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Abstract

Most current mobile robots rely on laser or sonar range
finders wholly or partially. We have designed a mo-
bile robot which uses only visual information for nav-
igation. Our robot design is based on our fundamental
philosophy that high performance vision requires very
high computing power. In order to fulfill this require-
ment, our robot is built to accommodate up to five high
performance computers. Another unique characteristics
of our robot is its visual SLAM and the cooperative 3D
perception that uses both depth from focus/defocus and
3D binocular stereo.

Motivation
Currently most mobile robots rely on non-visual range find-
ers (typically laser or sonar based) to interpret the 3D struc-
ture of the environment. The range-finder-based interpreta-
tion of the environment is simpler to implement than vision-
based systems. However, range finders capture very little
properties of the real environment. They cannot get rich vi-
sual information that leads to the ultimate goal of human-
like perception of the real environment. Range finders are
also limited by their effective measurable ranges, which de-
pend on the type and the model of the range finder.

Our robot is a concrete instance of our attempt to over-
come the limitations of range-finder-based perception. It
uses vision to interpret the environment and guide the robot.
In order to achieve this goal, the robotic platform has to be
capable of accommodating powerful computers, since vi-
sion, which is implemented by hundreds of millions of par-
allel units in the human eyes and brain, requires enormous
computing power. It translates to the necessity for the phys-
ical capability to carry plenty of batteries to run powerful
multiple computers. To meet these requirements our robot
has a very sturdy structure and powerful motors that are
capable of carrying hundreds of pounds of equipment and
power sources. Another unique aspect of our robot is in the
fully computer-controllable video cameras and the camera
mount. They are designed for sophisticated active vision al-
gorithms for reliable 3D perception.
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Figure 1: Our robot

Hardware Design
We did not buy a ready-made robot, because we could not
find on the market any robot that satisfied all of our require-
ments for the fully vision guided robot. Instead, we designed
the robot from scratch and built the whole body from alu-
minum bars and sheets fabricated by our machine shop. The
following are the descriptions of the major components of
the robot.

Cameras

We installed two CCD-based IEEE1394 (firewire) video
cameras whose focus (lens position) and aperture can be
controlled from a computer using the IIDC protocols. The
adoption of the IEEE1394 and the IIDC protocols allows us
to use various publicly available open-source libraries.
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An important feature of our robot is its use of cam-
eras with computer-controllable focus and aperture settings.
Most robots do not have this capability. They use cameras
with a deep depth of field, so that the need for focus adjust-
ment is not significant. We need this capability, because our
robot performs the 3D measurement by both depth from fo-
cus/defocus and the binocular stereo. By using two different
methods for 3D perception, our robot can achieve a better
3D interpretation. The focus/defocus information supple-
ments the weakness of the binocular stereo system and vise-
versa.

Camera Mount
The two video cameras are mounted on a platform whose
pan, tilt, and vergence are controllable from a computer.
Four servo motors are used for the camera mount, two for
vergence control (one for each camera), one for pan, one for
tilt. The pan range is 270 degrees and each of the upward
and downward tilt ranges is 45 degrees.

Computers
The robot can accommodate up to five full-size ATX moth-
erboards. They are to be used for distributed computing
to cope with the demand for the real-time high computing
power especially needed for vision and visual SLAM. As of
this writing, we have not used the full capacity of the robot
with respect to the number of computers it can accommo-
date. As a first experimental step, we used two comput-
ers, one for the visual processing, the other as the master
controller which handles all the other tasks including path
planning and controlling the drive motors and the four servo
motors on the camera platform.

Power Source
We chose 12 volt AGM deep cycle lead-acid batteries for
the robot’s power source. We selected lead-acid batteries
because of their economy and time-tested stability, although
their capacity/weight ratio is not ideal.

The robot uses 24 volt DC power for both the driving mo-
tors and the computers. The 24 volt DC power is created by
connecting two 12 volt batteries in series. For the driving
motors, the 24volt DC power goes to the motors by way of a
high-current motor controller. For the computers the 24 volt
DC power goes to a DC-AC inverter to supply the AC power
to the computers whose power supply modules are standard
AC-DC type.

Although it is simpler and may seem more efficient to use
DC-DC conversion for computers instead of going through
the lengthy DC-AC-DC (computers need DC) conversion,
we did not choose the DC-DC for the following two reasons.
The total efficiency of the DC-DC and the DC-AC-DC are
almost the same with available converters within our budget.
Moreover, with DC-AC-DC we can use our existing comput-
ers without replacing their power supply modules with new
DC-DC type power supply modules.

Some of the conditions above will no longer be valid in
the near future. For example, with the reduction of the
price of the lithium-ion batteries and possible further im-
provement of their capacity/weight ratio, we may switch to

Figure 2: Chassis of the robot

lithium-ion batteries in the near future. We may also switch
the power supply architecture for computers from DC-AC-
DC to DC-to-DC in the future, if efficient high-power DC-
DC converters for computer motherboards become available
at reasonable prices.

