On the Stable Marriage of Maximum Weight Royal Couples

Anan Marie, Avigdor Gal

Technion — Israel Institute of Technology

Haifa

32000, Israel
{sananm@cs,avigal @ie } .technion.ac.il

Abstract

In this paper we provide a comparison, both analytic
and empirical, of two algorithms that were used in the
literature for ensuring a 1 : 1 cardinality constraint
in schema matching. We compare an application of a
solution to the maximum weighted bipartite graph to
schema matching to that of solving a stable marriage
problem. Using real-world testbed we show that in
practice, both algorithms yield similar results. We then
analyze the roots of this similarity, by offering a varia-
tion of the stable marriage algorithm for schema match-
ing (royal couples) and show the relationships between
the royal couples stable marriage problem and the max-
imum weights bipartite graph problem. Finally, we pro-
pose a new heuristic for schema matching, based on
the royal couples observation and show its performance
with respect to the two algorithms.

Introduction

Schema matching is the task of matching between concepts
describing the meaning of data in various heterogeneous,
distributed data sources. It is recognized to be one of the
basic operations required by the process of data and schema
integration (Melnik 2004), and thus has a great impact on its
outcome.

A heavily studied area of schema matching involves the
enforcement of 1 : 1 mapping cardinality. That is, an ele-
ment (e.g., a relational database attribute) can be mapped to
at most one element of another schema. Two main methods
were used to enforce 1 : 1 cardinality constraints. The first
represents the schema matching problem as a bipartite graph
and then solves a Maximum Weighted Bipartite Graph
(MWBG) problem. The second represents the schema
matching problem as a set of ranking lists, in which each
schema element ranks all elements of the other schema in
a decreasing order of similarity. Then, a best mapping is
achieved by solving a Stable Marriage (SM) problem. Both
algorithms fall into the category of constraint enforcers in
(Lee et al. 2007) and both enforce a cardinality constraint of
1:1.

In this paper we provide a comparison, both analytic and
empirical, of the two algorithms. Using real-world testbed

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

62

we show that in practice, both algorithms yield similar re-
sults. We then analyze the roots of this similarity, by offer-
ing a variation of the stable marriage algorithm for schema
matching (dubbed royal couples) and show the relationships
between the royal couples stable marriage problem and the
maximum weights bipartite graph problem. Finally, we pro-
pose a new heuristic for schema matching, based on the
royal couples observation and show its performance with re-
spect to the algorithms.
The specific contribution of this work are as follows:

We show the relationships between MWBG and SM in the
specific context of schema matching.

We propose a new schema matching heuristic, Dominant
Matching (DM), that is based on the observations regard-
ing the royal couples stable marriage problem.

We present a thorough empirical analysis of the perfor-
mance of MWBG, SM, and DM. Our comparative anal-
ysis shows that DM can increase the Precision over both
MWBG and SM by about 30%, accompanied by a reduc-
tion in Recall of about 6%, making it a reasonable candi-
date for today’s schema matching tasks.

The rest of the paper is organized as follows. We first
present a model of schema matching, to be used in this pa-
per, and provide a brief introduction to MWBG and SM. An
analysis of the two schema matchers is given next, both em-
prically and analytically. Then, we introduce DM, followed
by a comparative empirical analysis.

Model

The model we present here is based on (Domshlak, Gal, &
Roitman 2007). Let schema S = {A;, Aa, ..., A, } be a fi-
nite set of some attributes. We set no particular limitations
on the notion of schema attributes; attributes can be both
simple and compound, compound attributes should not nec-
essarily be disjoint, etc. For any schemata pair S and S’, let
S = S x 5 be the set of all possible attribute mappings
between S and S’. Let M (S,S’) be an n x n' similarity
matrix over S, where M; ; represents a degree of similarity
between the i-th attribute of S and the j-th attribute of S’.
The majority of works in the schema matching literature de-
fine M; ; to be a real number in (0, 1). M (S, S’) is a binary
similarity matrix if forall 1 < ¢ < nand 1 < j < n/,
M,; ;€ {0, 1}

Let the power-set X = 25 be the set of all possible schema
mappings between this pair of schemata and let " : ¥ —
{0, 1} be a boolean function that captures the application-
specific constraints on schema mappings, e.g., cardinality
constraints and inter-attribute mapping constraints. We say
T is a null constraint function if for all o € ¥, I'(o) = 1.
Given a constraint specification I', the set of all valid schema
mappings in X is given by X = {0 € ¥ | T'(0) = 1}.

