
Continuous-State POMDPs with Hybrid Dynamics

Emma Brunskill, Leslie Kaelbling, Tomas Lozano-Perez, Nicholas Roy
Computer Science and Artificial Laboratory

Massachusetts Institute of Technology
Cambridge, MA

emma,lpk,tlp,nickroy@csail.mit.edu

Abstract

Continuous-state POMDPs provide a natural representation
for a variety of tasks, including many in robotics. However,
existing continuous-state POMDP approaches are limited by
their reliance on a single linear model to represent the world
dynamics. We introduce a new switching-state (hybrid) dy-
namics model that can represent multi-modal state-dependent
dynamics. We present a new point-based POMDP planning
algorithm for solving continuous-state, discrete-observation
POMDPs using this dynamics model and approximate the
value function as a mixture of a bounded number of Gaus-
sians. We compare our hybrid dynamics model approach to a
linear dynamics continuous-state planner and a discrete-state
POMDP planner and show that in some scenarios we can out-
perform such techniques.

Introduction

Partially observable Markov decision processes
(POMDPs) (Sondik 1971) provide a rich framework
for describing a number of planning problems that arise in
situations with hidden state and stochastic actions. Most
prior work has focused on solving POMDPs with discrete
states, actions and observations.

However, in many applications, such as navigation or
robotic grasping, the world is most naturally represented
using continuous states. Though any continuous domain
can be described using a sufficiently fine grid, the num-
ber of discrete states grows exponentially with the under-
lying state space dimensionality. Existing discrete state
POMDP algorithms can only scale up to the order of a
hundred thousand states, beyond which they become com-
putationally infeasible (Pineau, Gordon, and Thrun 2006;
Spaan and Vlassis 2005; Smith and Simmons 2005). There-
fore, approaches for dealing efficiently with continuous-
state POMDPs are of great interest.

Previous work on planning for continuous-state POMDPs
has typically modeled the world dynamics using a single
linear Gaussian model1 to describe the effects of an ac-
tion(Brooks et al. 2006; Porta et al. 2006; Thrun 2000).

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In some prior work(Brooks et al. 2006; Thrun 2000) a spe-
cial exception is included to encode boundary conditions such as
obstacles in a robotic task.

Unfortunately, this model is not powerful enough to repre-
sent the multi-modal state-dependent dynamics that arise in
a number of problems of interest such as robotic traversal
over varying terrain. Though such dynamics are easily rep-
resented in discrete-state environments using the standard
transition matrices, a single linear Gaussian continuous-state
model will be insufficient to adequately model these multi-
modal state-dependent dynamics. In this paper we present a
hybrid dynamics model that can represent a stochastic dis-
tribution over a set of different linear dynamic models.

We develop a new point-based approximation algorithm
for solving such hybrid-dynamics POMDP planning prob-
lems that builds on Porta et al.’s continuous-state point-
based approach (2006). We first develop our algorithm un-
der the assumption that the observations take on a finite
set of discrete values. Within our algorithm we provide
an heuristic projection method to maintain a bounded value
function representation. We compare our approach to using
a simpler linear Gaussian dynamics model in a continuous-
state planner, and to a discrete-state planner, and show that
in some scenarios our approach outperforms both other tech-
niques. We also present preliminary work on extending our
algorithm to handle a continuous observation model where
observations are a noisy Gaussian function of the true state.

POMDPs

Partially observable Markov decision processes (POMDPs)
are a popular model for decision making under uncertainty
in artificial intelligence (Kaelbling, Littman, and Cassandra
1998). A POMDP consists of: a set of states S; a set of
actions A; a set of observations Z; a dynamics model that
represents the probability of making a transition to state s′

after taking action a in state s, p(s′|s, a); an observation
model describing the probability of receiving an observation
z given the state s′ and prior action a , p(z|s′, a); a reward
model that specifies the reward received from being in state
s and taking action a, R(s, a); the discount factor to trade off
the value of immediate and future rewards, γ; and an initial
belief state distribution, bo.