Drive Train
The robot is driven by two 500 watt gear-motors, each of
which drives one of the front wheels individually. These mo-
tors can carry the robot at the maximum speed of 4 miles per
hour with the full load (350 pounds) . We chose two strong
gear-motors in order to carry the huge amount of batteries
that are needed to run the multiple high performance com-
puters. The rotation of the gear-motors can be reversed so
that the robot can go both forward and backward as well as
turning in all directions while standing. The smallest turning
radius of the robot is 19 inches.

Motor Controllers
We selected a high power dual channel DC motor controller
that is capable of handling up to 120 amp of total current
(60 amp per channel). We wrote drivers for this controller
by ourselves, so that high-level commands of our choice can
be used in the motor control module.

For the four servo motors which are used for the camera
mount, we used two PWM servo controllers. One of them is
used for the two servo motors on the camera platform to con-
trol the vergence and the other for the two servos in charge
of pan and tilt. Each of the three controllers is connected to
the serial port of a computer using the RS232 protocol.

Physical Structure
Our robot is designed to be capable of carrying multiple high
performance computers to enable sophisticated vision pro-
cesses. Its chassis must be particularly sturdy to handle the
weight of over 400 pounds, as the total weight of batteries
alone can be 250 pounds. The batteries are placed at the bot-
tom on the floor, which is inset to the level of the front wheel
axle in order to have a low gravity center. The low gravity
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Dimension 26.5”(width) 29”(length) 43”(height)
Body Material Aluminum 6061
Drive Motors Two 500 Watt gear-motors
Power Source Up to 250 pounds of AGM lead-acid

batteries for both drive motors and
computers. A high power inverter is
installed for DC-AC conversion for
the computers.

Computers Accommodates up to five full size
ATX motherboards

Cameras Two IEEE1394(Firewire) video
cameras capable of controlling focus
and aperture from a computer

Camera Mount Pan-tilt-vergence controllable mount
with four servo motors

Remote Control Controllable wireless by the protocol
802.11g for training and emergency

Wheels Two 10 inch diameter front wheels
and two 6 inch diameter rear swivel
wheels

Turning Radius 19 inches (Minimum)
Speed 4 mph (Maximum) at full load

Table 1: Hardware Specification

center is needed, since the robot is designed for both indoor
and outdoor use.

The robot’s dimension is also designed for both indoor
and outdoor use. The width and the length are limited so that
the robot can go through any standard door. For the struc-
tural material we chose aluminum 6061 for its good balance
of strength, machinability and cost.

Software Design
We selected Linux for the robot’s operating system. Multi-
ple computers are used for performing CPU-intensive tasks
in real time using a distributed computing architecture. Ma-
jor tasks performed by the computers are the 3D depth mea-
surement, visual SLAM, path planning, and motor control.

Multiple computers are connected for distributed comput-
ing. As of this writing, we connected them by the standard
server-client architecture, although we plan to change the
design in the future as we install more high-performance
computers. The distributed computing will be based on MPI
when the robot takes advantage of its full capacity.

3D perception
One of the unique characteristics of our robot is its use
of both depth from focus/defocus (Pentland 1987; Nayar,
Watanabe, & Noguchi 1995) and binocular stereo to com-
pute the 3D depth. Both binocular stereo and depth from
focus/defocus have strengths and weaknesses. Our attempt
is to take advantage of the strengths of both and to avoid
their weaknesses.

Binocular stereo is generally capable of measuring the 3D
depth more accurately than depth from focus/defocus meth-
ods, because the base-line of the binocular setup is usually

much longer than the diameter of the object lenses of the
cameras. However, binocular stereo fails to measure the 3D
depth when correspondence cannot be established correctly
between two images from the two cameras. Types of im-
age regions with which correspondence fails depend on the
feature detector. For example, SIFT (Lowe 2004), probably
the most used feature detector, does not detect long straight
lines by design, although they are very conspicuous to the
human eye. It also fails if a critical part of a region, even if
very small, is detected in one camera’s image and is slightly
occluded in the other.

On the other hand the focus/defocus method can measure
the depth in some cases where binocular stereo fails. For ex-
ample, regardless of type of shape, (straight line or corner),
the focus/defocus method can sense the depth. For another
example, a region having multiple identical or very similar
patterns close to each other (e.g. regularly aligned dots or
grids), can often derail the corresponding algorithms. Again
depth from focus/defocus can correctly measure the depth
for such regions. For this complementary relation between
the two methods, we use both of them to enhance the ro-
bustness of the depth measurement in unrestricted natural
environment.