Formally, the input to the process of schema matching is
given by two schemata S and S” and a constraint boolean
function I' : ¥ — {0, 1}." The output of the schema match-
ing process is a schema mapping o € Xr.

Schema matchers are instantiations of the schema match-
ing process. Various schema matchers differ mainly in the
measures of similarity they employ, yielding different sim-
ilarity matrices. These measures can be arbitrarily com-
plex, and may use various techniques for name matching,
domain matching, structure matching (such as XML hierar-
chical representation), efc.

Let G = (5,5’ E) be an undirected bipartite graph, with
anode set V = S| S’ representing attributes, where .S and
S’ denote the sides of the graph, and an edge set . Weights
w : E — RT are assigned to edges, representing the de-
gree of similarity between the attributes. A mapping o in
G is a subset of pair-wise disjoint edges of E. An efficient
algorithm O(n?) for identifying the best mapping, given all
pair-wise similarities, is given as a variation of the MWBG
matching algorithm (Galil 1986).

The SM problem, introduced by Gale and Shapley (Gale
& Shapley 1962), was used in (Melnik, Garcia-Molina, &
Rahm 2002) to generate schema mappings. In the SM prob-
lem, each of n men and n women lists the members of the
opposite sex in strict order of preference. The goal is to
find a stable marriage E, a complete matching of men and
women with the property that there is no unmatched pair
(m,w) such that m prefers w to his partner in F, and w
prefers m to her partner in M. Such a pair is called a block-
ing pair.

Gale and Shapley have shown that a stable marriage al-
ways exists and can be found in O(n?). Their algorithm
works through a series of proposals where every time a free
man proposes to the most preferred woman on his list that
did not previously reject him. If a woman is proposed to by a
man whom she prefers over her current fiancé or she has not
been engaged yet, she frees her current fiancé (if exists) and
engages with the proposed man, otherwise she rejects him.
Thus, during the execution of the algorithm, men propose to
women and some men and some women become engaged.
Women can break engagements if they receive a better offer.

It is worth noting that under the model presented in this
section, applying the SM algorithm to the process of schema

"For ease of exposition, we constraint our presentation to a
matching process of two schemata. Some approaches to schema
matching, such as holistic schema matching (He & Chang 2005;
Su, Wang, & Lochovsky 2006) operate on any number of schemata,
and although their presentation in the form of a high-dimensional
matrix is possible, we refrain from presenting it herein.

212\/I5ore sophisticated (parallel) algorithms solve this problem in
O(n*?).

63

matching involves an additional effort that is needed in
transforming a matrix of weights to lists of preferences. This
effort involves sorting each row and column in the matrix
and therefore the complexity of constructing these lists is
O(n?logn), dominating the total complexity of the algo-
rithm.

Royal Couple Matching

We now present a matching algorithm that is based on an
interesting observation pertaining to the SM application to
solving schema matching problems, as follows: Recall that
the preference lists in the SM algorithm are generated from
a similarity matrix. Therefore, at each iteration of the al-
gorithm there is at least one couple whose elements prefer
each other. This is the couple whose entry in the matrix has
a maximum value. We term such a pair a royal couple.

Algorithm 1 Royal Couples

l: Input: ann X n similarity matrix M

2: repeat

3: Find the maximum value in M

4: Insert the maximum value M (3, j) to the output map-
ping

Delete the i-th row and the j-th column from M

6: until M is not empty

bed

We use this observation in constructing the royal couple
algorithm (Algorithm 1). At each iteration, the algorithm se-
lects a pair of attributes (7, j) with the maximum value M, ;
in the similarity matrix M, adds the pair (¢, j) to the output
mapping E and deletes the i-th row and the j-th column of
M, to satisfy the 1:1 cardinality constraint. The time com-
plexity of Algorithm 1 is O(n?logn), which is again the
cost of sorting all rows and all columns.

Theorem 1 The matching computed by the Royal Couples
algorithm is a stable marriage.

