
SparseStochastic Finite-State Controllers for POMDPs

Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

Bounded policy iteration is an approach to solving infinite-
horizon POMDPs that represents policies as stochastic finite-
state controllers and iteratively improves a controller by ad-
justing the parameters of each node using linear program-
ming. In the original algorithm, the size of the linear pro-
grams, and thus the complexity of policy improvement, de-
pends on the number of parameters of each node, which
grows with the size of the controller. But in practice, the num-
ber of parameters of a node with non-zero values is often very
small, and it does not grow with the size of the controller. To
exploit this, we develop a version of bounded policy iteration
that manipulates a sparse representation of a stochastic finite-
state controller. It improves a policy in the same way, and by
the same amount, as the original algorithm, but with much
better scalability.

Introduction
Partially observable Markov decision processes (POMDPs)
provide a framework for decision-theoretic planning prob-
lems where actions need to be taken based on imperfect state
information. Many researchers have shown that a policy for
an infinite-horizon POMDP can be represented by a finite-
state controller. In some cases, this is a deterministic con-
troller in which a single action is associated with each node,
and an observation results in a deterministic transition to a
successor node (Kaelbling, Littman, and Cassandra 1998;
Hansen 1998; Meuleau et al. 1999a). In other cases, it is
a stochastic controller in which actions are selected based
on a probability distribution associated with each node,
and an observation results in a probabilistic transition to
a successor node (Platzman 1981; Meuleau et al. 1999b;
Baxter and Bartlett 2001; Poupart and Boutilier 2004; Am-
ato, Bernstein, and Zilberstein 2007).

Bounded policy iteration(BPI) is an approach to solv-
ing infinite-horizon POMDPs that represents policies as sto-
chastic finite-state controllers and iteratively improves a
controller by adjusting the parameters of each node (which
specify the action selection and node transition probabili-
ties of the node) using linear programming (Poupart and
Boutilier 2004). BPI is related to an exact policy itera-
tion algorithm for POMDPs due to Hansen (1998), but pro-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vides an elegant and effective approach to approximation in
which bounding the size of the controller allows a tradeoff
between planning time and plan quality. Originally devel-
oped as an approach to solving single-agent POMDPs, BPI
has also been generalized for use in solving decentralized
POMDPs (Bernstein, Hansen, and Zilberstein 2005).

In BPI, the complexity of policy improvement depends on
the size of the linear programs used to adjust the parameters
of each node of the controller. In turn, this depends on the
number of parameters of each node (as well as the size of
the state space). In the original algorithm, each node of the
controller has|A|+ |A||Z||N | parameters, where|A| in the
number of actions,|Z| is the number of observations, and
|N | is the number of nodes of the controller. This assumes a
fully-connected stochastic controller. In practice, however,
most of these parameters have zero probabilities, and the
number of parameters of a node with non-zero probabilities
remains relatively constant as the number of nodes of the
controller increases. Based on this observation, we propose
a modified version of BPI that leverages a sparse represen-
tation of a stochastic finite-state controller. It improves the
controller in the same way, and by the same amount, as the
original algorithm. But it does so by solving much smaller
linear programs, where the number of variables in each lin-
ear program depends on the number of parameters with non-
zero values. Because the number of parameters of a node
with non-zero values tends to remain relatively constant as
the size of the controller grows, the complexity of each it-
eration of our modified version of BPI tends to grow only
linearly with the number of nodes of a controller, which can
be a dramatic improvement in scalability compared to the
original algorithm.

Background
We consider a discrete-time infinite-horizon POMDP with a
finite set of states,S, a finite set of actions,A, and a finite
set of observations,Z. Each time period, the environment is
in some states ∈ S, the agent takes an actiona ∈ A, the
environment makes a transition to states′ ∈ S with proba-
bility P (s′|s, a), and the agent observesz ∈ Z with proba-
bility P (z|s′, a). In addition, the agent receives an immedi-
ate reward with expected valueR(s, a) ∈ <. We assume the
objective is to maximize expected total discounted reward,
whereβ ∈ (0, 1] is the discount factor.