Another unique aspect of our 3D measurement is the fea-
ture detection step. For our binocular stereo algorithm, we
do not use any of the well-known feature detectors such as
SIFT (Lowe 2004), which is probably the most used fea-
ture detector for correspondence. There are a number of
other well-known alternatives such as Harris Affine (Miko-
lajczyk & Schmid 2004), MSER (Matas et al. 2002), and
there is a detailed performance comparison (Mikolajczyk et
al. 2005) of these feature detectors. However, our robot uses
a conspicuous-region-based feature detector we developed.
Our detector performs robustly in the real environment and
the detected regions are closer to the regions conspicuous to
the human eye than other well-known detectors.

Our robot also takes advantage of the active use of ver-
gence control in order to enhance the reliability of the 3D
depth measurement. Measured distances are used for fur-
ther processes with probability of accuracy. The further the
measured distance, the less accurate is its measurement. Be-
yond a certain distance, the robot does not try to compute
accurate measurements. They are given a special “very far”
mark, as such distant objects are irrelevant to the maneuver
of the robot.

Visual SLAM
SLAM systems usually uses only range data, which is ob-
tained from laser or sonar range finders. Our robot uses vi-
sual SLAM (Se, Lowe, & Little 2005; Gil et al. 2006) which
does not use a non-visual range finders (laser or sonar based
range finders). It analyses the visual data from the cameras
for building/updating the map of the surrounding region and
localizing itself. Our visual SLAM has the following char-
acteristics.

• While the standard SLAM uses depth information calcu-
lated only at single points, our visual SLAM takes advan-
tage of rich image information including shapes, color,
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and gradient. The rich visual information makes it pos-
sible to identify parts of scenes more accurately than by
simple range data of points.

• Our system uses topological information, which is robust
and invariant against noise and inaccuracies in measure-
ment under even substantial viewpoint changes.

• Our robot frequently looks around and looks back to
check and update the scene properties at various angles
and distances. Recording scene properties from multiple
views enhances the robustness of the map and it is espe-
cially effective to find a return path.

• A disadvantage of our visual SLAM is it needs more com-
puting power and more data storage space than the stan-
dard SLAM, since visual information is more complex
than simple range data.

Execution Flow
At the beginning of a mission, the robot is given a goal. First,
the robot calculates its current pose and location and com-
putes a path to reach the goal. For the path planning we
adopted a strategy that computes a path that is made of mul-
tiple connected sub-paths each of which is either a straight
line or an arc.

As shown in Figure 3, at the start position of each sub-
path, the robot regards the end of the sub-path as an interme-
diate goal and generates a sequence of low-level motor com-
mands that are needed to reach the intermediate goal. While
executing the motor commands, the robot constantly ob-
serves the ego-motion with respect to the surrounding scene
visually and, if necessary, corrects the power of each mo-
tor. At the end of the sub-path, the robot updates the map as
well as its pose and location. The updated data of the map
and the robot’s pose and location are used to update the path
plan. The end of the next sub-path in the path plan is set as
the next intermediate goal, and this loop continues until the
robot reaches the goal.

Although the step labeled “Execute Commands with Ad-
justment by Vision” in Figure 3 appears simple, it actually
is a complex process, since we did not use even encoders.
However, our effort to use vision only even in that step will
pay off when we run the robot on a rough or slippery ground
where encoder reading is not completely reliable.

Performance
As of this writing, we have not taken advantage of the full
capacity of the robot with respect to computing power. As
stated before, our robot is capable of carrying five comput-
ers. However, our experiment has been done using only two
medium-speed Pentium 4 processor-based computers. Be-
cause of this preliminary setup, our robot has to stop fre-
quently to analyse the scene. Another problem that our robot
occasionally encounters is it makes wrong decisions on the
floor patterns. With some patterns on the floor, our robot
fails to make distinction between flat floor and obstacles.
However, generally it performs well in obstacle avoidance
and path following in the indoor situation. Testing in the
outdoor environment has not been done as of this writing.
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Figure 3: Execution Flow

Future Work

The first agenda for improving our robot is to increase the
computing power by installing at least three, hopefully five,
high-performance computers. Currently, we are using a
standard client-server architecture for distributed computa-
tion, as the moving speed of the robot is restricted and we
allow the robot to stop frequently for decision making. How-
ever, as we increase the number of computers, we will de-
ploy more sophisticated distributed computing architecture
using MPI. We can enhance the computing power further by
changing the power conversion method from DC-AC-DC to
DC-DC and remove the DC-AC inverter. In this way we
can use the shelf space of the inverter for installing another
computer, making the total 6 computers.

Second our 3D perception and visual SLAM are still un-
der development. Currently we are working on developing
an improved version of our feature detector and more robust
and efficient matching algorithms. Finally, we will install
two arms taking advantage of the sturdy body design and the
focus adjustable cameras. The installation of the arms does
not require a major surgery, since our robot was designed
from the beginning to accommodate two arms with substan-
tial holding power. The focus adjustable cameras enable the
robot to watch both the close objects to manipulate and the
far objects relevant to path planning. We hope to use our
robot for two vision related research: vision-guided robot
maneuvering and visual servoing for manipulating objects.
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