Proof. Let E be the mapping computed by the Royal Cou-
ples matching algorithm. We need to show that there is no
blocking pair (m,w). Suppose, by way of contradiction,
that there is a blocking pair (m,w) ¢ E. Assume (m,w’) €
E and (m/,w) € E. Assume also, without loss of general-
ity, that (m, w’) was selected before (m’,w). Consider the
iteration ¢ in which the algorithm selects (m, w’). There are
two possible cases:

e Atiteration 4, (m, w) was still in the matrix: Since the al-
gorithm selected (m, w’) at iteration i, (m, w’) is the cur-
rent maximum value. In particular, M., ., > Mm.w, i.e.,
m prefers w’ to w and therefore (m, w) is not a blocking
pair, a contradiction.

e Atiteration ¢, (m,w) was already removed from the ma-
trix: this case is impossible as we shall now show. At
iteration i, (m, w’) is still in the matrix and also (m’, w),
since (m, w') is removed before (m', w). However, since
(m, w) was deleted before this iteration, it means that ei-
ther row m or column w were deleted (line 5 of Algo-
rithm 1) = (m,w’) or (m/,w) is not in the matrix any-
more, a contradiction.

According to Theorem 1, Algorithm 1 can serve in solv-
ing the stable marriage problem. It is worth noting that Al-
gorithm 1 does not improve on Gale and Shapely algorithm
in any way. In particular, its worst case time complexity is
the same. Still, its presentation serves in demonstrating the
inter-relationships between SM and MWBG and serves as a
basis for the new heuristic presented in this paper.

Empirical Comparison of MWBG and SM

We now present an empirical evaluation of MWBG and SM.
We report in details on our experimental setup, the data that
was used, and the evaluation methodology. We then present
the experiment results and provide an empirical analysis of
these results.

Experiment setup

For generating the similarity matrices, we have used the
Combined OntoBuilder heuristic (Gal et al. 2005), combin-
ing four matchers as detailed below:

Term: A term is a combination of a label and a name. Term
matching compares labels and names to identify syntacti-
cally similar terms. To achieve better performance, terms
are preprocessed using several techniques originating in
IR research. Term matching is based on either complete
word or string comparison.

Value: Value matching utilizes domain constraints (e.g.,
drop lists, check boxes, and radio buttons) to compute
similarity measure among terms. The availability of con-
strained value-sets becomes valuable when comparing
two terms that do not exactly match through their labels.

Composition: A composite term is composed of other
terms (either atomic or composite). Composition can be
translated into a hierarchy. This schema matcher assigns
similarity to terms, based on the similarity of their neigh-
bors.

Precedence: The precedence relationship is unique to On-
toBuilder and therefore worth of a lengthier discussion.
In any interactive process, the order in which data are
provided may be important. In particular, data given at
an earlier stage may restrict the availability of options for
a later entry. For example, a car rental site may deter-
mine which car groups are available for a given session,
using the information given regarding the pick-up loca-
tion and time. Therefore, once those entries are filled in,
the information is sent back to the server and the next
form is brought up. Such precedence relationships can
usually be identified by the activation of a script, such
as (but not limited to) the one associated with a SUB-
MIT button. Precedence can be translated into a prece-
dence graph. The matching algorithm is based on a tech-
nique we dub graph pivoting, as follows. When match-
ing two terms, we consider each of them to be a pivot
within its own ontology, thus partitioning the graph into
semantically related subgraphs. The semantics of pivot-
ing is taken from the ontological analysis, and in the case
of precedence the graph it partitioned into a subgraph of

64

all preceding terms and all succeeding terms. By compar-
ing preceding subgraphs and succeeding subgraphs, we
determine the confidence strength of the pivot terms.

In addition to Combined, we have also experimented with
the matrices of Composition and Precedence individually.
We have applied MWBG and SM to each matrix (see dataset
description below). All algorithms were implemented using
Java 2 JDK version 1.5.0_.09 environment, using an API to
access OntoBuilder’s matchers and get the output matrices.
The experiments were run on a laptop with Intel Centrino
Pentium m, 1.50GHz CPU, 760MB of RAM Windows XP
Home edition OS.