31

Variables: ε; ψn(a), ∀a; ηn(a, z, n′),∀a, z, n′
Objective: Maximizeε
Improvement constraints:
Vn(s) + ε ≤ ∑

a ψn(a)R(s, a) +
γ

∑
a,z,n′ ηn(a, z, n′)P (s′|s, a)P (z|s′, a)Vn′(s′),∀s

Probability constraints:∑
a ψ(a) = 1∑
n′ ηn(a, z, n′) = ψ(a), ∀a, z

ψ(a) ≥ 0,∀a
ηn(a, z, n′) ≥ 0, ∀a, z, n′

Table 1: Linear program for improving a noden of a
stochastic finite-state controller.

Since the state of the environment cannot be directly ob-
served, we letb denote an|S|-dimensional vector of state
probabilities, called abelief state, whereb(s) denotes the
probability that the system is in states. If actiona is taken
and followed by observationz, the successor belief state,
denotedba

z , is determined using Bayes’ rule.

Policy representation and evaluation
A policy for a POMDP can be represented by a finite-state
controller (FSC). A stochastic finite-state controller is a tu-
ple < N , ψ, η > whereN is a finite set of nodes,ψ is
an action selection function that specifies the probability,
ψn(a) = Pr(a|n), of selecting actiona ∈ A when the FSC
is in noden ∈ N , andη is a node transition function that
specifies the probability,ηn(a, z, n′) = Pr(n′|n, a, z), that
the FSC will make a transition from noden ∈ N to node
n′ ∈ N after taking actiona ∈ A and receivingz ∈ Z.

The value function of a policy represented by a FSC is
piecewise linear and convex, and can be computed exactly
by solving the following system of linear equations, with
one equation for each pair of noden ∈ N and states ∈ S:

Vn(s) =
∑

a∈A

ψn(a)R(s, a) + (1)

β
∑

a,z,s,n′
ηn(a, z, n′)P (s′|s, a)P (z|s′, a)Vn′(s′).

In this representation of the value function, there is one
|S|-dimensional vectorVn for each noden ∈ N of the con-
troller. The value of any belief stateb is determined as fol-
lows,

V (b) = max
n∈N

∑

s∈S

b(s)Vn(s), (2)

and the controller is assumed to start in the node that maxi-
mizes the value of the initial belief state. The value function
of an optimal policy satisfies the following optimality equa-
tion,

V (b) = max
a∈A

{
R(b, a) + β

∑

z∈Z

P (z|b, a)V (ba
z)

}
, (3)

where R(b, a) =
∑

s∈S b(s)R(s, a) and P (z|b, a) =∑
s∈S b(s)

∑
s′∈S P (s′|s, a)P (z|s′, a).

Algorithm 1 Bounded policy iteration
repeat

repeat
Solve the linear system given by Equation (2)
for each noden of the controllerdo

solve the linear program in Table 1
if ε > 0 then

update parameters and value vector of node
end if

end for
until no improvement of controller
find belief states reachable from tangent points
createk new nodes that improve their value

until no new node is created

Boundedpolicy iteration
Policy iteration algorithms iteratively improve a policy by
alternating between two steps: policy evaluation and policy
improvement. Hansen (1998) proposed a policy iteration al-
gorithm for POMDPs that represents a policy as a determin-
istic finite-state controller. In the policy improvement step,
it uses the dynamic programming update for POMDPs to
add, merge and prune nodes of the controller. The algorithm
is guaranteed to converge to anε-optimal controller and can
detect convergence to an optimal policy.

A potential problem is that the number of nodes added
in the policy improvement step is often very large, and the
controller can grow substantially in size from one iteration to
the next. Because the complexity of the policy improvement
step increases with the size of the controller, allowing the
size of the controller to grow too fast can slow improvement
and limit scalability.

