
KSU Willie in the AAAI 2007 Semantic Vision Challenge 

Dr David A Gustafson, Michael Marlen, Aaron Chavez, and Andrew King 
 

Kansas State University, Computing and Information Sciences 
234 Nichols Hall, Manhattan, KS 66506 

{ dag, mchav, msm6666, aking }@ksu.edu 
 
 
 
 

Abstract 
Kansas State University competed in both the robot division 
and the software division of the AAAI 2007 Semantic 
Vision Challenge. The team used a Pioneer P3AT robot, 
scalable client/server software architecture, path-planning 
code, and a set of image classifiers that autonomously 
trained on images downloaded from the internet. The team 
succeeded in identifying multiple objects in the 
environment. 

Introduction   
The Kansas State University entry into the AAAI 2007 
Semantic Vision Challenge consisted of a Pioneer P3AT 
robot (see figure 1) running Windows 2000, scalable 
client/server software architecture, a path-planning system, 
and a set of image classifiers that autonomously trained on 
images downloaded from the internet.  
 

 

 
 

Figure 1: KSU’s P3AT robot 
 
Our approach to the semantic vision challenge was to 
develop a set of classifiers based on different 
characteristics of the objects. These included a number of 
standard classifiers.  Additionally, we developed some 
unique classifiers. All of these classifiers were trained 
                                                 
Copyright © 2007, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

autonomously on images downloaded from the internet.  
The resulting trained classifiers were used to identify the 
objects in the environment.  The effectiveness of the 
classifiers on the training set were used to determine which 
classifier or set of classifiers was used for each object in 
the environment. 

Marlen Perceptual Model 
The Marlen Perceptual Model provides a unique way of 
looking at objects.  MPM is based on pairs of colors.  The 
restriction on the pair is that the first color must be 
adjacent to the second color and that the colors are sorted 
from least to greatest.   

 
 

Figure 2: Ryobi Drill Images 
 
Learning is performed based upon the colors seen in the 
training set of images.  MPM works well on objects that 
are definable from its color(s).  MPM also works from 
never-before-trained-on-perspectives if the object has a 
similar color theme across the object. 
 
There are several steps in extracting the information from 
the images.  First, the image must be flattened. Since there 
are 256 color values, the number of color pairs is 
256*(256-1).  This is clearly too many possible color pairs;  
there needs to be a reduction in the number of color pairs.  
Doing a reduction on the number of colors provides 
another benefit, which is that two colors that are 
approximately equal can now be set to the same color 
value.  Effectively, ranges of colors are being binned.  The 
size of each bin must be carefully selected to provide 

8



enough distinctiveness between objects. The value used in 
the contest was 51 values per bin. This provided a 
manageable set of bins. All the pixels in each image were 
put into the bins and the resultant picture is a flattened 
image which has lost minimal defining characteristics.   
 

 
 

Figure 3: BookImages 
 
Figures 2 and 3 shows some of the images that were 
successfully downloaded from Google’s image search.  
The images in figure 2 became the positive training 
examples for the Ryobi Drill and the images in figure 3  
became the positive training images for the book 
“Probabilistic Robotics” respectively.  The set of images in 
Figure 3 also acts as the negative training set for the Ryobi 
Drill.  The set of images in Figure 2 act as the negative 
training set for the book “Probabilistic Robotics”.  
Additional images were included in the negative training 
sets from searches on Horizon, Grass, Desk, Empty Room, 
Table, Whiteboard, and Soccer Field.  None of the negative 
training images are shown.  

 
After extracting and learning the relevant pairs of color for 
each respective object a test set was given to MPM to 
determine the ability to detect the object in an image.  
Figure 4 shows both examples of a Ryobi Drill as well as 
the book “Probabilistic Robotics”.  Both objects are placed 
into the test set to see if MPM is able to distinguish 
between the two objects.  The images listed in the below 
figures are just a part of the complete set.   
 