Data

For our experiments, we have selected 230 Web forms from
different domains, such as dating and matchmaking, job
hunting, Web mail, hotel reservation, news, and cosmetics.
We extracted each Web form ontology using OntoBuilder.
We have matched the Web forms in pairs (115 pairs), where
pairs were taken from the same domain, and generated the
exact mapping (a mapping generated by a human observer)
for each pair.’ The ontologies vary in size and the proportion
of number of attribute pairs in the exact mapping relative to
the target ontology. Another dimension is the size difference
between matched ontologies.

Evaluation methodology

For evaluation we use two main metrics, namely Precision
and Recall. Precision is computed as the ratio of correct at-
tribute mappings, with respect to some exact mapping, out
of the total number of attribute mappings suggested by a
heuristic. Recall is computed as the ratio of correct attribute
mappings, out of the total number of attribute mappings in
the exact mapping. Both Recall and Precision are measured
on a [0,1] scale. An optimal schema matching results in
both Precision and Recall equal to 1. Lower precision means
more false positives, while lower recall suggests more false
negatives. To extend Precision and Recall to the case of non
1 : 1 mappings, we have adopted a correctness criteria ac-
cording to which any attribute pair that belongs to the ex-
act mapping is considered to be correct, even if the complex
mapping is not fully captured. This method aims at compen-
sating the matchers for the 1 : 1 cardinality enforcement. We
have also used F-measure, a harmonic average of Precision
and Recall.

Results

Table 1 summarizes the results of our empirical compar-
ison with the Combined algorithm. MWBG>SM means
that MWBG outperformed SM in terms of both Precision
and Recall and vice versa for SM>MWBG. SM~MWBG
means that their Precision and Recall values were exactly
the same and SM=MWBG means that not only they share

avail-
site,

SAll ontologies and exact
able for download from the
http://ie.technion.ac.il/OntoBuilder).

mappings
OntoBuilder

are
Web

% Average Average Average
Precision Recall F-measure
Improv. Improv. Improv.
MWBG>SM 12.50 40.71 39.62 40.26
SM>MWBG 14.29 22.09 22.09 22.09
SM~MWBG | 46.43
SM=MWBG | 26.79

Table 1: Comparison of MWBG and SM: Combined

the same Precision and Recall value, but also their best map-
pings were identical. The second column shows the percent-
age of the pairs for which the relationship holds. For those
cases where the performance differ, we also record the im-
provement in each of the measures the superior algorithm
had over the inferior one.

The main observations from these experiments are that in
about 73% of the pairs, MWBG perform exactly the same as
SM, and in 37% out of these experiments, they also propose
the same mapping. For the remaining 32%, no algorithm is
shown to be dominant. Nevertheless, for those cases where
MWBG outperformed SM it achieves on average double as
much improvement than when SM outperformed MWBG.

% Average Average Average
Precision Recall F-measure
Improv. Improv. Improv.
MWBG>SM | 14.04 18.74 18.74 18.74
SM>MWBG 13.16 18.74 18.74 18.74
SM~MWBG | 48.25
SM=MWBG | 24.56

Table 2: Comparison of MWBG and SM: Composition

% Average Average Average
Precision Recall F-measure
Improv. Improv. Improv.
MWBG>SM | 26.79 27.00 27.00 27.00
SM>MWBG 14.29 29.57 29.57 29.57
SM~MWBG | 41.96
SM=MWBG 16.96

Table 3: Comparison of MWBG and SM: Precedence

Tables 2 and 3 show results for the Composition and
Precedence algorithms, respectively. Again, for the major-
ity of the pairs, MWBG and SM perform the same. Here,
however, the average improvement of one algorithm over the
other is about the same.

MWBG and SM interrelationship

Our empirical results served as a motivation to explore a suf-
ficient condition that ensures equal performance of the two
algorithms in schema matching applications. In this sec-
tion we aim at analyzing the interrelationship between the
MWBG algorithm and the SM algorithm. First, to assist us
in our analysis, we shall introduce the notion of a dominant
pair.

65

Definition 2 Let M be a similarity matrix over a pair of
schemata S and S’. A pair (i, j) is dominant if 1) M:,; >
Mi,,]” forl S j/ S n and2) Mi,]‘ Z M,;lyj fOV 1 S 7:/ S n.

