as ’90292’, as well
as general token types, ’5DIGIT’ or ’NUMBER’. The gen-
eral types have regular expression-like recognizers, which
simply identify the syntactic category to which the token’s
characters belong. The symbolic representation of data con-
tent by sequences of tokens and token types is concise and
flexible. We can, for example, extend the representation by
adding new semantic or syntactic types as needed.

Data models can be efficiently learned from examples of a
semantic type. We have accumulated a collection of learned
models for about 80 semantic types using data from a large
body of Web agents created by our group over the years. We
can later use the learned models to recognize new instances
of the semantic type by evaluating how well the model de-
scribes the instances of the semantic type. We have devel-
oped a set of heuristics to evaluate the quality of the match,
which includes how many of the learned token sequences
match data, and how specific they are, how many tokens
in the examples are explained by the model, and so on.
We found that our system can accurately recognize new in-
stances of known semantic types from a variety of domains,
such as weather and flight information, yellow pages and
personal directories, financial and consumer product sites,
etc. (Lerman, Plangprasopchok, & Knoblock 2006).

PrimTL uses content-based classification methods to link
the agent’s input and output parameters to semantic types in
the CALO ontology. It reads data collected by EzBuilder,
which includes the input data the user typed into the query
form as well as data extracted from the result pages, and
presents to the user a ranked list of the top choices of the se-
mantic type for each parameter. The semantic labeling step
for the OnlineReservationZ agent is shown in Figure 4. The
labels for each parameter are extracted from the form (for
inputs) or schema names defined by the user (for outputs),
although these metadata are not used for semantic labeling.
The top scoring choice for each semantic type is displayed

18

next to the parameter label. If the user does not agree with
its choice, she can see the other choices, and select one of
them if appropriate. Five of the seven input parameters cor-
responding to semantic types Day, Year and City are cor-
rectly assigned. However, the input parameter “ddinmonth”
is incorrectly assigned to Speed. Similarly, no guess was
made for the output parameter “amenityName,” which has
been assigned to the default base type clib:PseudoRange. In
both cases, the user can correct the automatic guesses by
manually specifying the correct semantic type. If the user
is not familiar with the CALO ontology, she can launch it
(through the “Show Ontology” button) and browse it to find
the correct type.

Figure 4: PrimTL’s semantic mapping editor, which has
been split in two to improve readability

In addition to specifying the semantic types of the input
and output parameters, PrimTL requires the user to provide
a short description of the agent’s functionality and task per-
formed. After this has been completed, the agent can be
registered as a new primitive task with the CALO Task Inter-
face Registry (TIR). The registration defines, within a single
SPARK procedure, how the agent can be invoked, what its
functionality is, what inputs it expects and what data it re-
turns as output. TIR contains a library of these procedures
which can be read in by CALO components.

Learning procedures with Tailor

Tailor allows the user to create complex integration plans,
that use the newly registered primitive tasks, by giving short
instructions about the steps, their parameters and conditions
under which they are performed. By mapping the instruc-
tions into syntactically valid fragments of code and describ-
ing the results in a natural interface, Tailor allows users to
create executable procedures without detailed knowledge of
the syntax of the procedures or the ontology they use (Blythe
2005a; 2005b).

Tailor helps a user create or modify a procedure with an
instruction in three steps: modification identification, modi-
fication detail extraction and modification analysis. In mod-
ification identification, Tailor classifies a user instruction as
one of a set of action types, for example adding a new sub-
step, or adding a condition to a step. The instruction “only
list a hotel if the distance is below two miles”, for exam-

ple, would be classified as the latter. This is done largely by
keyword analysis.

A template for each modification type includes the fields
that need to be provided and which words in the instruction
may provide them. Modification detail extraction uses this
information as input to search for modifications to proce-
dure code. For example, the phrase “if the distance is below
two miles” will be used to provide the condition that is being
added to a step. Once mapped into a procedure modification,
the condition may require several database queries and sev-
eral auxiliary procedure steps. For example, a separate pro-
cedure that finds distances based on two addresses from an
online source may be called before the numeric comparison
that forms the condition. Tailor finds potential multi-step
and multi-query matches through a dynamic programming
search (Blythe 2005a).

Tailor’s ability to insert multiple actions and queries is es-
sential to bridge the gap between the user’s instruction and
a working procedure, and is used in most instructions. As
another example, an EzBuilder agent is used to find the dis-
tance between the meeting and the hotel, requiring a street
address and zipcode for each location. The user types “find
hotel to meeting distance.” Tailor matches the EzBuilder
agent, and knows that meeting addresses can be found by
querying the desktop database, while the hotel address can
be found through a procedure that accesses the XML data re-
turned from the hotel agent. Tailor inserts the correct code,
and the user does not need to know these details. This ca-
pability depends on the correct alignment of the EzBuilder
agents into the ontology, found by PrimTL.