It turns out that MPM works for these two particular 
objects because the pair of colors that are selected turn out 
to be unique to the object.  The bounding boxes for some 
of the images in the test set are shown in Figure 5.  The 
green box bounds two distinct regions that neighbor each 
other that indicate the book “Probabilistic Robotics”.  As 
seen in the 4th and 6th images in figure 5, false positives 
have been detected. 
 

The results for the Ryobi Drill were exceptional (not 
shown).  All pictures of the Ryobi Drill were classified as 
containing a Ryobi Drill.  None of the images that were not 
classified as Ryobi Drill by the human was labeled 
incorrectly.  Thus, the error rate was 0% for misclassifying 
the Ryobi Drill. 
 

 
Figure 4: Images in Test Set 

 
The running time of the algorithm is also extremely low.  It 
takes approximately 21 seconds to train on 60 images and 
to test if twenty images contain one of the two particular 
objects.  For every 45 more images that are added the 
algorithm running time increases by approximately 14-15 
seconds running on a 2.6 GHz machine. 

9



The MPM, given a strong set of training images, performs 
well on objects where the object color patterns are a 
defining attribute to the object.  To be a strong training set 
of images, there are two criteria. First, the training images 
must have a similar color theme (high correlation between 
color patterns) for the positive training set and, second,  the 
negative training set examples must contain background 
information contained within the positive training set..  
 

 
 

Figure 5: Bounding Boxes 
 
 

Relevant Feature Bagging 
 
One of our primary concerns when developing our feature 
descriptor based classifier is the speed of both the classifier 
learning and that classification. Our solution involves 

generating a set or bag of features that are highly relevant 
to the object class.  Once this bag has been collected 
objects in the image are detected and located by the 
amount of relevant features for the class in the image. 
 
Bag collection works by collecting all features present in 
the positive training set.  This collection is pared down by 
comparing each feature in the set with every other feature 
using Euclidean distance.  If the distance is below a certain 
threshold the comparison is considered a match and the 
duplicate is discarded.  
 
Next an array of integers is created equal in size to the 
number of unique descriptors in the positive feature set. 
This table is used to tally the relevance of the feature in 
question. Each feature in the negative collection is 
compared with each feature in the positive set.  Each time a 
match occurs then that feature’s tally is decreased.  The 
original full feature set is then compared with the pared 
feature set.  Each time a match occurs that features tally is 
increased. 
 
The final bag is selected by taking all features whose tally 
is above a certain threshold. 
 
Classification with this bag is straightforward. A list of 
features from the image being classified is compared with 
the classifier bag.  If matches occur the number of matches 
is recorded for that image as a potential match for that 
object class.  The location of the features is used to 
generate a bounding box that localizes the detected object. 
 
Our approach can use any feature that can be compared 
using Euclidean distance.  We used SURF(Bay,Tuytelaars, 
and VanGool)   a SIFT-like descriptor and feature detector. 
 
 

Geometric Feature Descriptor 
 
The geometric descriptor attempts to recognize objects 
using basic shapes/outlines.  Initially, an image 
segmentation algorithm divides the picture into regions.  
We must then find outlines of potential objects by finding 
the edges between “foreground” and background”.  If a 
region is sufficiently large, it is labeled as background.  
Then, we need only locate the regions directly adjacent to 
the background. 
 
Once the regions of interest are located, we must classify 
them.  We first find the prominent lines in the image with a 
Hough transform. Then, we convert them to line segments.  
Next we group each pair of lines and convert them into a 
descriptor. 
So, each descriptor describes one pair of line segments.  
The parameters for the descriptor are ratio, orientation, 
angle, and distance.  The ratio describes the length of the 

10



longer segment, relative to the length of the shorter.  The 
orientation describes the angle of the longer segment 
relative to the image itself.  The angle describes the angle 
between the two segments.  The distance describes an 
approximation of the distance between the two segments. 
 
