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Abstract
Information integration applications, such as mediators or
mashups, that require access to information resources cur-
rently rely on users manually discovering and integrating
them in the application. Manual resource discovery is a slow
process, requiring the user to sift through results obtained
via keyword-based search. Although search methods have
advanced to include evidence from document contents, its
metadata and the contents and link structure of the referring
pages, they still do not adequately cover information sources
— often called “the hidden Web”— that dynamically gen-
erate documents in response to a query. The recently popu-
lar social bookmarking sites, which allow users to annotate
and share metadata about various information sources, pro-
vide rich evidence for resource discovery. In this paper, we
describe a probabilistic model of the user annotation process
in a social bookmarking system del.icio.us. We then use the
model to automatically find resources relevant to a partic-
ular information domain. Our experimental results on data
obtained from del.icio.us show this approach as a promising
method for helping automate the resource discovery task.

Introduction
As the Web matures, an increasing number of dynamic in-
formation sources and services come online. Unlike static
Web pages, these resources generate their contents dynam-
ically in response to a query. They can be HTML-based,
searching the site via an HTML form, or be a Web ser-
vice. Proliferation of such resources has led to a num-
ber of novel applications, including Web-based mashups,
such as Google maps and Yahoo pipes, information integra-
tion applications (Thakkar, Ambite, & Knoblock 2005) and
intelligent office assistants (Lerman, Plangprasopchok, &
Knoblock 2007) that compose information resources within
the tasks they perform. In all these applications, however,
the user must discover and model the relevant resources.
Manual resource discovery is a very time consuming and la-
borious process. The user usually queries a Web search en-
gine with appropriate keywords and additional parameters
(e.g., asking for .kml or .wsdl files), and then must exam-
ine every resource returned by the search engine to evaluate
whether it has the desired functionality. Often, it is desir-
able to have not one but several resources with an equivalent
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functionality to ensure robustness of information integration
applications in the face of resource failure. Identifying sev-
eral equivalent resources makes manual resource discovery
even more time consuming.

The majority of the research in this area of information in-
tegration has focused on automating modeling resources —
i.e., understanding semantics of data they use (Heß & Kush-
merick 2003; Lerman, Plangprasopchok, & Knoblock 2006)
and the functionality they provide (Carman & Knoblock
2007). In comparison, the resource discovery problem has
received much less attention. Note that traditional search en-
gines, which index resources by their contents — the words
or terms they contain — are not likely to be useful in this
domain, since the contents is dynamically generated. At
best, they rely on the metadata supplied by the resource au-
thors or the anchor text in the pages that link to the resource.
Woogle (Dong et al. 2004) is one of the few search en-
gines to index Web services based on the syntactic metadata
provided in the WSDL files. It allows a user to search for
services with a similar functionality or that accept the same
inputs as another services.

Recently, a new generation of Web sites has rapidly
gained popularity. Dubbed “social media,” these sites al-
low users to share documents, including bookmarks, photos,
or videos, and to tag the content with free-form keywords.
While the initial purpose of tagging was to help users or-
ganize and manage their own documents, it has since been
proposed that collective tagging of common documents can
be used to organize information via an informal classifica-
tion system dubbed a “folksonomy” (Mathes 2004). Con-
sider, for example, http://geocoder.us, a geocoding service
that takes an input as address and returns its latitude and
longitude. On the social bookmarking site del.icio.us1, this
resource has been tagged by more than 1, 000 people. The
most common tags associated by users with this resource are
“map,” “geocoding,” “gps,” “address,” “latitude,” and “lon-
gitude.” This example suggests that although there is gener-
ally no controlled vocabulary in a social annotation system,
tags can be used to categorize resources by their functional-
ity.

We claim that social tagging can be used for information
resource discovery. We explore three probabilistic gener-

1http://del.icio.us
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ative models that can be used to describe the tagging pro-
cess on del.icio.us. The first model is the probabilistic La-
tent Semantic model (Hofmann 1999) which ignores indi-
vidual user by integrating bookmarking behaviors from all
users. The second model, the three-way aspect model, was
proposed (Wu, Zhang, & Yu 2006) to model del.icio.us
users’ annotations. The model assumes that there exists a
global conceptual space that generates the observed values
for users, resources and tags independently. We propose
an alternative third model, motivated by the Author-Topic
model (Rosen-Zvi et al. 2004), which maintains that latent
topics that are of interest to the author generate the words in
the documents. Since a single resource on del.icio.us could
be tagged differently by different users, we separate “top-
ics”, as defined in Author-Topic model, into “(user) inter-
ests” and “(resource) topics”. Together user interests and
resource topics generate tags for one resource. In order to
use the models for resource discovery, we describe each re-
source by a topic distribution and then compare this distri-
bution with that of all other resources in order to identify
relevant resources.