A belief state bt is used to summarize the probability of
the world being in each state given the past history of obser-
vations and actions (o1:t, a1:t). A policy π : b → a maps
belief states to actions. The goal of POMDP planning tech-
niques is to construct a policy that maximizes the (possibly

13

discounted) expected sum of rewards E[
∑T

t=1
γtR(st, at)]

over an action sequence of length T . The policy is often
found by computing this expected reward using a value func-
tion over the space of belief states. When S, A, and Z are
discrete, Sondik (1971) showed that the optimal finite hori-
zon value function can be represented by a set of α-vectors
(α(s)) and is piecewise linear and convex (PWLC).

In exact POMDP solutions, the number of α vectors re-
quired to represent the value function often grows expo-
nentially with the length of the horizon. One of the most
successful classes of approximation techniques is point-
based value iteration (Pineau, Gordon, and Thrun 2006;
Spaan and Vlassis 2005; Zhang and Zhang 2001). Point-
based techniques estimate the value function at only a small

set of N chosen belief points B̃, resulting in a value function
represented by at most N α-vectors. This representation is
constructed by iteratively computing an approximately opti-
mal t-step value function Vt from the previously-computed
(t − 1)-step value function Vt−1 by backing up the value

function at beliefs b ∈ B̃ using the Bellman equation:

Vt(b) = max
a∈A

∑

s∈S

R(s, a)b(s) + . . .

γ
∑

z∈Z

max
αt−1∈Vt−1

∑

s∈S

∑

s′∈S

p(s′|s, a)p(z|s′)αt−1(s
′)b(s)

= max
a∈A

[

∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

max
αazj

〈αazj , b〉

]

(1)

where αazj is the vector associated with taking action a, re-
ceiving observation z and then following the (t − 1) policy
associated with αj . This approximate representation is guar-
anteed to be a lower bound on the optimal value function.

Switching State-Space Dynamics Models
Our interest lies in using the rich framework of POMDPs
to handle continuous-state problems directly without con-
verting to a discrete representation. One critical represen-
tational issue is how to flexibly represent the dynamics in a
continuous-state system. In general the dynamics of robotic
grasping and many other problems of interest are highly
complex and nonlinear. However we can approximate such
dynamics using a variant of a “switching state space” model
(SSM). SSMs (also known as hybrid models and jump-linear
systems) are a popular model in the control community for
approximating systems with complex dynamics (see for ex-
ample (Ghahramani and Hinton 2000)). A SSM will al-
low us to both represent actions that result in multi-modal
stochastic distributions over the state space, and succinctly
represent any shared dynamics among states. See Figure 1
for an illustration of a typical SSM and the particular one we
use in this work.

In order to model systems involving multi-modal, state-
dependent dynamics (such as dynamics on sand vs con-
crete), our SSM model conditions discrete mode transitions
based on the previous continuous state, and may be ex-
pressed as

p(s′|s, a) =
∑

h

p(s′|s,m′ = h)p(m′ = h|s, a) (2)

where s, s′ are the continuous states at time t and t + 1 re-
spectively, a is the discrete action taken at time t, and m′ is
the discrete mode at time t+1. In this paper we will assume
that for each action a the hidden mode m can take on one of
H values. Each mode value h and action a is associated with
a linear Gaussian model N (s′; ζhas + βha, σ2

ha). For math-
ematical convenience we model the conditional probability
of a mode taking on a particular value h given the previous
state s and action a using a weighted sum of F Gaussians

p(m′ = h|s, a) =

F
∑

f=1

wfhaN (s;µfha, σ2

fha). (3)

Note that for finite H it is impossible to select the parame-
ters wfha, µfha, σ2

fha such that the sum of probability of the

next mode state m′ taking on any value for a given state s,
∑

h p(m′ = h|s, a), sums to 1 for all states s. Therefore in
practice we will choose models that approximately sum to 1
over all the states of interest in a particular experimental do-
main. We choose to use this slightly awkward representation
rather than normalizing the distribution across modes (such
as by using a softmax function) because it allows closed
form updates of the belief state and value function.

Substituting equation 3 into equation 2, the full dynamics
model is a sum of HF Gaussian products:

p(s′|s, a)=

H
∑

h=1

N (s′; ζhas+βha, σ2

ha)

F
∑

f=1

wfhaN (s;µfha, σ2

fha).