In the following lemmas, we assume, for simplicity sake,
that the similarity matrix does not contain two identical val-
ues. Also, we assume that S and S’ are of identical arity,
i.e., there are n attributes in each schema. These assump-
tions do not affect the correctness of our lemmas, they just
make it simple to prove them. We first show the importance
of dominant pairs to the output of SM.

Lemma 3 Let S and S’ be two sets of attributes, and M be
a similarity matrix over S and S'. Each dominant pair in M
must be included in the stable marriage computed by Gale
and Shapley algorithm.

Proof. Let (i,) be a dominant pair, and let o, be a stable
marriage computed by Gale and Shapley algorithm. Sup-
pose (i,7) & os. Assume also, (i, ') € o4 and (7', j) € o,.
Since (i, j) is a dominant pair, j appears before j’ in i’s pref-
erence list, and ¢ appears before i’ in j’s preference list. In
other words, 7 prefers j to its partner in o5 (j') and j prefers
i to its partner in o (i'). Thus, the pair (7, j) is a blocking
pair according to os. A contradiction.

Lemma 4 provides an upper bound on the weight of a
mapping, generated by MWBG.

Lemmad Let S and S be two sets of at-
tributes, and M be a similarity matrix over S and
S’ The weight of the mapping (the sum of the
weights of the pairs in the mapping) computed by
thee MWBG is at most min (> 1 i, > 0y Ci)
where r; = max(M;;:j=1,...,n) and ¢; =
max(M;; :i=1,...,n

Proof. Suppose, without loss of generality, that Y ;" | r; <
>, ¢i. Let o denotes the maximum weighted matching,
and W, denotes its weight. W, = Z;;l M; »,. Since
Vi(M; 5, <71;),then W, <37 7y

Theorem 5 Let S and S’ be two sets of attributes, and M
be a similarity matrix over S and S'. If there are n dominant
pairs and no two dominant pairs reside in the same row or
the same column, then the MWBG algorithm and the SM
algorithm are equivalent, i.e., result in the same matching.

Proof. Assume, without loss of generality, that Z?:l r; <
> ¢i. Let o be the set of all the dominant pairs. o is a
complete 1:1 mapping. According to Lemma 3, o is a stable
matching. Let d; denote the dominant pair in the i-th row and
W (d;) its value in the matrix. W (d;) =r; = >, d; =
i ri. Since W(o) =>" ;d; then W(o)=>"" 7.
And according to Lemma 4 ¢ is a maximum matching.
Theorem 5 provides a sufficient condition for the equiv-
alence of the MWBG algorithm and the SM algorithm, in
terms of dominant pairs. We conclude with the following
observation. The MWBG algorithm maximizes the overall
benefit of the output mapping while the SM algorithm maxi-
mizes the local benefits of one of the genders (may it be men
or women). In schema matching problem instances, the sta-
ble marriage instance is symmetric. Thus, when maximiz-
ing the local benefits of the men, it also maximizes the local

benefits of the women. Thus, we obtain a powerful stable
marriage that is both male-optimal and female-optimal.

Dominants

To illustrate a possible benefit of the analysis above, we now
propose a new heuristic for schema matching. Recall that
in Algorithm 1 we constraint the best mapping to be of car-
dinality 1 : 1, following SM. The basic assumption behind
the Royal Couples algorithm is that the pair (4, j) with the
maximum confidence measure in the matrix has the highest
chance of being in the exact mapping. Then, to maintain the
1:1 cardinality constraint, we delete the row ¢ and the col-
umn j from the matrix. These deletions may affect the next
maximum value in the matrix. In other words, deletion of
a row or a column that contains relatively high confidence
values, may generates new maximum values that were rel-
atively low. Consequently our basic assumption becomes
weaker.

Theorem 5 provides a sufficient condition to the identical
behavior of MWBG and SM. What happens when this condi-
tion is not satisfied? One such scenario may occur whenever
there are less than n dominant values. In such a scenario,
both MWBG and SM are bound to err and add false posi-
tive attribute mappings. Those false positive mappings may
be different between the two algorithms. Another scenario
involves non-1 : 1 mappings, with more than n dominant
values. In this case, there are several dominant values in a
single row or column (note that those dominant values must
have identical values). MWBG and SM will fail to identify
some of the dominant values, and will be forced to make
some arbitrary choices, and again the two algorithms may
make different choices. To be able to identify such scenar-
ios, we make a do with the 1 : 1 cardinality constraint, and
offer a heuristic that finds the pairs with the best chance of
being in the exact mapping, in a way that selecting one pair
would not affect others.