The paper is organized as follows. In the next section,
we describe how tagging data is used in resource discovery.
Subsequently we present the probabilistic model we have
developed to aid in the resource discovery task. The section
also describes two earlier related models. We then compares
the performance of the three models on the datasets obtained
from del.icio.us. We review prior work and finally present
conclusions and future research directions.

Problem Definition
Suppose a user needs to find resources that provide some
functionality: e.g., a service that returns current weather
conditions, or latitude and longitude of a given address. In
order to improve robustness and data coverage of an appli-
cation, we often want more than one resource with the nec-
essary functionality. In this paper, for simplicity, we assume
that the user provides an example resource, that we call a
seed, and wants to find more resources with the same func-
tionality. By “same” we mean a resource that will accept the
same input data types as the seed, and will return the same
data types as the seed after applying the same operation to
them. Note that we could have a more stringent requirement
that the resource return the same data as the seed for the
same input, but we don’t want to exclude resources that may
have different coverage.

We claim that users in a social bookmarking system such
as del.icio.us annotate resources according to their function-
ality or topic (category). Although del.icio.us and similar
systems provide different means for users to annotate doc-
ument, such as notes and tags, in this paper we focus on
utilizing the tags only. Thus, the variables in our model are
resources R, users U and tags T . A bookmark i of resource
r by user u can be formalized as a tuple 〈r, u, {t1, t2, . . .}〉i,
which can be further broken down into a co-occurrence of a
triple of a resource, a user and a tag: 〈r, u, t〉.

We collect these triples by crawling del.icio.us. The sys-
tem provides three types of pages: a tag page — listing all
resources that are tagged with a particular keyword; a user
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Figure 1: Graphical representations of the probabilistic La-
tent Semantic Model (left) and Multi-way Aspect Model
(right) R, U , T and Z denote variables “Resource”, “User”,
“Tag” and “Topic” repectively. Nt represents a number of
tag occurrences for a particular resource; D represents a
number of resources. Meanwhile, Nb represents a number of
all resource-user-tag co-occurrences in the social annotation
system. Note that filled circles represent observed variables.

page — listing all resources that have been bookmarked by
a particular user; and a resource page — listing all the tags
the users have associated with that resource. del.icio.us also
provides a method for navigating back and forth between
these pages, allowing us to crawl the site. Given the seed,
we get what del.icio.us shows as the most popular tags as-
signed by the users to it. Next we collect other resources
annotated with these tags. For each of these we collect the
resource-user-tag triples. We use these data to discover re-
sources with the same functionality as the seed, as described
below.

Approach
We use probabilistic models in order to find a compressed
description of the collected resources in terms of topic de-
scriptions. This description is a vector of probabilities of
how a particular resource is likely to be described by dif-
ferent topics. The topic distribution of the resource is sub-
sequently used to compute similarity between resources us-
ing Jensen-Shannon divergence (Lin 1991). For the rest of
this section, we describe the probabilistic models. We first
briefly describe two existing models: the probabilistic La-
tent Semantic Analysis (pLSA) model and the Three-Way
Aspect model (MWA). We then introduce a new model that
explicitly takes into account users’ interests and resources’
topics. We compare performance of these models on the
three del.icio.us datasets.

Probabilistic Latent Semantic Model (pLSA)
Hoffman (Hofmann 1999) proposed a probabilistic la-
tent semantic model for associating word-document co-
occurrences. The model hypothesized that a particular docu-
ment is composed of a set of conceptual themes or topics Z .
Words in a document were generated by these topics with
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some probability. We adapted the model to the context of
social annotation by claiming that all users have common
agreement on annotating a particular resource. All book-
marks from all users associated with a given resource were
aggregated into a single corpus. Figure 1 shows the graphi-
cal representation of this model. Co-occurrences of a partic-
ular resource-tag pair were computed by summing resource-
user-tag triples 〈r, u, t〉 over all users. The joint distribution
over resource and tag is

p(r, t) =
∑

z

p(t|z)p(z|r)p(r) (1)

In order to estimate parameters p(t|z), p(z|r), p(r) we
define log likelihood L, which measures how the estimated
parameters fit the observed data

L =
∑

r,t

n(r, t)log(p(r, t)) (2)

where n(r, t) is a number of resource-tag co-occurrences.
The EM algorithm (Dempster, Laird, & Rubin 1977) was
applied to estimate those parameters that maximize L.