An added benefit of this model is that it can flexibly repre-
sent relative transitions (transitions that are an offset from
the current state, by setting ζ 6= 0) and absolute transitions
(transitions that go to some arbitrary global state, by setting
ζ = 0 and β 6= 0). This allows the model to compactly rep-
resent domains in which many states share the same relative
or absolute transition dynamics.

POMDP Planning with Hybrid Models
We now describe a new planning algorithm for POMDPs
with hybrid dynamics models. Recently Porta et al. (2006)
showed that for a continuous-state space S and discrete ac-
tions A and observations Z, the optimal finite horizon value
function is PWLC and may be represented by a finite set of
α-functions2. Therefore point-based approaches to contin-
uous state POMDPs that exactly represent the α-functions
will also provide a lower bound on the value function. Porta
et al.’s algorithm provides an approximation of this lower
bound: our algorithm is inspired by theirs and handles multi-
modal state-dependent dynamics.

For clarity we will explain the mathematics for a one-
dimensional state space, but it is easily extended to higher
dimensions. We assume the reward function r(s, a) is ex-
pressed as a sum of G Gaussian components for each ac-

tion a, r(s, a) =
∑G

g=1
wagN (s;µag, σ

2

ag), and each dis-

crete observation z ∈ Z is expressed as a sum of L Gaus-

sian components p(z|s) =
∑L

l=1
wzlN (s;µzl, σ

2

zl) such

2The expectation operator 〈f, b〉 is a linear function in the belief
space and the value function can be expressed as the maximum of
a set of these expectations: for details see (Porta et al. 2006).

14

(a) Typical SSM (b) Our Dynamics Model (c) Example of mode model

Figure 1: Switching State-Space Models

that ∀s
∑

z p(z|s) = 1. Here we have assumed an obser-
vation model very similar to the mode representation (equa-
tion 3) and the same comments made for that choice ap-
ply here to the observation model. We choose to represent
the belief states b and α-functions using weighted sums of
Gaussians. Each belief state b is a sum of D Gaussians
b(s) =

∑D

d=1
wdN (s;µd, σ

2

d), and each αj , the value func-
tion of policy tree j, is represented by a set of K Gaussians
αj(s) =

∑

k wkN (s;µk, σ2

k). Recall that for each action a,
there are H modes and F Gaussian components per mode.

We do not lose expressive power by choosing this rep-
resentation because a weighted sum of a sufficient number
of Gaussians can approximate any continuous function on a
compact interval (and our domains of interest are closed and
bounded and therefore fulfill the criteria of being compact).
But, of course, we will be effectively limited in the number
of components we can employ, and so in practice our models
and solutions will both be approximations.

Belief Update and Value Function Back Ups

Point-based POMDP planners must include a method for
backing up the value function at a particular belief b (as in
equation 1) and for updating the belief state b after a new ac-
tion a is taken and a new observation z is received. Choos-
ing a weighted sum of Gaussians representation allows both
computations to be performed in closed form.

The belief state is updated using a Bayesian filter:

ba,z=i(s) = p(s′|z = i, a, b)

∝ p(z = i|s′, a, b)p(s′|a, b)

= p(z = i|s′)p(s′|a, b)

where the last equality holds due to the Markov assumption.
Substituting in the dynamics and observation models, and
normalizing such that

∫

s
ba,z(s)ds = 1, we get

ba,z=i(s) =
∑

dfhl

ddfhlN(s|µdfhl, σ
2

dfhl)

where ddfhl is the (scalar) weight of the dfhl-th component.
Hence the representation of the belief as a mixture of Gaus-
sians is closed under belief update: note however that the
number of components to represent the belief has increased
by a factor of FHL.

The other key computation is to be able to back up the
value function for a particular belief. Since we also use dis-
crete actions and observations, this can be expressed as a

slight modification to equation 1 by replacing sums with in-
tegrals and writing out the expectation:

Vt(b) =max
a∈A

∫

s∈S

R(s, a)b(s)ds + γ
∑

z∈Z

max
αazj

∫

s

αazjb(s)ds

=〈max
a∈A

R(s, a) + γ
∑

z∈Z

max
αazj

αazj , b〉

where we have used the inner-product operator 〈f, b〉 as
shorthand for expectation to obtain the second equality. As
stated previously, αazj is the α-function for the conditional
policy corresponding to taking action a, receiving observa-
tion z and then following the previous t − 1-step policy tree
αj , and can here be expressed as

αazj(s) =

∫

s′

αj,t−1(s
′)p(z|s′)p(s′|s, a)ds′.