In the final step, modification analysis, Tailor checks the
potential procedure change indicated by the instruction to
see if any new problems might be introduced with the set of
procedures that are combined within the new procedure def-
inition. For example, deleting a step, or adding a condition
to its execution, may remove a variable that is required by
some later step in the procedure. If this is the case, Tailor
warns the user and presents a menu of possible remedies,
such as providing the information in an alternate way. The
user may choose one of the remedies or they can ignore the
problem: in some cases Tailor’s warning may be incorrect
because it does not have enough information for a complete
analysis of the procedure, and in some cases the user may
remedy the problem through subsequent instructions.

Prior to this implementation, Tailor had been used to mod-
ify existing procedures but not to create entirely new proce-
dures. In order to provide this capability it was necessary
to improve the efficiency of Tailor’s search for matching
code fragments. Tailor’s initial search used dynamic pro-
gramming on a graph of data types, with queries, procedures
and iteration represented as links in the graph. We improved
performance by dynamically aggregating groups of partially
matched code fragments based on the user instruction. We
also improved navigation of the results through grouping,
highlighting and hierarchical menus, and gave the user more
feedback and control over synonyms that are used in match-
ing.

With these modifications, the example procedure (to alert
the user if the price drops) can be built with four instruc-

19

tions. One iterates over the hotels and emails the user. One
adds the condition that the hotel name matches the previ-
ously booked hotel and one checks that the price is lower
than the previous booking. The last instruction sets the pro-
cedure to be called daily.

Figure 5: Tailor shows its interpretation of the user instruc-
tion and the resulting new procedure

Results

We used our learning system to build procedures for a vari-
ety of test problems in the office and travel domains. Typical
problems in these domains are: “List hotels within ?Num-
ber miles of the ?Meeting that have the features (?Feature, ,
?Feature)”; “Build a contact sheet of names, email addresses
and phone numbers for the attendees of ?Meeting”; “Notify
the attendees of ?Meeting of a room change”; “What pur-
chases are due to be completed in the next month for ?Per-
son?” and “Who is attending ?Conference that could present
a poster at ?Time?” In these examples, “?” indicates pres-
ence of a variable.

We used EzBuilder to create agents for 11 information
sources that provided the data necessary to solve the prob-
lems. These sources are listed in Figure 6, which also shows
results of applying content-based classification algorithm to
semantically label the input and output parameters used by
these agents. The F-measure is a popular evaluation met-
ric that combines recall and precision. Precision measures
the fraction of the labeled parameters that were correctly
labeled, while recall measures the fraction of all parame-
ters that were correctly labeled. F1 refers to the case where
the top-scored prediction of the classifier was correct, and

in results marked F4, the correct semantic type was among
the four top-scoring predictions. The correct semantic type
was often the top prediction, and for more than half of the
sources, it was among the top four predictions.

Figure 6: Semantic labeling results

Procedures were successfully built for each of the 14 test
problems with Tailor using the information agents aligned
with the ontology. However, the training requirements for
users are currently higher than we would like: users need on
the average ten hours of practice in order to build procedures
of this complexity. The number of steps in the procedures
ranges from 8 to 35, with an average of 18. The range re-
flects the range of complexities of the tasks. The number of
instructions required to create the procedures ranged from
3 to 13, with an average of 7. Tailor is handling instruc-
tions that refer to several steps and conditions at once, with
an average of 2.5 steps added per instruction. The number
of alternative interpretations for instructions ranged from 1
to around a hundred, with 3 or 4 in most cases. In around
40% of cases, Tailor’s first choice was the correct one. We
are working on more support for harder cases, including a
checklist of relations and procedures used to more easily re-
move unwanted matches.

Related Work

Our system is similar to an information mediator. Mediators
provide a uniform access to heterogeneous data sources. To
integrate information from multiple sources, the user has to
define a domain model (schema) and relate it to the predi-
cates used by the source. The user’s queries, posed to the
mediator using the domain model, are reformulated into the
source schemas. The mediator then dynamically generates
an execution plan and passes it to an execution engine that
sends the appropriate sub-queries to the sources and evalu-
ates the results (Thakkar, Ambite, & Knoblock 2005). Our
system is different on a number of levels: (1) it attempts
to automatically model the source by inferring the seman-
tic types of its inputs and outputs; (2) instead of a query,
the system assists the user in constructing executable plans,

20

or procedures that (3) may contain world-changing steps or
steps with no effects known to the system.