Three-way Aspect Model (MWA)
The three-way aspect model (or multi-way aspect model,
MWA) was originally applied to document recommendation
systems (Popescul et al. 2001), involving 3 entities: user,
document and word. The model takes into account both
user interest (pure collaborative filtering) and document con-
tent (content-based). Recently, the three-way aspect model
was applied on social annotation data in order to demon-
strate emergent semantics in a social annotation system and
to use these semantics for information retrieval (Wu, Zhang,
& Yu 2006). In this model, conceptual space was introduced
as a latent variable, Z , which independently generated oc-
currences of resources, users and tags for a particular triple
〈r, u, t〉 (see Figure 1). The joint distribution over resource,
user, and tag was defined as follows

p(r, u, t) =
∑

z

p(r|z)p(u|z)p(t|z)p(z) (3)

Similar to pLSA, the parameters p(r|z), p(u|z), p(t|z)
and p(z) were estimated by maximizing the log likelihood
objective function, L =

∑
r,u,t n(r, u, t)log(p(r, u, t)). EM

algorithm was again applied to estimate those parameters.

Interest-Topic Model (ITM)
The motivation to implement the model proposed in this pa-
per comes from the observation that users in a social anno-
tation system have very broad interests. A set of tags in a
particular bookmark could reflect both users’ interests and
resources’ topics. As in the three-way aspect model, using a
single latent variable to represent both “interests” and “top-
ics” may not be appropriate, as intermixing between these
two may skew the final similarity scores computed from the
topic distribution over resources.

Instead, we propose to explicitly separate the latent vari-
ables into two: one representing user interests, I; another
representing resource topics, Z . According to the proposed
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Figure 2: Graphical representation on the proposed model.
R, U , T , I and Z denote variables “Resource”, “User”,
“Tag”, “Interest” and “Topic” repectively. Nt represents a
number of tag occurrences for a one bookmark (by a partic-
ular user to a particular resource); D represents a number of
all bookmarks in social annotation system.

model, the process of resource-user-tag co-occurrence could
be described as a stochastic process:
• User u finds a resource r interesting and she would like to

bookmark it
• User u has her own interest profile i; meanwhile the re-

source has a set of topics z.
• Tag t is then chosen based on users’s interest and re-

source’s topic
The process is depicted in a graphical form in Figure 2.

From the process described above, the joint probability of
resource, user and tag is written as

P (r, u, t) =
∑

i,z

p(t|i, z)p(i|u)p(z|r)p(u)p(r) (4)

Log likelihood L is used as the objective function to es-
timate all parameters. Note that p(u) and p(r) could be
obtained directly from observed data – the estimation thus
involves three parameters p(t|i, z), p(i|u) and p(z|r). L is
defined as

L =
∑

r,u,t

n(r, u, t)log(p(r, u, t)) (5)

EM algorithm is applied to estimate these parameters. In
the expectation step, the joint probability of hidden variables
I and Z given all observations is computed as

p(i, z|u, r, t) =
p(t|i, z)p(i|u)p(z|r)∑
i,z p(t|i, z)p(i|u)p(z|r) (6)

Subsequently, each parameter is re-estimated using
p(i, z|u, r, t) we just computed from the E step

p(t|i, z) =

∑
r,u n(r, u, t)p(i, z|u, r, t)

∑
r,u,t n(r, u, t)p(i, z|u, r, t)

(7)
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p(i|u) =

∑
r,t n(r, u, t)

∑
z p(i, z|u, r, t)

n(u)
(8)

p(z|r) =

∑
u,t n(r, u, t)

∑
i p(i, z|u, r, t)

n(r)
(9)

The algorithm iterates between E and M step until the log
likelihood or all parameter values converges.

Once all the models are learned, we use the distribution
of topics of a resource p(z|r) to compute similarity between
resources and the seed using Jensen-Shannon divergence.