Substituting in all the chosen representations yields

αazj(s) =

∫

s′

K
∑

k=1

wkN (s′;µk, σ2

k)
L

∑

l=1

wlN (s′;µl, σ
2

l). . .

H
∑

h=1

N (s′; ζhas + βha, σ2

ha)

F
∑

f=1

wfhaN (s;µfha, σ2

fha)ds′

=

F
∑

f=1

H
∑

h=1

K
∑

k=1

L
∑

l=1

wfhawkwlN (s;µfha, σ2

fha) . . .

∫

s′

N (s′;µk, σ2

k)N (s′;µl, σ
2

l)N (s′; ζhas + βha, σ2

ha)ds′.

To perform the integral we combine the three Gaussians in-
side the integrand into a single Gaussian which is a function
of s′ and other terms that are independent of s′. Integrating
over s′ yields

αazj =

F
∑

f=1

H
∑

h=1

K
∑

k=1

L
∑

l=1

wfhklN (s;µfhkl, σ
2

fhkl)

where

wfhkl = wfhawkwlN (sl; sk, σ2

k + σ2

l) · . . .

N (µfha;
c − βha

γha

, σ2

fha +
C + σ2

ha

γ2

ha

),

C =
σ2

l σ2

k

σ2

l σ2

k

, µfhkl =
(C + σ2

ha)µfha + σ2

fhaγha(c − βha)

σ2

fha(C + σ2

ha)
,

σ2

fhkl =
σ2

fha(C + σ2

ha)

C + σ2

h + σ2

fhaγ2

ha

, c =
µkσ2

l + σ2

kµl

σ2

l σ2

k

.

15

−20 −15 −10 −5 0 5 10 15 20
−60

−40

−20

0

20

40

60

80

X

V
a
lu

e

Sampled α

Approximate fit

(a) 1 component

−20 −15 −10 −5 0 5 10 15 20
−60

−40

−20

0

20

40

60

80

X

V
a
lu

e

Sampled α

Approximate fit

(b) 2 components

−20 −15 −10 −5 0 5 10 15 20
−60

−40

−20

0

20

40

60

80

X

V
a

lu
e

Sampled α

Approximate fit

(c) 15 components

Figure 2: Approximating the α-functions. We use a simple residual fitting technique. First the function is sampled. Then a
Gaussian component is added to reduce the highest component. This process is repeated for a set number of iterations.

The new αazj now has F × H × K × L components, com-
pared to the step t − 1 αj , policy tree, which only had K
components. To finish the value function backup, we substi-
tute αazj back into equation 4 and choose the policy tree α
that maximizes the future expected reward 〈α, b〉 of belief b

α(s) = max
a

R(s, a) + γ

|Z|
∑

z=1

max
αazj

αazj

= max
a

G
∑

g=1

N(s|µg, σ
2

g) + γ

|Z|
∑

z=1

max
αazj

αazj

Since all elements in this result are weighted sums of Gaus-
sians, the α function stays in closed form. Note that had we
utilized a softmax distribution for the observation model or
mode probabilities that it would not be possible to iteratively
perform the integrals in closed form.

Unfortunately, the number of Gaussian components in
a single α function has greatly increased: from K to
G + |Z|FHKL components. Compared to previous ap-
proaches (Porta et al. 2006) the new dynamics model has
introduced an extra factor of FH components. The num-
ber of components therefore scales exponentially in the time
horizon with base |Z|FHL.

Approximating α Functions

It is not computationally feasible to maintain all compo-
nents over multiple backups. Instead, by carefully combin-
ing the components generated after each backup, we main-
tain a bounded set of α functions. Since α functions repre-
sent the value of executing a particular policy tree over the
entire belief space, it is important to make the approxima-
tion as close as possible throughout the belief space.3 To
reduce the number of components used to represent the be-
lief states and α functions, Porta et al. use a slight variant of
Goldberger and Roweis’s method (2005) that minimizes the
Kullback-Leibler (KL) distance between the original model

f(x) and the approximation f̃(x)

DKL(f ||f̃) =

∫

x

f(x) log
f(x)

f̃(x)
dx. (4)

3Ideally we could restrict this approximation to the reach-
able belief space; however analyzing the reachable belief space in
continuous-state POMDPs will be an area of future work.