To address this problem, Poupart and Boutilier (2004)
proposed abounded policy iterationalgorithm that controls
growth in the size of the controller in two ways. First, a pol-
icy is represented as a stochastic finite-state controller that
can be improved without increasing its size, by adjusting
the action and node-transition probabilities of each node of
the controller using linear programming. Second, when the
controller cannot be improved further in this way,k nodes
are added to the controller, wherek is some small number
greater than or equal to one. We review each of these two
steps in further detail.

Improving nodes The first step attempts to improve a con-
troller while keeping its size fixed. For each noden of the
controller, it solves the linear program in Table 1. The linear
program searches for action probabilities and node transi-
tion probabilities for the node that will improve the value
vectorVn associated with the node by some amountε for
each state, whereε is the objective maximized by the linear
program. If an improvement is found, the parameters of the
node are updated accordingly. (The value vector may also
be updated, and will be further improved during the policy
evaluation step.)

Poupart and Boutilier (2004) show that the linear program
can be interpreted as follows: it implicitly considers the vec-
tors of the backed-up value function that would be created

32

Figure1: BPI can improve the value vectorVn by an amount
ε to obtain the improved value vectorV ′

n, which is tangent
to the backed-up value function.

by performing a dynamic programming update. In particu-
lar, the linear program searches for a convex combination of
these backed-up vectors that pointwise dominates the value
vector currently associated with the node. If an improvement
is found, the parameters of the convex combination become
the new parameters of the node. This interpretation is illus-
trated in Figure 1, which is adapted from a similar figure
from Poupart’s dissertation (2005). As Figure 1 shows, the
new value vector is parallel to the old vector (i.e., the value
of each component is improved by same amount) and it is
tangent to the backed-up value function.

Adding nodes Eventually, no node can be improved fur-
ther by solving its corresponding linear program. At this
point, BPI is at a local optimum. It can escape such a local
optimum by adding one or more nodes to the controller.

The key insight is that when a local optimum is reached,
the value vector of each node of the controller is tangent to
the backed-up value function at one or more belief states.
Moreover, the solution of the linear program that is the dual
of the linear program in Table 1 is a belief state that is tan-
gent to the backed-up value function; it is called thetangent
belief state. (Since most linear program solvers return the
dual solution whenever they solve a linear program, we as-
sume that we get the tangent belief state when we solve the
linear program in Table 1, in addition to the value ofε and
the action and node transition probabilities.)

To escape a local optimum, it is necessary to improve the
value of the tangent belief state. This leads to the method
for adding nodes to a controller. Given a tangent belief state
b, the algorithm considers every belief stateb′ that can be
reached from it in one step (i.e., by taking some actiona
followed by some observationz). For each reachable be-
lief state, a backup is performed (as defined by Equation 3).
If the backed-up value is better than the value of the be-
lief state based on the current value function, a deterministic
node is added to the controller that has the same action, and,
for each observation, the same successor node, that created
the improved backed-up value. Usually, it is only neces-
sary to add a single node to the controller to escape a lo-

cal optimum. Because a value vector may be tangent to the
backed-up value function for a linear portion of belief space,
however, it may be necessary to add more than one node to
escape the local optimum. As we will see, this method for
adding nodes to escape local optima is related to the method
for exploiting sparsity that we develop in this paper.

Two sources of complexity Most of the computation time
of BPI is spent in solving the linear programs that are used to
adjust the parameters that specify the action selection prob-
abilities and node transition probabilities of each node of
a controller. The size of the linear programs, and thus the
complexity of BPI, depends on two things: the size of the
controller (which determines the number of variables in the
linear program) and the size of the state space (which deter-
mines the number of constraints).