Empirical Validation
To evaluate our approach, we collected data for three seed
resources: flytecomm2 geocoder3 and wunderground4. The
first resource allows users to track flights given the airline
and flight number or departure and arrival airports; the sec-
ond resource returns coordinates of a given address; while,
the third resource supplies weather information for a partic-
ular location (given by zipcode, city and state, or airport).
Our goal is to find other resources that provide flight track-
ing, geocoding and weather information. Our approach is
to crawl del.icio.us to gather resources possibly related to
the seed; apply the probabilistic models to find the topic dis-
tribution of the resources; then rank all gathered resources
based on how similar their topic distribution is to the seed’s
topic distribution. The crawling strategy is defined as fol-
lows: for each seed

• Retrieve the 20 most popular tags that users have applied
to that resource

• For each of the tags, retrieve other resources that have
been annotated with that tag

• For each resource, collect all bookmarks that have been
created for it (i.e., resource-user-tag triples)

We wrote special-purpose Web page scrapers to extract this
information from del.icio.us. In principle, we could continue
to expand the collection of resources by gathering tags and
retrieving more resources that have been tagged with those
tags, but in practice, even after the small traversal we do, we
obtain more than 10 million triples for the wunderground
seed.

We obtained the datasets for the seeds flytecomm and
geocoder in May 2006 and for the seed wunderground in
January 2007. We reduced the dataset by omitting low
(fewer than ten) and high (more than ten thousand) fre-
quency tags and all the triples associated with those tags.
After this reduction, we were left with (a) 2,284,308 triples
with 3,562 unique resources; 14,297 unique tags; 34,594
unique users for the flytecomm seed; (b) 3,775,832 triples
with 5,572 unique resources; 16,887 unique tags and 46,764
unique users for the geocoder seed; (c) 6,327,211 triples
with 7,176 unique resources; 77,056 unique tags and 45,852
unique users for the wunderground seed.

2http://www.flytecomm.com/cgi-bin/trackflight/
3http://geocoder.us
4http://www.wunderground.com/

Next, we trained all three models on the data: pLSA,
MWA and ITM. We then used the learned topic distributions
to compute the similarity of the resources in each dataset to
the seed, and ranked the resources by similarity. We evalu-
ated the performance of each model by manually checking
the top 100 resources produced by the model according to
the criteria below:

• same: the resource has the same functionality if it pro-
vides an input form that takes the same type of data as the
seed and returns the same type of output data: e.g., a flight
tracker takes a flight number and returns flight status

• link-to: the resource contains a link to a page with the
same functionality as the seed (see criteria above). We
can easily automate the step that check the links for the
right functionality.

Although evaluation is performed manually now, we plan
to automate this process in the future by using the form’s
metadata to predict semantic types of inputs (Heß & Kush-
merick 2003), automatically query the source, extract data
from it and classify it using the tools described in (Gazen
& Minton 2005; Lerman, Plangprasopchok, & Knoblock
2006). We will then be able to validate that the resource
has functionality similar to the seed by comparing its input
and output data with that of the seed (Carman & Knoblock
2007). Note that since each step in the automatic query and
data extraction process has some probability of failure, we
will need to identify many more relevant resources than re-
quired in order to guarantee that we will be able to automat-
ically verify some of them.

Figure 3 shows the performance of different models
trained with either 40 or 100 topics (and interests) on the
three datasets. The figure shows the number of resources
within the top 100 that had the same functionality as the
seed or contained a link to a resource with the same func-
tionality. The Interest-Topic model performed slightly bet-
ter than pLSA, while both ITM and pLSA significantly out-
performed the MWA model. Increasing the dimensionality
of the latent variable Z from 40 to 100 generally improved
the results, although sometimes only slightly. Google’s find
“Similar pages” functionality returned 28, 29 and 15 re-
sources respectively for the three seeds flytecomm, geocoder
and wunderground, out of which 5, 6, and 13 had the same
functionality as the seed and 3, 0, 0 had a link to a resource
with the same functionality. The ITM model, in comparison,
returned three to five times as many relevant results.

Table 1 provides another view of performance of differ-
ent resource discovery methods. It shows how many of the
method’s predictions have to be examined before ten re-
sources with correct functionality are identified. Since the
ITM model ranks the relevant resources highest, fewer Web
sites have to be examined and verified (either manually or
automatically); thus, ITM is the most efficient model.