Algorithm 2 Dominants Matching

I: Input: ann X n similarity matrix M

2: for all row i do

3: calculate the maximum value in 7, insert this value to
array R.

4: end for

for all column j do

6: calculate the maximum value in j, insert this value to
array C

7: end for

for all column ; do

9: If M(i,7) = R(i) = C(j), insert (i, 7) to the output
mapping.

10: end for

bl

(o]

The Dominants Matching (DM) heuristic is given in Al-
gorithm 2. The main assumption guiding this heuristic is
that the dominant pairs are the most probable to be in the ex-
act mapping since the two attributes involve in a dominant
pair prefer each other most. Note that with this heuristic
not all the target attributes are mapped and that an attribute

66

in one schema may be mapped to more than one attribute
in another schema, whenever attribute pairs share the same
similarity level (effectively, introducing no cardinality con-
straint). The time complexity of Algorithm 2 is O(n?).

Figure 1 compares between the average performance of
MWBG, SM, and DM for the Combined algorithm. For
each of the three heuristics we present their average Preci-
sion, Recall, and F-measure. We first note that an average
Precision of 45% is common on large and challenging real-
world schemata. We refer the interested reader to the new
benchmark of OAEI* for more information.

DM is the clear winner in terms of Precision (increase of
about 29%) while sacrificing in terms of Recall (decrease
of about 6%). For a predefined weighing of Precision and
Recall, using F-measure, DM is again the best heuristic im-
proving over both MWBG and SM by about 7%). Similar
results were observed for the Precedence and Graph algo-
rithms, and we refrain from showing the results here.

Conclusions

In this paper we focused on the inter-relationships between
two well known algorithms for constrained, 1 : 1 schema
matching. We provided an empirical analysis, showing their
comparable performance and then provided a theoretical
analysis, showing a sufficient condition for both algorithms
to yield identical outcome.

This analysis can serve in the design of new heuristics,
as was already shown in this paper. Other directions for the
design of new heuristics involve the use of both algorithms
together to improve one measure (e.g., Precision) at the cost
of another (e.g., Recall).

References

Domshlak, C.; Gal, A.; and Roitman, H. 2007. Rank aggre-
gation for automatic schema matching. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 19(4):538—
553.

Gal, A.; Modica, G.; Jamil, H.; and Eyal, A. 2005. Auto-
matic ontology matching using application semantics. Al
Magazine 26(1).

Gale, D., and Shapley, L. 1962. College admissions and the
stability of marriage. The American Mathematical Monthly
69(1):9-15.

Galil, Z. 1986. Efficient algorithms for finding maximum
matching in graphs. ACM Computing Surveys 18(1):23-38.
He, B., and Chang, K.-C. 2005. Making holistic schema
matching robust: an ensemble approach. In Proceedings of
the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Chicago, Illinois,
USA, August 21-24, 2005, 429-438.

Lee, Y.; Sayyadian, M.; Doan, A.; and Rosenthal, A. 2007.
eTuner: tuning schema matching software using synthetic
scenarios. VLDB Journal 16(1):97-122.

Melnik, S.; Garcia-Molina, H.; and Rahm, E. 2002. Sim-
ilarity flooding: A versatile graph matching algorithm and

*http://oaei.ontologymatching.org/2006/results/directory/

0.a

0.7

08

0.5 q

@ Frecicion
mRecall 0.4 4
OF-Measure

0.3 4

0.2 4

0.1 4

MWEG DO

Figure 1: Comparative Performance Analysis for the Combined Algorithm

its application to schema matching. In Proceedings of the
IEEE CS International Conference on Data Engineering,
117-140.

Melnik, S. 2004. Generic Model Management: Concepts
and Algorithms. Springer-Verlag.

Su, W.; Wang, J.; and Lochovsky, F. 2006. Aholistic
schema matching for web query interfaces. In Advances
in Database Technology - EDBT 2006, 10th International
Conference on Extending Database Technology, Munich,
Germany, March 26-31, 2006, Proceedings, 77-94.

67

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