In this paper, we focus on the first source of complexity,
that is, we focus on improving the complexity of BPI with
respect to controller size. Coping with POMDPs with large
state spaces is an orthogonal research issue, and several ap-
proaches have been developed that can be combined with
BPI. For example, Poupart and Boutilier (2005) describe a
technique calledvalue-directed compressionand report that
it allows BPI to solve POMDPs with up to33 million states.
Because the test problems used later in this paper have small
state spaces, it is important to keep in mind that the tech-
niques developed in the next section for improving the scala-
bility of BPI with respect to controller size can be combined
with techniques for coping with large state spaces.

Sparse bounded policy iteration
In this section, we describe a modified version of BPI that
we callSparse BPI. In each iteration, it improves a FSC by
the same amount as the original algorithm, but with much
improved scalability. To motivate our approach, we begin
with a discussion of the sparse structure of stochastic finite-
state controllers found by BPI.

Sparse stochastic finite-state controllers
As we have seen, each iteration of BPI solves|N | linear pro-
grams, and each linear program has|A| + |A||Z||N | vari-
ables and|S| + |A||Z| constraints (in addition to the con-
straints that the variables have non-negative values). Even
for small FSCs, the number of variables in the linear pro-
grams can be very large, and the fact that the number of
variables grows with the number of nodes in the controller
significantly limits the scalability of BPI.

If we look at the controllers produced by BPI, however,
we find that most of the parameters of each node (i.e., most
of the variables in the solutions of the linear program) have
values of zero. Table 2 illustrates this vividly for two bench-
mark POMDPs from (Cassandra 2004). The overwhelming
majority of each node’s parameters have zero probabilities.
This is despite the fact thatall of the nodes of the controllers
are stochastic. For the Slotted Aloha problem, a determin-
istic node has4 parameters, one for a choice of action, and
3 to specify the successor node for each of the3 observa-
tions. In Table 2, the minimum number of non-zero parame-

33

Numberof nodes of controller
Test problem Statistic 50 100 150 200 250 300

total parameters per node 1,359 2,709 4,059 5,409 6,759 8,109
SlottedAloha min non-zero parameters 6 5 7 7 7 6
|S| = 30, |A| = 9, |Z| = 3 avg non-zero parameters 11 11 11 11 11 11

maxnon-zero parameters 17 18 20 21 21 21
total parameters per node 5,255 10,505 15,755 21,005 26,255 31,505

Hallway min non-zero parameters 28 44 32 35 36 35
|S| = 60, |A| = 5, |Z| = 21 avg non-zero parameters 99 112 105 103 102 100

maxnon-zero parameters 130 151 158 157 158 158

Table 2: Total number of parameters per node of stochastic finite-state controllers found by bounded policy iteration, and
minimum, average, and maximum number of parameters with non-zero values, as a function of the size of the controller. (The
average is rounded up to the nearest integer.) The two test POMDPs are from (Cassandra 2004).

ters for any node is always greater than this, which indicates
that all of the controller nodes are stochastic. For the hall-
way problem, a deterministic node has22 parameters, one
for a choice of action, and21 to specify the successor node
for each of the21 observations. Again, the minimum num-
ber of non-zero parameters for any node is greater than this.
For these problems and many others, BPI is very effective
in leveraging the possibility of stochastic nodes to improve
a controller without increasing its size, but the actual num-
ber of parameters with non-zero probabilities is a very small
fraction of the total number of parameters.

Besides the sparsity of the stochastic finite-state con-
trollers found by BPI, an equally important observation
about the results in Table 2 is that the number of parame-
ters with non-zero probabilities tends to remain the same as
the controller grows in size, whereas the total number of pa-
rameters grows significantly. In the following, we develop a
modified version of BPI that exploits this sparse structure.