One possible reason why ITM performs slightly better
than pLSA might be because in the datasets we collected,
there is low variance of user interest. The resources were
gathered starting from a seed and following related tag links;
therefore, we did not obtain any resources that were anno-
tated with different tags than the seed, even if they are tagged
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Figure 3: Performance of different models on the three datasets. Each model was trained with 40 or 100 topics. For ITM, we
fix interest to 20 interests across all different datasets. The bars show the number of resources within the top 100 returned by
each model that had the same functionality as the seed or contained a link to a resource with the same functionality as the seed.

by the same user who bookmarks the seed. Hence user-
resource co-occurrences are incomplete: they are limited by
a certain tag set. pLSA and ITM would perform similarly if
all users had the same interests. We believe that ITM would
perform significantly better than pLSA when variation of
user interest is high. We plan to gather more complete data
to weigh ITM behavior in more detail.

Although performances pLSA and ITM are only slightly
different, pLSA is much better than ITM in terms of effi-
ciency since the former ignores user information and thus
reduces iterations required in its training process. However,
for some applications, such as personalized resource discov-
ery, it may be important to retain user information. For such
applications the ITM model, which retains this information,
may be preferred over pLSA.

Previous Research
Popular methods for finding documents relevant to a user
query rely on analysis of word occurrences (including meta-
data) in the document and across the document collection.
Information sources that generate their contents dynamically
in response to a query cannot be adequately indexed by con-
ventional search engines. Since they have sparse metadata,
the user has to find the correct search terms in order to get
results.

A recent research (Dong et al. 2004) proposed to utilize
metadata in the Web services’ WSDL and UDDI files in or-

PLSA MWA ITM GOOGLE*
flytecomm 23 65 15 > 28

geocoder 14 44 16 > 29
wunderground 10 14 10 10

Table 1: The number of top predictions that have to be exam-
ined before the system finds ten resources with the desired
functionality (the same or link-to). Each model was trained
with 100 topics. For ITM, we fixed the number of interests
at 20. *Note that Google returns only 8 and 6 positive re-
sources out of 28 and 29 retrieved resources for flytecomm
and geocoder dataset respectively.

der to find Web services offering similar operations in an
unsupervised fashion. The work is established on a heuris-
tic that similar operations tend to be described by similar
terms in service description, operation name and input and
output names. The method uses clustering techniques using
cohesion and correlation scores (distances) computed from
co-occurrence of observed terms to cluster Web service op-
erations. In this approach, a given operation can only belong
to a single cluster. Meanwhile, our approach is grounded on
a probabilistic topic model, allowing a particular resource to
be generated by several topics, which is more intuitive and
robust. In addition, it yields a method to determine how the
resource similar to others in certain aspects.

Although our objective is similar, instead of words or
metadata created by the authors of online resources, our ap-
proach utilizes the much denser descriptive metadata gener-
ated in a social bookmarking system by the readers or users
of these resources. One issue to be considered is the meta-
data cannot be directly used for categorizing resources since
they come from different user views, interests and writing
styles. One needs algorithms to detect patterns in these data,
find hidden topics which, when known, will help to cor-
rectly group similar resources together. We apply and extend
the probabilistic topic model, in particular pLSA (Hofmann
1999) to address such issue.

Our model is conceptually motivated by the Author-Topic
model (Rosen-Zvi et al. 2004), where we can view a user
who annotate a resource as an author who composes a docu-
ment. The aim in that approach is to learn topic distribution
for a particular author; while our goal is to learn the topic
distribution for a certain resource. Gibbs sampling was used
in parameter estimation for that model; meanwhile, we use
the generic EM algorithm to estimate parameters, since it is
analytically straightforward and ready to be implemented.

The most relevant work, (Wu, Zhang, & Yu 2006), uti-
lizes multi-way aspect model on social annotation data in
del.icio.us. The model doesn’t explicitly separate user in-
terests and resources topics as our model does. Moreover,
the work focuses on emergence of semantic and personal-
ized resource search, and is evaluated by demonstrating that
it can alleviate a problem of tag sparseness and synonymy in
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a task of searching for resources by a tag. In our work, on
the other hand, our model is applied to search for resources
similar to a given resource.

There is another line of researches on resource discovery
that exploits social network information of the web graph.
Google (Brin & Page 1998) uses visitation rate obtained
from resources’ connectivity to measure their popularity.
HITS (Kleinberg 1999) also use web graph to rate rele-
vant resources by measuring their authority and hub values.
Meanwhile, ARC (Chakrabarti et al. 1998) extends HITS by
including content information of resource hyperlinks to im-
prove system performance. Although the objective is some-
what similar, our work instead exploits resource metadata
generated by community to compute resources’ relevance
score.