Classification with this bag is straightforward. A list of 
features from the image being classified is compared with 
the classifier bag.  If matches occur the number of matches 
is recorded for that image as a potential match for that 
object class.  The location of the features is used to 
generate a bounding box that localizes the detected object. 

 
The geometric descriptor attempts to recognize objects 
using basic shapes/outlines.  Initially, an image 
segmentation algorithm divides the picture into regions.  
We must then find outlines of potential objects by finding 
the edges between “foreground” and background”.  If a 
region is sufficiently large, it is labeled as background.  
Then, we need only locate the regions directly adjacent to 
the background. 
 
Once the regions of interest are located, we must classify 
them.  We first find the prominent lines in the image with a 
Hough transform. Then, we convert them to line segments.  
Next we group each pair of lines and convert them into a 
descriptor. 
 
So, each descriptor describes one pair of line segments.  
The parameters for the descriptor are ratio, orientation, 
angle, and distance.  The ratio describes the length of the 
longer segment, relative to the length of the shorter.  The 
orientation describes the angle of the longer segment 
relative to the image itself.  The angle describes the angle 
between the two segments.  The distance describes an 
approximation of the distance between the two segments. 
 
The training algorithm learns which approximate values to 
expect for ratio, orientation, angle, and distance.  In the 
live phase, it attempts to find matches in the test images. 
 
At the competition, we were able to identify a few objects 
correctly.  We identified some objects in both the robot 
league and the software league.  The successful matches 
were made by the SURF algorithm, which was able to 
recognize labels for a CD, movie, and candy.  Our 
bounding boxes were accurate, but conservative.  Overly 
conservative bounding boxes yielded low point values for 
the competition. 
 
The strongest point of our algorithm was the efficiency 
(speed) of our vision detection scheme.  By training on 
image thumbnails rather than entire images, and using 
straightforward clustering algorithms, our robot was able to 
finish training on a test set within minutes, far less than the 
allotted one hour.  When exploring the test area, it was able 

to process pictures in less than one second, allowing  real-
time identification of the objects. 
 

Conclusions 
 
One of our primary concerns when developing our feature 
descriptor based classifier is the speed of both the classifier 
learning and that classification. Our solution involves 
generating a set or bag of features that are highly relevant 
to the object class.  Once this bag has been collected 
objects in the image are detected and located by the 
amount of relevant features for the class in the image. 
 
Bag collection works by collecting all features present in 
the positive training set.  This collection is pared down by 
comparing each feature in the set with every other feature 
using Euclidean distance.  If the distance is below a certain 
threshold the comparison is considered a match and the 
duplicate is discarded.  
 
Next an array of integers is created equal in size to the 
number of unique descriptors in the positive feature set. 
This table is used to tally the relevance of the feature in 
question. Each feature in the negative collection is 
assessment.  If we found a good picture of an object, we 
decided immediately whether it was better than our 
currently stored "best match".  If so, the new picture 
became the best match.  So, after the exploration phase, we 
did not require any time for post-processing; we already 
had determined which pictures to use. 
 
Regrettably, some of our shortcuts for efficiency probably 
hindered our overall accuracy.  Training on thumbnails 
greatly increased the number of images we could evaluate 
from Google, but also reduced the overall quality of the 
descriptors found.  Given the nature of the competition, we 
should have taken advantage of the additional time 
allotted.  Our approach would perform significantly better 
in a situation where the robots were given less time to 
train. 
 
Another area for improvement was our exploration 
algorithm.  We did not focus heavily on this problem, as 
we found the vision aspect of the competition more 
interesting.  Our exploration, accomplished using a semi-
random walk, was effective at covering most of the test 
area.  However, it would have been helpful to focus in on 
salient areas, taking more pictures when an object was 
likely present.  We did not incorporate this into our 
algorithm. 

References 
 
Bay, H., Tuytelaars, T. and Van Gool, L. SURF: Speeded 
Up Robust Features, Proceedings of the ninth European 
Conference on Computer Vision, May 2006. 

11