However, the KL distance is not particularly appropriate as
a distance measure for quantities that are not probability dis-
tributions. It also can result in poor approximations in parts
of the space where the original function has small values

since if f(x) is zero then regardless of the value of f̃(x) the
distance for that x is always zero.

Ideally we would like to find the projection that minimizes
the max norm error ||α̃−α||∞: minimizing this norm would
allow us to bound the worst approximation error we induce
by approximating the α-functions by a smaller number of
components. This in turn would enable us to bound the
overall error in the final value function due to performing
projections potentially at every backup.

Unfortunately there is no closed form expression for the
max norm between two Gaussian distributions. Instead we
employ a fast heuristic method which seeks to minimize the
max norm at a subset set of points lying along the value
function. We first sample the α-function at regular intervals
along the state space. These samples are considered poten-
tial residuals r. First the largest magnitude residual (either
positive or negative) is found and a Gaussian is placed at this
point, with a height equal to the residual and variance ap-
proximated by estimating the nearby slope of the function.
This Gaussian is added to the set of new components. Then
a new set of residuals is computed by estimating this Gaus-
sian along the same intervals of state space, and subtracting
its value from the original residuals: r = r−wiN (s|µi,Σi).
This process is repeated until the number of new Gaus-
sians reaches the fixed size of our representation for the α-
functions. See Figure 2 for an illustration of this process.

Note that at each round during this process we are adding
a Gaussian component at the location which currently has
the max norm error at the sampled points. Therefore this
algorithm takes a greedy approach to minimizing the max
norm between the approximate function α̃ and the original
α-function along the set of sampled points. The sampling
prevents any formal guarantees on the actual max norm be-
tween the original and approximated function unless further
assumptions are made on the minimum variance of any po-
tential α components. However, a small max norm error on
the sampled points in practice often indicates that there is
a small max norm between α and α̃. Experimentally, this
algorithm was fast and provided good approximations.

16

Planning

We now have the major components necessary to apply a
point-based approach to POMDP planning. Inspired by re-
sults in discrete-state planners (Smith and Simmons 2005;
Shani, Brafman, and Shimony 2007) we create a belief set B
by sampling belief states in a set of short trajectories, though
in our case we simply perform random actions from an ini-
tial starting belief state b0. We initialize the value function as
a single α-function. Starting with this initial α-function, we
iteratively perform value function backups. At each round,
we select a trajectory from our belief set and back up the
beliefs in that trajectory in reverse order. This approach was
found to be superior to randomly backing up belief points.

Power Outlet Localization

We demonstrate our approach on a small problem with
state-dependent dynamics. Though it is a small prob-
lem, a straight forward implementation of a linear Gaussian
continuous-state planner (such as Porta et al.’s approach)
fails in this domain since its dynamics models do not vary
according to the state of the agent. It is also interesting be-
cause HSVI2, a leading discrete POMDP planner, struggles
with this domain since a fine discretization is required in
parts of the state space to find good policies.

In this experiment a robot must navigate a long corridor
(s ∈ [-21,21]) to find a power socket located at -16.2. The
robot’s actions are almost deterministic and involve moving
left or right using small or large steps that transition it over
by 0.1 or 5.0 respectively (with standard deviation 0.01).
However, if the robot is too close to the left or right walls
(located at -21 and 21) it will bump into the wall. Therefore
the robot’s dynamics are state-dependent, since the result of
an action depends on the robot’s initial location. Plugging
in keeps the robot at the same location. All movement ac-
tions receive a reward of 0.05. If the robot plugs itself in at
the right location it receives a large positive reward (mod-
eled by a highly peaked Gaussian); otherwise it receives a
lesser reward of 5.8. The power supply lies beneath the robot
sensors so the robot is effectively blind: however, since the
robot knows the environment map and dynamics model, it
can take actions to effectively localize itself and then navi-
gate to the power outlet.