Most work in procedure learning relies on demonstra-
tion from the user (Lieberman 2001; Oblinger, Castelli, &
Bergman 2006; Lau et al. 2004). The user steps through
solving a task and the system captures the steps of the proce-
dure and generalizes them. This is intuitive for users, but in
some cases several examples may be required to find the cor-
rect generalization, and some aspects of a scenario may be
hard to duplicate for demonstration. Tailor requires instruc-
tion, which forces the user to articulate the general terms of
the procedure, but can be faster and requires less set-up. One
of the earliest such systems was Instructo-Soar (Huffman &
Laird 1995) that learned rules for the Soar system.

Conclusions

We have described a system that uses learning to assist a user
in creating information integration applications. We eval-
uated the system on an interesting range of problems and
found robust performance. With the aid of this system, non-
expert users were able to model new sources and construct
integration to solve a wide range of problems.

Future work includes a more top-down integration, where
the user starts by considering the overall capability to
achieve, and creates information-gathering procedures as
part of that, rather than our current bottom-up approach.

An interesting issue concerns the dynamic extension of
the ontology based on the behavior of the information-
gathering procedures. Suppose, for example, that the main
ontology does not support ’zipcode’, which is one of the
outputs of the hotel agent and an input to the distance agent.
Initially, the output can be mapped to a ’number’, but more
information is required for systems that compose procedures
to know that this is a number that can be used with the dis-
tance agent. Such distinctions may not be needed in the
rest of the system, however. In our current implementation
we build a small auxiliary ontology of these terms that was
shared between PrimTL and Tailor. In future work we will
investigate how to support this dynamically for users.

In Tailor, we are working on the use of analogy to find
similar procedures and offer ways to incorporate parts of
those procedures into the one currently being built. This
includes a ’smart drag-and-drop’ that will recheck parame-
ter bindings as a substep is copied from another procedure
to the current target. This is useful since users often create
procedures by copying from existing ones.

We are improving the performance of the semantic label-
ing technology in PrimTL by taking into account semantic
type predictions for other data from the same information
source. Although currently the user has to manually specify
the task the agent is performing, we will integrate the tech-
nology to automate this step (Carman & Knoblock 2007).
Improvements in EzBuilder will reduce the time it takes the
train the agents by automatically extracting data from the
information source.

Acknowledgements
This research is based on work supported in part by the Na-
tional Science Foundation under Award Nos. IIS-0535182,
in part by the Air Force Office of Scientific Research un-
der grant number FA9550-04-1-0105, and in part by DARPA
under Contract No. NBCHD030010.

The U.S.Government is authorized to reproduce and dis-
tribute reports for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
any of the above organizations or any person connected with
them.

References
Blythe, J. 2005a. An analysis of task learning by instruc-
tion. In Proceedings of AAAI-2005.
Blythe, J. 2005b. Task learning by instruction in tailor.
Proceedings of the 10th international conference on Intel-
ligent user interfaces.
Carman, M. J., and Knoblock, C. A. 2007. Learning se-
mantic descriptions forweb information sources. In Pro-
ceedings of the Twentieth International Joint Conference
on Artificial Intelligence.
Huffman, S. B., and Laird, J. E. 1995. Flexibly instructable
agents. Journal of Artificial Intelligence Research 3:271–
324.
Lau, T.; Bergman, L.; Castelli, V.; and Oblinger, D. 2004.
Sheepdog: Learning procedures for technical support. Pro-
ceedings of the 9th international conference on Intelligent
user interfaces.
Lerman, K.; Minton, S.; and Knoblock, C. A. 2003. Wrap-
per maintenance: A machine learning approach. Journal of
Artificial Intelligence Research 18:149–181.
Lerman, K.; Plangprasopchok, A.; and Knoblock, C. A.
2006. Automatically labeling the inputs and outputs of web
services. In Proceedings of AAAI-2006 93–114.
Lieberman, H. 2001. Your Wish is my Command. Morgan
Kaufmann Press.
Morley, D., and Myers, K. 2004. The spark agent frame-
work. Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems
2:714–721.
Muslea, I.; Minton, S.; and Knoblock, C. A. 2001. Hi-
erarchical wrapper induction for semistructured informa-
tion sources. Autonomous Agents and Multi-Agent Systems
4(1/2):93–114.
Oblinger, D.; Castelli, V.; and Bergman, L. 2006.
Augmentation-based learning: combining observations
and user edits for programming-by-demonstration. Pro-
ceedings of the 11th international conference on Intelligent
user interfaces 202–209.
Thakkar, S.; Ambite, J. L.; and Knoblock, C. A. 2005.
Composing, optimizing and executing plans for bioinfor-
matics web services. The VLDB Journal 14(3):330–353.

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