Conclusion
We have presented a probabilistic model that models social
annotation process and described an approach to utilize the
model in the resource discovery task. Although we can-
not compare to performance to state-of-the-art search en-
gine directly, the experimental results show the method to
be promising.

There remain many issues to pursue. First, we would like
to study the output of the models, in particular, what the user
interests tell us. We would also like to automate the source
modeling process by identifying the resource’s HTML form
and extracting its metadata. We will then use techniques de-
scribed in (Heß & Kushmerick 2003) to predict the semantic
types of the resource’s input parameters. This will enable
us to automatically query the resource and classify the re-
turned data using tools described in (Gazen & Minton 2005;
Lerman, Plangprasopchok, & Knoblock 2006). We will then
be able to validate that the resource has the same function-
ality as the seed by comparing its input and output data with
that of the seed (Carman & Knoblock 2007). This will allow
agents to fully exploit our system for integrating information
across different resources without human intervention.

Our next goal is to generalize the resource discovery
process so that instead of starting with a seed, a user can
start with a query or some description of the information
need. We will investigate different methods for translating
the query into tags that can be used to harvest data from
del.icio.us. In addition, there is other evidence potentially
useful for resource categorization such as user comments,
content and input fields in the resource. We plan to extend
the present work to unify evidence both from annotation and
resources’ content to improve the accuracy of resource dis-
covery.

Acknowledgements This research is based by work sup-
ported in part by the NSF under Award No. CNS-0615412
and in part by DARPA under Contract No. NBCHD030010.

References
Brin, S., and Page, L. 1998. The anatomy of a large-scale
hypertextual web search engine. Computer Networks and
ISDN Systems 30(1–7):107–117.

Carman, M. J., and Knoblock, C. A. 2007. Learning se-
mantic descriptions of web information sources. In Proc.
of IJCAI.
Chakrabarti, S.; Dom, B.; Gibson, D.; Kleinberg, J.;
Raghavan, P.; and Rajagopalan, S. 1998. Automatic re-
source list compilation by analyzing hyperlink structure
and associated text. In Proceedings of the 7th International
World Wide Web Conference.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the em al-
gorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1):1–38.
Dong, X.; Halevy, A. Y.; Madhavan, J.; Nemes, E.; and
Zhang, J. 2004. Simlarity search for web services. In
Proc. of VLDB, 372–383.
Gazen, B. C., and Minton, S. N. 2005. Autofeed: an unsu-
pervised learning system for generating webfeeds. In Proc.
of K-CAP 2005, 3–10.
Heß, A., and Kushmerick, N. 2003. Learning to attach se-
mantic metadata to web services. In International Semantic
Web Conference, 258–273.
Hofmann, T. 1999. Probabilistic latent semantic analysis.
In Proc. of UAI, 289–296.
Kleinberg, J. M. 1999. Authoritative sources in a hyper-
linked environment. Journal of the ACM 46(5):604–632.
Lerman, K.; Plangprasopchok, A.; and Knoblock, C. A.
2006. Automatically labeling the inputs and outputs of web
services. In Proc. of AAAI.
Lerman, K.; Plangprasopchok, A.; and Knoblock, C. A.
2007. Semantic labeling of online information sources. In-
ternational Journal on Semantic Web and Information Sys-
tems, Special Issue on Ontology Matching.
Lin, J. 1991. Divergence measures based on the shan-
non entropy. IEEE Transactions on Information Theory
37(1):145–151.
Mathes, A. 2004. Folksonomies: cooperative classification
and communication through shared metadata.
Popescul, A.; Ungar, L.; Pennock, D.; and Lawrence,
S. 2001. Probabilistic models for unified collaborative
and content-based recommendation in sparse-data environ-
ments. In 17th Conference on Uncertainty in Artificial In-
telligence, 437–444.
Rosen-Zvi, M.; Griffiths, T.; Steyvers, M.; and Smyth, P.
2004. The author-topic model for authors and documents.
In AUAI ’04: Proceedings of the 20th conference on Un-
certainty in artificial intelligence, 487–494. Arlington, Vir-
ginia, United States: AUAI Press.
Thakkar, S.; Ambite, J. L.; and Knoblock, C. A. 2005.
Composing, optimizing, and executing plans for bioinfor-
matics web services. VLDB Journal 14(3):330–353.
Wu, X.; Zhang, L.; and Yu, Y. 2006. Exploring social an-
notations for the semantic web. In WWW ’06: Proceedings
of the 15th international conference on World Wide Web,
417–426. New York, NY, USA: ACM Press.

91



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