We compared three planning approaches for this task:
Smith and Simmons(2005)’s state of the art discrete-state
planner HSVI2, a linear-model continuous-state planner,
and our hybrid-model continuous-state planner. The two
continuous-state planners were run on 100 trajectories (lead-
ing to a total of 1000 belief points) gathered by starting in a
random state s ∈ [−21, 21] with a Gaussian approximately
uniform belief and acting randomly for episodes of 10 steps.
The policies produced were evaluated by the average sum
of rewards received over 100 episodes of 50 steps/episode
using the computed policy. See Table 1 for results.

Our hybrid dynamics model finds a good policy that in-
volves taking steps to the left until the agent knows it is
very likely to have hit the left wall, and then taking a few
more steps to reach the power socket. The linear dynam-
ics model continuous-state POMDP runs faster but fails to

Models Continuous-state Discretized (Number of States)

Linear Hybrid 840 1260 2100

Time(s) 44 548 577 23262 75165
Reward 290 465 290 484 484

Table 1: Power Supply Experiment Results

find a good policy since it cannot model that the dynamics
change when the robot is near the wall, and since there are
no unique observations, it does not have a way of localiz-
ing the agent. The discrete-state solutions does poorly at
coarse granularities since the PlugIn reward gets washed
out by averaging over the width of a too wide state. At fine
state granularities the discrete approach finds a good policy
but requires more time: our continuous-state planner finds a
solution much faster than the coarsest discrete-state planner
that can find a good solution. It is also important to note that
it is hard to determine a priori what level of discretization
is required for a discrete-state planner to find a good pol-
icy, and a conservatively fine discretization can result in a
significantly longer planning time.

Continuous Observations

One motivation for investigating continuous-state models is
the desire to scale to higher dimensional problems. Our cur-
rent approach still struggles with finding a compact repre-
sentation of the dynamics and observation models; indeed,
so far the simplest method employed to ensure these models
are proper probability models requires effectively tiling the
space with uniformly spaced Gaussian components. This
method will naturally fail to scale gracefully to higher di-
mensional problems.

However, we may gain some traction by moving to a con-
tinuous observation model. In particular, we choose to ex-
amine the situation where observations are a noisy Gaus-
sian function of the true underlying state. This is a depar-
ture from prior work by Porta et al. (2006) who used kernel
smoothing over a set of training observation-state tuples to
define their continuous observation model. By using a sim-
pler model we hope to gain scalability, while still using a
representation that has been widely and successfully used in
the robotics community. Our model also draws from Hoey
and Poupart’s work (2005) on solving POMDPs with con-
tinuous observations in a discrete-state domain.

This new representation makes only a small change to a
belief update of a belief state b given an action a and obser-
vation z. The observation model p(z|s′) is simply a single
multi-dimensional Gaussian, versus in our earlier discrete-
observation representation, this p(z|s′) was represented by
a weighted sum of Gaussians. The calculations therefore are
largely identical, with the exception that the number of com-
ponents needed to represent the belief state grows slower
since now only the dynamics model representation causes
an increase in the number of belief state components.

However, we also need to be able to back up the value
function, and this is more challenging since there is now an
infinite number of possible observations. We therefore ap-
proximate this integral by performing sampling (as did Hoey

17

and Poupart (2005) in discrete-state spaces). We now de-
rive a new α-function backup for our continuous observation
model, and then discuss its properties.

First recall the value function backup equation

V (b) =max
a

∫

s

R(s)b(s)ds + ...

γ

∫

s

∫

z

max
αn−1

∫

s′

p(s′|s, a)p(z|s′)αn−1(s
′)ds′dzb(s)ds

We next multiply and divide by p(z|a, b) ≡
∫

s
′′′ p(z|s

′′′

)
∫

s
′′ p(s

′′′

|s
′′

, a)b(s
′′

)ds
′′

ds
′′′

and switch
the order of integration:

V (b) = max
a

∫

s

R(s)b(s)ds + γ

∫

s′

∫

z

max
αn−1

p(z|b, a) · ...

αn−1(s
′)p(z|s′)

∫

s
b(s)p(s′|s, a)p(z|s′)ds

p(z|b, a)
dzds′.

We can condense this expression by recognizing that part
of it is simply the belief update equation (ba,z(s′) =
p(z|s′)

∫

s
b(s)p(s′|s, a)ds/p(z|b, a)):

V (b) = max
a

∫

s

R(s)b(s)ds + ...