Sparse policy improvement algorithm
We begin by describing the main idea of the algorithm. We
have seen that the number of parameters of a node with non-
zero probabilities in the solution of the linear program of Ta-
ble 1 is very small relative to the total number of parameters.
Let us call these theuseful parameters. If we could some-
how identify the useful parameters of a node, we could im-
prove a node by solving a linear program that only includes
these variables. We call a linear program that only includes
some of the parameters of a node asparse linear program.
Our approach will be to solve a series of sparse linear pro-
grams, where the last sparse linear program is guaranteed
to include all of the useful parameters of the node. This
approach will get the same result as solving the full linear
program of Table 1, and can be much more efficient if the
sparse linear programs are much smaller.

We next describe an iterative method for identifying a
small set of parameters that includes all of the useful pa-
rameters. Our method starts with the parameters of the node
that currently have non-zero probabilities. This guarantees
a solution that is at least as good as the current node (and
possibly better). Then we add parameters using a technique
that is inspired by the technique that BPI uses to add nodes
to a controller in order to escape local optima. As shown in

Figure 1, the value vector that is created by solving the linear
program in Table 1 is tangent to the backed-up value func-
tion, and the solution of the dual linear program is a tangent
belief state. In the case of a sparse linear program, how-
ever, we have apartial backed-up value functionthat does
not include vectors corresponding to parameters that are not
included in the sparse linear program. (For example, if only
one action parameter is included in the sparse linear pro-
gram, the partial backed-up value function does not include
any vectors created by taking a different action.)

If the sparse linear program is missing some useful pa-
rameters, it must be possible to improve the value of the
tangent belief state by considering the vectors of the full
backed-up value function. So, to identify potentially use-
ful parameters, we perform a backup for the tangent belief
state. If the backed-up value is better than the value of the
tangent belief state based on the current value vector, we add
to our set of parameters the parameters used to create the
backed-up value: the best action, and, for each observation,
the best successor node. Then we solve another sparse lin-
ear program that includes these parameters in addition to the
parameters contained in the previous sparse linear program.

If the value vector is tangent to the partial backed-up
value function at a single belief state, adding the parame-
ters that improve the backed-up value of this tangent belief
state improves the value vector for this node. But since the
value vector may be tangent to the partial backed-up value
function along a linear segment, adding parameters does not
guarantee improvement of the node. In this case, however,
it does change the result of the new sparse linear program in
an important way. Because adding these parameters to the
sparse linear program improves the partial backed-up value
function that is searched by the linear program, the value
vector is no longer tangent to the partial backed-up value
function at the same belief state. In other words, even if
the solution of the sparse linear program is not changed by
adding these parameters, the solution of the dual linear pro-
gram changes in one important way: there must be a new
tangent belief state. This is illustrated in Figure 2.

This points to an iterative algorithm for improving a node.
At each step, the algorithm solves a sparse linear program,
and then performs a backup for the tangent belief state. If
the backed-up value of the tangent belief state is better than

34

Figure2: In the left panel, the value vector is tangent to the partial backed-up value function along a linear segment. The center
panel shows the result of adding parameters to the sparse linear program that improve the partial backed-up value function
at tangent belief statet1. Although this does not improve the value vector, it creates a new tangent belief statet2. When
parameters are added to the sparse linear program that improve its backed-up value, the result is an improved value vector with
a new tangent belief statet3, as shown in the right panel.

its value based on the current value vector, the parameters
that produced the improved backed-up value are added to the
sparse linear program. Since the backed-up value of the tan-
gent belief state is improved, it must be the case that at least
some of these parameters are not in the current sparse linear
program; if they were, the current value vector would not be
tangent to the partial backed-up value function at this belief
state. The condition for terminating this iterative process of
adding parameters to a sparse linear program is based on the
following lemma.
Lemma 1 The difference between the backed-up value of a
tangent belief state and its value based on the current value
vector bounds the amount by which the linear program in
Table 1 can improve the value vector of a node.
In other words, if the backed-up value of the tangent belief
state is the same as its value based on the current value vec-
tor, it is impossible to improve the value vector further. This
follows from the fact that possible improvement of the value
any belief state by solving the linear program is bounded by
the backed-up value of that belief state.

This iterative algorithm is guaranteed to terminate be-
cause (i) whenever the backed-up value of the tangent belief
state is greater than its value based on the value vector cre-
ated by the current sparse linear program, at least one (and
no more than (1+|Z|) parameters will be added to the sparse
linear program, and (ii) the total number of parameters is fi-
nite. Moreover, the last sparse linear program solved in this
iterative process will have the same result as solving the full
linear program in Table 1. This follows from the fact that the
process terminates when the difference between the backed-
up value of the tangent belief state (for the last sparse lin-
ear program) and the value of the tangent belief state based
on the current value vector of the node is zero, which from
Lemma 1 means that no further improvement is possible.
Theorem 1 This method of improving a stochastic node by
solving a sequence of sparse linear program is guaranteed
to terminate and the last sparse linear program produces the
same result as solving the full linear program in Table 1.

(Of course, to say that the last sparse linear program pro-
duces the same result means that it produces the same value
vector. There may be different parameter settings that pro-
duce the same value vector.)

Because the parameters added to the initial sparse linear
program are useful parameters, each of the sparse linear pro-
grams solved in this iterative process is typically very small
compared to the full linear program of Table 1. (This is the
case whenever that the FSCs found by BPI are very sparse.)
We call this iterative approach to improving the nodes of a
stochastic FSCsparse policy improvement. The high-level
pseudocode is shown in Algorithm 2.

It should be clear that this approach is somewhat related
to the way the original BPI algorithm adds nodes to a con-
troller. In both cases, the technique for breaking a local op-
timum at a tangent belief state is to improve the backed-up
value function of the tangent belief state. In the original BPI
algorithm, the value of the tangent belief state is improved
by adding nodes to the controller. In sparse policy improve-
ment, it is improved by adding parameters to a node.

Algorithm 2 Sparse policy improvement
for each node of controllerdo

Create initial sparse linear program
{its parameters are the parameters of the node that cur-
rently have non-zero probabilities}
repeat

Solve sparse linear program for the node
if ε > 0 then

Update parameters and value vector of the node
end if
Do backup for tangent belief state
if backed-up value is improvementthen

Add parameters that produced backed-up value
end if

until backup does not improve value of tangent belief
end for

35

Numberof nodes of controller
Test problem Algorithm 50 100 150 200 250 300
SlottedAloha BPI 202 415 684 871 1,085 1,620
|S| = 30, |A| = 9, |Z| = 3 Sparse-BPI 16 19 19 20 21 23
Hallway BPI 3,900 10,180 17,340 24,485 27,428 32,973
|S| = 60, |A| = 5, |Z| = 21 Sparse-BPI 1,215 935 1,110 973 1,094 1,267

Table 3: Average time (in CPU milliseconds) for improving a single node of a finite-state controller, as a function of the size of
the controller, for two benchmark POMDPs.

Experimental results

We implemented sparse bounded policy iteration and tested
it successfully on several benchmark POMDPs. Table 3
shows our results for the two POMDPs considered earlier in
Table 2. The experiments were run on a 3.0 GHz processor,
using CPLEX version 9.0 as the linear program solver.

Table 3 shows that Sparse BPI is much more efficient that
the original BPI algorithm in improving sparse stochastic
FSCs. Even for relatively small controllers of 300 nodes,
Sparse BPI is between30 and80 times faster than BPI. More
importantly, its relative advantage grows with the size of the
controller. Because the size of the linear programs solved by
Sparse BPI remains about the same as the controller grows
in size, in contrast to BPI, the complexity of an iteration of
Sparse BPI tends to grow only linearly with the size of the
controller (at least for FSCs with sparse structure).

(There may be a slight increase in the per-node running
time of Sparse BPI as the size of the controller grows, since
the complexity of backups grows slightly when there are
more value vectors to search in evaluating a belief state. But
if the average number of non-zero parameters per node does
not grow with the size of the controller, the per-node running
time for solving the linear programs will not grow either.)