γ

∫

s′

∫

z

max
αn−1

p(z|a, b)αn−1(s
′)baz(s′)dzds′.

We will approximate the expectation over all observations
by sampling a set of observations from the distribution
p(z|a, b)and average over the value of the resulting sam-
ples. Sampling provides an estimation of p(z = zi|a, b) =
1

Nz

∑

zi
δzi

(z) where Nz is the number of samples.

V (b)=max
a

∫

s

R(s)b(s)ds +
γ

Nz

∫

s′

∑

zi

max
αn−1

αn−1(s
′)bazi(s′)ds′.

Note that the p(z|a, b) term has disappeared due to the sam-
pling approximation of the expectation.

Now re-express baz as the belief update of b and then re-
verse the orders of integration and summation:

V (b) = max
a

∫

s

b(s)[R(s) +

γ

Nz

∑

zi

max
αn−1

∫

s′
αn−1(s

′)p(zi|s
′)p(s′|s, a)ds′

p(zi|b, a)
]ds.

We define the term in the brackets as a backed up α-function

αc
n ≡ R(s) +

γ

Nz

∑

zi

max
αn−1

∫

s′
αn−1(s

′)p(zi|s
′)p(s′|s, a)ds′

p(zi|b, a)

where we have used αc
n to denote that this function is asso-

ciated with continuous observations.
There are a couple interesting things to note about this

expression. First is that due to our chosen representations

(Gaussian observation model, weighted sum of Gaussians
for the dynamics model, reward model, and belief states) this
expression is, like in our discrete observation model, an inte-
gral over a weighted sum of Gaussians, and can therefore be
computed in closed form. In addition, recall that in discrete-
observation α-function backups, the observation model in-
creased the number of components in the backed up α func-
tion by a factor of|Z|*number of components/observation
where this second term typically scales exponentially with
the state space dimension. In contrast, by using a Gaussian
observation model the number of components created in a
backup increases by a factor of the number of samples used
|Zi|. The critical issue is how many samples are necessary
to get a good approximation. We suspect that the number
of samples needed may scale better with increasing dimen-
sionality than the number of components needed to specify
a naive discrete observation model. We are currently inves-
tigating this issue.

Conclusion

We have presented a novel algorithm for solving continuous-
state POMDPs and demonstrated its ability to handle prob-
lems involving multi-modal dynamics models. In the future
we intend to investigate how the continuous-observation ap-
proach scales to higher dimensional problems.

References
Brooks, A.; Makarenko, A.; Williams, S.; and Durrant-Whyte,
H. 2006. Parametric POMDPs for planning in continuous state
spaces. Robotics and Autonomous Systems.

Ghahramani, Z., and Hinton, G. 2000. Variational learning for
switching state-space models. Neural Computation 12:831–864.

Goldberger, J., and Roweis, S. 2005. Hierarchical clustering of a
mixture model. In NIPS.

Hoey, J., and Poupart, P. 2005. Solving pomdps with continuous
or large discrete observation spaces. In IJCAI.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence 101:99–134.

Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime point-
based approximations for large POMDPs. Journal of Artificial
Intelligence Research 27:335–380.

Porta, J.; Spaan, M.; Vlassis, N.; and Poupart, P. 2006. Point-
based value iteration for continuous POMDPs. Journal of Ma-
chine Learning Research 7:2329–2367.

Shani, G.; Brafman, R.; and Shimony, S. 2007. Forward search
value iteration for POMDPs. In IJCAI.

Smith, T., and Simmons, R. 2005. Point-based pomdp algorithms:
Improved analysis and implementation. In UAI.

Sondik, E. J. 1971. The Optimal Control of Partially Observable
Markov Processes. Ph.D. Dissertation, Stanford University.

Spaan, M., and Vlassis, N. 2005. Perseus: Randomized point-
based value iteration for POMDPs. Journal of Artificial Intelli-
gence Research 24:195–220.

Thrun, S. 2000. Monte carlo POMDPs. In NIPS.

Zhang, N., and Zhang, W. 2001. Speeding up the convergence of
value iteration in partially observable markov decision processes.
Journal of Artificial Intelligence Research 14:29–51.

18