An interesting difference between Sparse BPI and BPI is
that the running time of an iteration of Sparse BPI depends
on how much improvement of the controller is possible. If
all nodes of a controller are already at a local optimum,
Sparse BPI often needs to solve only one or two linear pro-
grams per node in order to determine that further improve-
ment is not possible. In this case, an iteration of Sparse BPI
terminates relatively quickly. But if much improvement of
the FSC is possible, Sparse BPI often needs to solve ten to
twenty sparse linear programs for some nodes in order to add
all of the parameters that are needed to maximize improve-
ment of the node. So far, the largest difference we have seen
in the running time of Sparse BPI as a function of how much
improvement of the FSC is possible is about a factor of four.
To obtain reliable running times for Sparse-BPI, the results
in Table 3 are averaged over several iterations of Sparse-BPI.

This observation about the behavior of Sparse BPI sug-
gests that a simple variation of the algorithm could offer a
tradeoff between improvement and running time. Instead of
continuing to add parameters until the difference between
the backed-up value of the tangent belief state and its cur-
rent value is zero, Sparse-BPI could stop adding parameters
as soon as the difference is small enough to demonstrate that
only a small amount of further improvement is possible.

Conclusion
We have presented a modified bounded policy iteration algo-
rithm for POMDPs called sparse bounded policy iteration.
The new algorithm exploits the sparse structure of stochas-
tic finite-state controllers found by bounded policy iteration.
Each iteration of the algorithm produces the identical im-
provement of a controller that an iteration of the original
bounded policy iteration algorithm produces, but with much
improved scalability. Whereas the time it takes for the orig-
inal algorithm to improve a single node grows with size of
the controller, the time it takes for the new algorithm to im-
prove a single node is typically independent of the size of
the controller. This makes it practical to use bounded policy
iteration to find larger controllers for POMDPs.

References
Amato, C.; Bernstein, D.; and Zilberstein, S. 2007. Solving
POMDPs using quadratically constrained linear programs. In
Proceedings of IJCAI-07, 2418–2424.
Baxter, J., and Bartlett, P. 2001. Infinite-horizon policy-gradient
estimation.JAIR15:319–350.
Bernstein, D.; Hansen, E.; and Zilberstein, S. 2005. Bounded
policy iteration for decentralized POMDPs. InProceedings of
IJCAI-05, 1287–1292.
Cassandra, A. 2004. Tony’s POMDP file repository page.
http://pomdp.org/pomdp/examples/index.shtml.
Hansen, E. 1998. Solving POMDPs by searching in policy space.
In Proceedings of UAI-98, 211–219.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Planning
and acting in partially observable stochastic domains.Artificial
Intelligence101:99–134.
Meuleau, N.; Kim, K.; Kaelbling, L.; and Cassandra, A. 1999a.
Solving POMDPs by searching the space of finite policies. In
Proceedings of UAI-99, 417–426.
Meuleau, N.; Peshkin, L.; Kim, K.; and Kaelbling, L. 1999b.
Learning finite-state controllers for partially observable environ-
ments. InProceedings of UAI-99, 427–436.
Platzman, L. 1981. A feasible computational approach to infinite-
horizon partially-observed Markov decision problems. Technical
report, Georgia Tech. Reprinted in Working Notes of the AAAI
Fall Symposium on Planning using POMDPs, 1998.
Poupart, P., and Boutilier, C. 2004. Bounded finite state con-
trollers. InNIPS 16, 823–830.
Poupart, P., and Boutilier, C. 2005. VDCBPI: An approximate
scalable algorithm for large POMDPs. InNIPS 17.
Poupart, P. 2005.Exploiting Structure to Efficiently Solve Large
Scale Partially Observable Markov Decision Processes. Ph.D.
Dissertation, University of Toronto.

36

